ON THE NEGATIVE EIGENVALUES OF A CLASS OF SCHRÖDINGER OPERATORS

BY

A. LAPTEV AND YU. NETRUSOV

This paper is dedicated to M.S. Birman on the occasion of his 70th birthday with our warmest wishes and gratitude

ABSTRACT. We find a subclass of potentials satisfying the CLR type inequalities for the number of negative eigenvalues of the operator $(-\Delta)^l + |x|^{-2l} - V$, $l \in \mathbb{N}$, in \mathbb{R}^d for the limiting case when d = 2l.

1. INTRODUCTION

1.1. CLR-type inequalities. We study the selfadjoint operator in $L^2(\mathbb{R}^d)$

(1.1)
$$H = H_V = (-\Delta)^l + b|x|^{-2l} - V, \quad l \in \mathbb{N}, \quad b \in \mathbb{R},$$

where V is a nonnegative, locally integrable function (potential) in \mathbb{R}^d . The operator (1.1) can be accurately defined by its quadratic form. Denote by $N_b(V)$ the number of negative eigenvalues of the operator (1.1).

If 2l < d and $V \in L^{d/2l}(\mathbb{R}^d)$, then for any $b > -((d-2)\dots(d-2l))^2/2^{2l}$ the following inequality holds

(1.2)
$$N_b(V) \leqslant C(b,d,l) \int V^{d/2l} dx$$

For l = 1 (1.2) is known as the Cwikel-Lieb-Rozenblum (CLR) inequality.

If $2l \ge d$ and $b \ge 0$, then the inclusion $V \in L^{d/2l}(\mathbb{R}^d)$ does not imply (1.2). In fact, this inclusion does not guarantee even the semiboundedness of the operator (1.1) from below. For 2l > d some different type estimates of the number of the negative eigenvalues were obtained in [BS1] for d odd and in [BLS] for d even. In the case 2l = d the corresponding results are less complete (see [BL], [BLS], [L] and [S1,2]). It was first shown in [S1,2], and then in a sharper form in [BL] and [BLS], that if 2l = d and b = 0, then the problem can be separated into two problems. The first one is defined by the restriction of the operator (1.1) to the subspace of functions depending on |x| and, hence, is reduced to a well studied one-dimensional

¹⁹⁹¹ Mathematics Subject Classification. 35P15, 35P20.

The first author was supported by the Swedish Natural Sciences Research Council, Grant M-AA/MA 09364-320. The second author was supported by the British Engineering and Physical Sciences Research Council, Grant AF/97/1657 and by the Royal Swedish Academy of Science (project number 1400).

differential operator with the potential equal to the mean value \tilde{V} of V over \mathbb{S}^{d-1} . In particular, for this class of operators there are (see [BS1]) necessary and sufficient conditions on the potential \tilde{V} which give $N_0(\alpha \tilde{V}) = O(\alpha)$, as $\alpha \to \infty$. The second problem is defined by a class of functions whose mean values over \mathbb{S}^{d-1} are equal to zero. On this subspace we have the Hardy inequality which automatically provides us with the "supporting" term $b|x|^{-2l}$ with some b > 0. This suggests that in order to study the case 2l = d, we have to pay special attention to the operator (1.1), where b > 0.

The purpose of this paper is to find a subclass of potentials from $L^1(\mathbb{R}^d)$, such that the inequality (1.2) holds for d = 2l and b > 0. We shall always assume that b = 1. For an arbitrary b > 0 all the statements of this paper remain true but the constants depend on b. For b = 1 (1.2) takes the form

(1.3)
$$N(V) = N_1(V) \leqslant C(d) \int V(x) \, dx.$$

The right hand side of (1.3) does not require more than $V \in L^1(\mathbb{R}^d)$. We prefer to deal with the problem

(1.4)
$$H_{\mu} = (-\Delta)^{l} + |x|^{-2l} - \mu,$$

where μ is a nonnegative, finite measure in \mathbb{R}^d . If μ is an absolutely continuous measure, $d\mu = V dx$, and b = 1, then (1.4) coincides with (1.1). Let $|\nabla^l u|^2 := \sum_{|\beta|=l} (l!/\beta!) |\partial^{\beta} u|^2$. We shall impose such conditions on μ that the quadratic form

(1.5)
$$h_{\mu}[u,u] = \int (|\nabla^{l}u|^{2} + |x|^{-2l}|u|^{2}) \, dx - \int |u|^{2} \, d\mu$$

defined on $\mathcal{H}^{l}(\mathbb{R}^{d})$ (see(1.8)) is semibounded and closed in $L^{2}(\mathbb{R}^{d})$ and, hence, defines a selfadjoint operator H_{μ} . Notice that necessary and sufficient conditions of closability and semiboundedness of a wide classes of quadratic forms were obtained in [M, Ch.8 and 12].

For b = 0 the operator (1.1) has already been studied in [S1,2], where some estimates of $N_0(V)$ were obtained in terms of Orlicz classes. This paper deals with the problem of finding a class of potentials, such that the prescribed inequality (1.3) is satisfied. Our conditions are different, and the results of this paper and those obtained in [S1,2] complement each other. In particular, if $d\mu = V dx$ and $V(x) = V(|x|) \in L^1(\mathbb{R}^d), d = 2l$, then our results imply the inequality (1.3) (see also [L]).

1.2. The main results. In order to formulate the main result we introduce the following definition and notation.

The open ball with centre at $x \in \mathbb{R}^d$ and radius r > 0 is denoted by B(x, r),

$$B(x,r) = \{ y \in \mathbb{R}^d : |y - x| < r \}.$$

Condition (*). Let μ be a nonnegative measure in \mathbb{R}^d , $d \ge 1$, whose support $F = \operatorname{supp} \mu$ is a bounded set. We say that the measure μ satisfies Condition (*) with constants γ_1 and γ_2 , where γ_1 , $\gamma_2 > 1$, if for any $x \in \mathbb{R}^d$ and $r \le \gamma_2^{-1} \operatorname{diam} F$ we have that

$$U(D(m, n, m)) > \Omega U(D(m, m))$$

Denote

$$\Omega_{c_1,c_2} := \{ x \in \mathbb{R}^d : c_1 \leqslant |x| < c_2 \} = B(0,c_2) \setminus B(0,c_1), \qquad 0 \leqslant c_1 < c_2 \leqslant \infty, \\ \Omega_k := \Omega_{c_1,c_2}, \quad \text{where} \quad c_1 = 2^{k-1}, \quad c_2 = 2^k, \quad k \in \mathbb{Z}$$

and

 $\widetilde{\Omega}_k := \Omega_{c_1, c_2}, \quad \text{where} \quad c_1 = 2^{k-2}, \quad c_2 = 2^{k+1}, \quad k \in \mathbb{Z}.$

Our main result is the following statement:

Theorem 1.1. Let μ be a finite, nonnegative Borel measure in \mathbb{R}^d , d even, whose restrictions $\mu|_{\overline{\Omega}_k}$, $k \in \mathbb{Z}$ satisfy Condition (*) with constants γ_1 and γ_2 independent of k. Then the quadratic form (1.5) is semibounded from below, closed on $\mathcal{H}^l(\mathbb{R}^d)$ and the number of negative eigenvalues $N(\mu)$ of the corresponding operator

(1.6) $H_{\mu} = (-\Delta)^{l} + |x|^{-2l} - \mu, \qquad l = d/2 \in \mathbb{N},$

satisfies

(1.7)
$$N(\mu) \leqslant C \,\mu(\mathbb{R}^d),$$

where $C = C(\gamma_1, \gamma_2, d)$.

The proof of this theorem of is given in Section 4.

Remark 1.1. It can be easily checked (see Section 5) that Condition (*) is satisfied for any spherically symmetric measure. In particular, if μ is the δ -function of \mathbb{S}^{d-1} , then the constants γ_1 and γ_2 can for example, be chosen as $\gamma_1 = \gamma_2 = 2$. In fact, Condition (*) is satisfied for the δ -function of an arbitrary compact smooth submanifold of \mathbb{R}^d of a positive dimension.

The next result is related to absolutely continuous measures $\mu = V dx$. Its proof follows from Theorem 1.1, but requires some additional technical preparations (see Section 5). Let us introduce a class of functions $L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))$ defined in polar coordinates in \mathbb{R}^d , $x = (r, \theta)$, $r \in \mathbb{R}_+ = (0, \infty)$, as

$$\|f\|_{L^{1}(\mathbb{R}_{+}, L^{p}(\mathbb{S}^{d-1}))} = \int_{0}^{\infty} \left(\int_{\mathbb{S}^{d-1}} |f(r, \theta)|^{p} \, d\theta \right)^{1/p} r^{d-1} \, dr < \infty.$$

Theorem 1.2. Let d be even, l = d/2, $V \ge 0$ and $V \in L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))$, 1 . Then the number of the negative eigenvalues of the operator (1.1) with <math>b = 1 satisfies

$$N(V) \leqslant C \|V\|_{L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))},$$

where C = C(d, p).

In particular, we immediately obtain the following

Corollary 1.3. Let $l = d/2 \in \mathbb{N}$, $V \ge 0$ and V(x) = V(|x|). If $V \in L^1(\mathbb{R}^d)$, then the inequality (1.3) is fulfilled.

Remark 1.2. Even for the class of spherically symmetric potentials the inequality (1.3) fails if we do not introduce the "supporting" term $|x|^{-2l}$. Indeed, as it was shown in [BL] and in [BLS], if $\mu = V(x)dx$ and V is a smooth potential, such that

$$V(x) \sim |x|^{-2l} \ln^{-2} |x| (\ln \ln |x|)^{-1/q}$$
, as $|x| \to \infty$, $q > 1$,

then the number of negative eigenvalues of the operator $(-\Delta)^l - V$ satisfies the following asymptotic formula

$$N_0(\alpha V) = \alpha^q c_q + o(\alpha^q), \qquad \alpha \to \infty,$$

although $U \in I^1(\mathbb{D}^d)$ for any a > 0. This is in contrast with (1.2)

1.3. Some notation. We shall denote by $L^p(\mathbb{R}^d, \mu)$ the class of L^p -integrable functions with respect to a measure μ . If μ coincides with the Lebesgue measure, then we omit μ and write $L^p(\mathbb{R}^d, \mu) = L^p(\mathbb{R}^d)$. Let G be an open subset of \mathbb{R}^d . By $H^l(G)$ we denote the Sobolev class of the order l equipped by the standard Hilbert metric

$$H^{l}(G) = \Big\{ f : \int_{G} \Big(|\nabla^{l} f|^{2} + |f|^{2} \Big) \, dx < \infty \Big\}.$$

The integral over the whole space is written without indicating the domain of integration. The class of functions $\mathcal{H}^{l}(\mathbb{R}^{d})$, l = d/2, $l \in \mathbb{N}$, is a so-called homogeneous H^{l} class and defined by

(1.8)
$$\mathcal{H}^{l}(\mathbb{R}^{d}) = \left\{ f: \int \left(|\nabla^{l} f|^{2} + \frac{|f|^{2}}{|x|^{2l}} \right) dx < \infty \right\}.$$

C and c will be different constants whose values are unimportant. By \mathcal{P}^l is denoted the class of polynomials in \mathbb{R}^d of degree less than or equal to l. By v_d we denote the volume of the unit ball in \mathbb{R}^d ,

$$v_d := |B(0,1)| = \operatorname{vol}\{x \in \mathbb{R}^d : |x| < 1\} = \frac{\pi^{d/2}}{\Gamma(1+d/2)}$$

Acknowledgments. The authors are grateful to L.I. Hedberg, V.G. Maz'ya and M. Solomyak for useful remarks and discussions.

2. Covering Lemmas

Let us first recall a classical result of Besicovitch [B1,2] (see also [G], Ch.1)

Lemma 2.1. Let $A \subset \mathbb{R}^d$, $d \ge 1$, be a compact set and r be a positive function on A. Then there exists a finite subset $J \subset A$ and a family of balls $\{B(x, r(x))\}_{x \in J}$, such that the following two conditions are fulfilled:

(1)
$$\cup_{x \in J} B(x, r(x)) \supset A$$
,

(2) for any $y \in A$

$$\#\{x: x \in J \text{ and } \overline{B}(x, r(x)) \ni y\} \leqslant C,$$

where the constant C = C(d) depends only on the dimension d.

Lemma 2.1 was first applied for the problem of spectral estimates in [BS2]. The next result follows from Lemma 2.1 and already appeared in [R] for absolutely continuous measures. It will be used in the proof of Theorem 1.1.

Lemma 2.2. Let μ be a finite, continuous, nonnegative Borel measure in \mathbb{R}^d . Suppose that its support $F = \text{supp } \mu$ is a bounded set. Then for any $m \in \mathbb{N}$ there exists a finite set $J \subset F$ and a family of balls $\{B(x, r(x))\}_{x \in J}$ satisfying the following conditions:

(1)
$$\cup_{x \in J} B(x, r(x)) \supset F$$
,

(2)
$$\mu(B(x,r(x))) \leq \frac{\mu(\mathbb{R}^a)}{m} \leq \mu(\overline{B}(x,r(x))), \quad x \in J,$$

(3) for any $y \in \mathbb{R}^d$

$$#\{x: x \in J \text{ and } y \in B(x, r(x))\} \leq C_1(d)$$

(4) $\#\{x : x \in J\} \leq C_2(d) m$. Here the constants C_1 and C_2 depend only on the dimension d

Proof. For an arbitrary $x \in F$ and $m \in \mathbb{N}$ define

(2.1)
$$\widetilde{r}(x) = \sup\left\{r(x) \in \mathbb{R}_+ : \, \mu(B(x, r(x)) \leqslant \frac{\mu(\mathbb{R}^d)}{m}\right\}$$

Then

$$\mu(B(x, \widetilde{r}(x))) \leqslant \frac{\mu(\mathbb{R}^d)}{m}, \qquad x \in F,$$

and obviously

(2.2)
$$\mu(\overline{B}(x, \widetilde{r}(x))) \ge \frac{\mu(\mathbb{R}^d)}{m}, \qquad x \in F.$$

Applying now Lemma 2.1 we find a finite set J such that (1)–(3) are fulfilled. Since the support of F is a compact set, then (3) and (2.2) imply (4). The proof is complete. \Box

Remark 2.1. If $\operatorname{supp} \mu \subset \overline{\Omega}_1 = \overline{B(0,2)} \setminus B(0,1)$, then in Lemma 2.2 we could choose the family of covering balls $\{B(x,r(x))\}, x \in J$, such that their supports were lying in $\operatorname{Int} \widetilde{\Omega}_1 = \operatorname{Int} (B(0,4) \setminus B(0,1/2))$. Indeed, when introducing $\widetilde{r}(x)$, we could require in addition that the supremum is taken over $r(x) \leq 1/2$. Then the proof of the conditions (1)-(3) remains the same. The estimate for the number of points $x \in J$ satisfying (4) with $\widetilde{r}(x) < 1/2$ is the same, but the number of balls with $\widetilde{r}(x) = 1/2$ is bounded.

3. Some inequalities from real analysis

We collect here preliminary material which prevents us from being distracted while proving the main result.

The next statement is a version of the well-known Poincaré inequality (see, for example, [M, Ch.1.1.11] or [AH, Ch.8.1]).

Lemma 3.1. For any $l \in \mathbb{N}$ and any ball $B(0,r) \subset \mathbb{R}^d$, r > 0, there exists a linear operator (orthogonal projection in $L^2(B(0,r))$)

(3.1)
$$T: L^2(B(0,r)) \hookrightarrow \mathcal{P}^{l-1},$$

such that

$$\|f - Tf\|_{L^2(B(0,r))}^2 \leqslant C(d) r^{2l} \|\nabla^l f\|_{L^2(B(0,r))}^2.$$

The proof of the following statement is due to Adams [A] (see also [M, Ch.8] and [AH, Th. 7.2.2] where there are also many other related results). It concerns Sobolev spaces H^{α} of any (not necessarily integer) positive order α .

Theorem 3.2. Let $\alpha < d/2$ and μ be a finite, nonnegative measure in \mathbb{R}^d , $F = \sup \mu \subset B(0,1)$ and suppose that there is a constant C_* , such that for some $\beta > 0$ and any $r, 0 < r < \infty$

$$\mu(B(x,r)) \leqslant C_* r^\beta, \qquad x \in F.$$

If $\frac{\beta}{p} = \frac{d}{2} - \alpha$, p > 2, then the embedding operator

$$H^{\alpha}(B(0,1)) \hookrightarrow L^{p}(B(0,1),\mu)$$

is bounded and its norm does not exceed $c C_*^{1/p}$, where $c = c(\alpha, d, \beta)$ is independent of the measure μ .

In particular, this theorem implies the following weaker result for the case $2\alpha = 2l - dt$

Corollary 3.3. Let l = d/2 and μ be a finite, non-negative measure in \mathbb{R}^d , $F = \sup \mu \subset B(0,1)$ and suppose there exists a constant C_* , such that for some $\beta > 0$ and any $r, 0 < r < \infty$,

$$\mu(B(x,r)) \leqslant C_* r^\beta, \qquad x \in F.$$

Then the embedding operator

$$H^{l}(B(0,1)) \hookrightarrow L^{2}(B(0,1),\mu)$$

is bounded and its norm does not exceed $C C_*^{1/2}$, where $C = C(l, \beta)$.

Proof. The proof is very simple. Choose p > 1 and α' , such that $l > \alpha' = d/2 - \beta/2p > 0$. Applying the Hölder inequality with q = p/(p-1) and Theorem 3.2 we find

$$\begin{aligned} \|u\|_{L^{2}(B(0,1),\mu)} &\leqslant \|u\|_{L^{2p}(B(0,1),\mu)} \ \mu^{1/2q}(B(0,1)) \leqslant cC_{*}^{1/2p} \|u\|_{H^{\alpha'}(B(0,1))} \ C_{*}^{1/2q} \\ &\leqslant CC_{*}^{1/2} \|u\|_{H^{1}(B(0,1))}.\end{aligned}$$

This completes the proof. \Box

Using dilation and Corollary 3.3 we obtain (see [M, Lemma 1.4.7])

Lemma 3.4. Let $l = d/2 \in \mathbb{N}$, $\beta > 0$, μ nonnegative, finite measure in \mathbb{R}^d and $\operatorname{supp} \mu \subset \overline{B}(0,r), r > 0$. Then there exists a constant $C = C(\beta, d)$, such that

(3.2)
$$||f||^2_{L^2(B(0,r),\mu)} \leq C r^{\beta} M \left(||\nabla^l f||^2_{L^2(B(0,r))} + r^{-d} ||f||^2_{L^2(B(0,r))} \right),$$

where

(3.3)
$$M = \sup_{x \in \mathbb{R}^d, \, \rho > 0} \frac{\mu(B(x, \rho))}{\rho^{\beta}}$$

and $C = C(l, \beta)$.

Lemmas 3.1 and 3.4 immediately give us

Corollary 3.5. Let T be the orthogonal projection defined in (3.1), $l = d/2 \in \mathbb{N}$, $\beta > 0$, let μ be a nonnegative, finite measure in \mathbb{R}^d and $\operatorname{supp} \mu \subset \overline{B}(0,r), r > 0$. Then there exists a constant $C = C(\beta, d)$, such that

(3.4)
$$\|f - Tf\|_{L^{2}(B(0,r),\mu)}^{2} \leq C r^{\beta} M \|\nabla^{l} f\|_{L^{2}(B(0,r))}^{2},$$

where M is given by (3.3) and $C = C(l, \beta)$.

Remark 3.1. When proving the next lemma we use the following simple remark: if μ satisfies Condition (*) with the constants (γ_1, γ_2), then there are constants $\alpha > 0$ and $\varkappa > 0$ such that for any $0 < r < \infty$, $\gamma > 1$ and $\gamma r \leq \gamma_1 \operatorname{diam} F/\gamma_2$ we have

(3.5)
$$\mu(B(x,\gamma r)) \ge \varkappa \gamma^{\alpha} \mu(B(x,r)), \qquad x \in \mathbb{R}^d$$

Ear example we can take a $\ln 2/\ln x$ and $\alpha = 1/2$

Let $m, L \in \mathbb{N}$, A > 1 be constants satisfying the inequalities $A^L/m \leq 1 < A^{L+1}/m$ and let $C_1(d)$ be the constant appearing in Lemma 2.1. By using Lemma 2.2 we choose a family of balls $B_{v,j} = B(x_{vj}, r_{vj}), x_{vj} \in \mathbb{R}^d, r_{vj} > 0, v = 0, 1, \ldots, L$, $j = 1, 2, \ldots, n_v$, so that for any $v = 0, 1, \ldots, L$ the following conditions are fulfilled:

(3.6)
$$n_v \leqslant C(A,d) \, m \, A^{-v},$$

$$F \subset \bigcup_{j=1}^{n_v} B_{v,j}, \quad \#\{j : 1 \le j \le n_v, y \in \overline{B}_{v,j}\} \le C_1(d)$$

for any $y \in \mathbb{R}^d$ and

$$\mu(B_{v,j}) \leqslant \frac{A^v \mu(\mathbb{R}^d)}{m} \leqslant \mu(\bar{B}_{v,j}), \quad j = 1, 2, \dots, n_v.$$

Let $\Lambda = \Lambda(d)$ denote the maximum number of balls with the following properties: i) radii of the balls do not exceed 1/2; ii) all the balls intersect B(0, 1); iii) any point $x \in \mathbb{R}^d$ belongs to not more than $C_1(d)$ balls.

Lemma 3.6. Let μ be a finite, nonnegative measure in \mathbb{R}^d , $F = \operatorname{supp} \mu$ be a bounded set and μ satisfies Condition (*) with the constants (γ_1, γ_2) . Let A, m, L, $\Lambda(d)$ be the constants and $\{B_{v,j}\}_{j=1}^{n_v}$, $v = 0, 1, \ldots, L$, be the families of balls introduced above. Then for any ball B(x, r) satisfying

$$\mu(B(x,r)) \geqslant \frac{K\mu(\mathbb{R}^d)}{m},$$

there exists a ball $B_{u,i} = B(x_{ui}, r_{ui}), \ 0 \leq u \leq L-1, \ 1 \leq i \leq n_u$, with the properties

$$|x - x_{ui}| \leqslant 3r$$
 and $\frac{r}{2^u} \ge r_{ui} \ge \frac{r}{\zeta 2^u}$,

where ζ is defined by $(\zeta/2)^{\alpha}\varkappa = KA$ and $K > \max(\Lambda(d), A)$.

Proof. From the assumptions

$$K > \Lambda(d), \quad \mu(B(x,r)) \ge \frac{K\mu(\mathbb{R}^d)}{m}, \quad \mu(B_{0,j}) \le \frac{\mu(\mathbb{R}^d)}{m}, \quad j = 1, 2, \dots, n_0,$$

it follows that there exists j_0 such that $B_{0,j_0} \cap B(x,r) \neq \emptyset$ and $r_{0j_0} < r/2$. If $r_{0j_0} \ge r/\zeta$, then the statement of the lemma is fulfilled if we take $B_{u,i} = B_{0,j_0}$. Thus we can assume that $r_{0j_0} < r/\zeta$. Let us introduce a new ball $B_1 = B(x_1, r/2) = B(x_{0j_0}, r/2)$. Then (3.5) implies

$$\mu(B_1) \ge \varkappa \left(\frac{r/2}{r/\zeta}\right)^{\alpha} \mu(\overline{B}_{0,j_0}) > \varkappa \left(\frac{\zeta}{2}\right)^{\alpha} \frac{\mu(\mathbb{R}^d)}{m} = \frac{KA\mu(\mathbb{R}^d)}{m}$$

and

$$|x_1 - x| \leqslant r + r/2.$$

At the next step we repeat our arguments for the ball $B(x_1, r/2)$ instead of B(x, r)and the family $\{B_{1,j}\}_{j=1}^{n_1}$ instead of $\{B_{0,j}\}_{j=1}^{n_0}$. By using the inequalities

$$K > \Lambda(d)$$
 $\mu(B(x_1, r/2)) \ge \frac{AK\mu(\mathbb{R}^d)}{2}$

$$\mu(B_{1,j}) \leqslant \frac{A\mu(\mathbb{R}^d)}{m}, \quad j = 1, 2, \dots, n_1,$$

we find j_1 such that $B(x_1, r/2) \cap B(x_{1j_1}, r_{1j_1}) \neq \emptyset$ and $r_{1j_1} < r/4$. If $r_{1j_1} > r/2\zeta$, then the statement of the lemma is fulfilled if we take $B_{u,i} = B_{1,j_1}$. Thus we can assume that $r_{1j_1} < r/2\zeta$ and introduce $B_2 = B(x_2, r/4) = B(x_{1j_1}, r/4)$. Then by again applying (3.5) we obtain

$$\mu(B_2) \ge \varkappa \left(\frac{\zeta}{2}\right)^{\alpha} \frac{A\,\mu(\mathbb{R}^d)}{m} \ge \frac{K\,A^2\,\mu(\mathbb{R}^d)}{m}$$

and

$$|x_1 - x| \le |x_1 - x| + |x_2 - x_1| \le r + r/2 + r/2 + r/4$$

Continuing this process we either find a ball $B_{u,i}$, $0 \leq u \leq L-1$, $1 \leq i \leq n_u$, satisfying the statement of the lemma or arrive at a ball B_L with the property

$$\mu(B_L) \geqslant \frac{KA^L}{m} \mu(\mathbb{R}^d) > \frac{A^{L+1}}{m} \mu(\mathbb{R}^d).$$

The last inequality is impossible since $A^{L+1}/m > 1$ and, therefore, the proof is complete. \Box

Let $x_0 \in \mathbb{R}^d$, $0 < r_0 < \infty$ and $0 < \beta < \alpha$. Denote

(3.7)
$$\varphi(B(x_0, r_0)) = r_0^\beta \sup_{x \in B(x_0, r_0), \ 0 < r < r_0} r^{-\beta} \mu\Big(B(x, r) \cap B(x_0, r_0)\Big).$$

Correspondingly the value $\varphi(B(x_0, r_0))$ is defined by (3.7), where the open ball B(x, r) is changed by $\overline{B}(x, r)$.

Lemma 3.7. Let $l = d/2 \in \mathbb{N}$, μ be a nonnegative, finite measure satisfying Condition (*) with the constants (γ_1, γ_2) and $\operatorname{supp} \mu \subset \overline{\Omega}_1$. Then for any $m \in \mathbb{N}$ there exists a subspace $E \subset H^l(\widetilde{\Omega}_1)$, such that dim $E \leq C \cdot m$ and for any $f \in H^l(\widetilde{\Omega}_1)$, $f \perp E$ we have

$$\int_{\overline{\Omega}_{1}} |f(x)|^{2} d\mu(x) \leqslant C' \frac{\mu(\overline{\Omega}_{1})}{m} \int_{\widetilde{\Omega}_{1}} |\nabla^{l} f(x)|^{2} dx,$$

where $C' = C'(d, \gamma_1, \gamma_2), C = C(d, \gamma_1, \gamma_2).$

Proof. Let us assume that we can find a family of balls $\{B_k\}_{k=1}^S$ satisfying the properties:

$$(3.8) S \leqslant C_0 m,$$

$$(3.9) F \subset \cup_{k=1}^{S} B_k,$$

for any $y \in \mathbb{R}^d$ and

(3.11)
$$\varphi(B_k) \leqslant \frac{\mu(\mathbb{R}^d)}{m} \leqslant \varphi(\overline{B}_k), \quad k = 1, \dots, S.$$

Denote by E the orthogonal complement of the subspace $H^{l}(\widetilde{\Omega}_{1})$ defined by $\int_{B_{k}} fp \, dx = 0, \ k = 1, \ldots, S$, where $p \in \mathcal{P}^{l-1}$, (see Lemma 3.1). It follows from Corollary 3.5 and (3.11) that for any function $f \perp E$

$$\int_{B_k} |f|^2 \, d\mu \leqslant C_2 \frac{\mu(\mathbb{R}^d)}{m} \int_{B_k} |\nabla^l f|^2 \, dx.$$

Then using the last inequality, (3.9) and (3.10) we obtain the required statement.

Therefore in order to finish the proof of the lemma we need to construct a family of balls satisfying conditions (3.8)-(3.11).

From (3.5) and (3.7) it is easy to see that $\lim_{r\to 0} \varphi(B(x,r)) = 0$. By applying Lemma 2.2, where φ is used instead of μ , we find a family of balls $\{B_k\}_{k=1}^S$ such that (3.9)-(3.11) are fulfilled. We only need to check (3.8).

Choose $0 < \delta \leq (\varkappa/K)^{\frac{\beta}{\beta-\alpha}}$. Let us split the family $\{B_k\}_{k=1}^S$ into two sets of balls which after renumbering satisfy

(3.12)
$$\mu(\overline{B}_k) < \frac{\delta\,\mu(\mathbb{R}^d)}{m}, \qquad 1 \leqslant k \leqslant s,$$

and

$$\mu(\overline{B}_k) \ge \frac{\delta \,\mu(\mathbb{R}^d)}{m}, \qquad s+1 \leqslant k \leqslant S.$$

The condition (3.10) gives us $S - s \leq C_1(d)/\delta m$. Thus in order to complete the proof of (3.8) it is enough to verify the estimate

 $(3.13) s \leqslant C_3 m.$

From now on we use the notations from Lemma 3.6. Let us claim that for any $B_k = B(x_k, r_k), 1 \leq k \leq s$, there is a ball $B_{u_k, i_k} = B(x_{u_k i_k}, r_{u_k i_k})$ with the properties

$$|x_k - x_{u_k i_k}| \leqslant 4r_k, \quad r_k / \zeta 2^u \leqslant r_{u_k i_k} \leqslant r_k / 2^u$$

Then from these inequalities and (3.10) we find that for any $0 \leq v \leq L-1$ and $1 \leq j \leq n_v$

$$\#\{k: 1 \leqslant k \leqslant s, u_k = v, i_k = j\} \leqslant C_4(d)C_1(d) = C_5$$

Hence by (3.6)

$$s \leq C_5(n_0 + n_1 + \dots + n_{L-1}) \leq C_5C(A, d) m \sum_{v=0}^{L-1} A^{-v} \leq C_6(A, d) m$$

and therefore (2.12) is proved

Let us prove our claim. From (3.11) we conclude that for any $1 \leq k \leq s$ there exists a ball $B(y_k, \rho_k)$, such that $\rho_k \leq r_k$, $y_k \in \overline{B}_k$ and

(3.14)
$$\mu(\overline{B}(y_k,\rho_k)\cap\overline{B}(x_k,r_k))(r_k/\rho_k)^{\beta} \ge \frac{\mu(\mathbb{R}^d)}{m}.$$

The latter and (3.12) imply

(3.15)
$$\left(\frac{r_k}{\rho_k}\right)^\beta \delta > 1$$

Using now (3.5), (3.14) and (3.15) we obtain

$$\begin{split} \mu(B(y_k, r_k)) &\ge \varkappa \left(\frac{r_k}{\rho_k}\right)^{\alpha} \mu(\overline{B}(y_k, \rho_k)) \\ &\ge \varkappa \left(\frac{r_k}{\rho_k}\right)^{\alpha} \mu(\overline{B}(y_k, \rho_k) \cap \overline{B}(x_k, r_k)) \\ &\ge \varkappa \left(\frac{r_k}{\rho_k}\right)^{\alpha - \beta} \frac{\mu(\mathbb{R}^d)}{m} \\ &\ge \varkappa \left(\frac{1}{\delta^{1/\beta}}\right)^{\alpha - \beta} \frac{\mu(\mathbb{R}^d)}{m} \ge \frac{K \mu(\mathbb{R}^d)}{m}, \end{split}$$

where the last inequality follows from the choice of the constant δ . By applying Lemma 3.6 to $B(y_k, r_k)$ we find the required ball B_{u_k, i_k} and hence prove the claim and the lemma. \Box

From Lemma 3.4 and Condition (*) also we obtain the following statement:

Lemma 3.8. Let $l = d/2 \in \mathbb{N}$ and let μ be a nonnegative, finite measure satisfying Condition (*) with the constants (γ_1, γ_2) and supp $\mu \subset \overline{\Omega}_1$. Then

$$\int_{\overline{\Omega}_1} |f(x)|^2 \, d\mu(x) \leqslant C^{''} \, \mu(\overline{\Omega}_1) \Big(\int_{\widetilde{\Omega}_1} |\nabla^l f(x)|^2 \, dx + \int_{\widetilde{\Omega}_1} |f(x)|^2 \, dx \Big),$$

where $C'' = C(d, \gamma_1, \gamma_2).$

4. Proof of Theorem 1.1

According to the variational principle, in order to prove Theorem 1.1 it is sufficient to show that there exists a subspace $E_0 \subset H^l(\mathbb{R}^d)$, dim $E_0 \leq C \mu(\mathbb{R}^d)$, such that for any $F \in \mathcal{H}^l$ and $f \perp E_0$ in $L^2(\mathbb{R}^d)$ we have the following inequality

(4.1)
$$\int_{\mathbb{R}^d} |f|^2 \, d\mu \leqslant \int_{R^d} |\nabla^l f|^2 \, dx + \int_{R^d} \frac{|f|^2}{|x|^{2l}} \, dx.$$

Let us denote by μ_k the restriction of μ on the set Ω_k . Introduce

$$\mathcal{K} := \left\{ k : \|\mu_k\|_1 > \frac{1}{3 \cdot 2^d \cdot C''} \right\},\$$

where O'' is defined in Lemma 2.6

Lemma 3.7 implies that for any $k \in \mathcal{K}$ and any $m = m_k \in \mathbb{N}$ we can find a $C(d) \cdot m_k$ - dimensional subspace $E_k \subset L^2(\widetilde{\Omega}_k)$, such that for $f \perp E_k$ we have

(4.2)
$$\int_{\overline{\Omega}_{k}} |f(x)|^{2} d\mu(x) = \int_{\overline{\Omega}_{1}} |f(2^{k} x)|^{2} d\mu(2^{k} x)$$
$$\leqslant C' \frac{\mu(2^{k} \Omega_{1})}{m_{k}} \int_{\widetilde{\Omega}_{1}} |\nabla^{l} f(2^{k} x)|^{2} dx \leqslant C' \frac{\mu(\Omega_{k})}{m_{k}} \int_{\widetilde{\Omega}_{k}} |\nabla^{l} f(x)|^{2} dx.$$

Notice that if we now choose $m_k = 3 [(1 + C') \cdot \mu(\Omega_k)]$, then

(4.3)
$$\int_{\overline{\Omega}_k} |f(x)|^2 d\mu(x) \leqslant \frac{1}{3} \int_{\widetilde{\Omega}_k} |\nabla^l f(x)|^2 dx,$$

and moreover

(4.4)
$$\sum_{k \in \mathcal{K}} m_k \leqslant 3(1+C') \cdot \mu(\mathbb{R}^d).$$

Assume now that $k \notin \mathcal{K}$. Then Lemma 3.8 and the definition of the set \mathcal{K} give us

$$(4.5) \quad \int_{\overline{\Omega}_{k}} |f(x)|^{2} d\mu(x) = \int_{\overline{\Omega}_{1}} |f(2^{k} x)|^{2} d\mu(2^{k} x)$$

$$\leq C^{''} \mu(2^{k} \Omega_{1}) \left(\int_{\widetilde{\Omega}_{1}} |\nabla^{l} f(2^{k} x))|^{2} dx + \int_{\widetilde{\Omega}_{1}} |f(2^{k} x)|^{2} dx \right)$$

$$= C^{''} \mu(\Omega_{k}) \left(\int_{\widetilde{\Omega}_{k}} |\nabla^{l} f(x)|^{2} dx + 2^{-dk} \int_{\widetilde{\Omega}_{k}} |f(x)|^{2} dx \right)$$

$$\leq 2^{d} C^{''} \mu(\Omega_{k}) \left(\int_{\widetilde{\Omega}_{k}} |\nabla^{l} f(x)|^{2} dx + \int_{\widetilde{\Omega}_{k}} \frac{|f(x)|^{2}}{|x|^{2l}} dx \right).$$

This inequality and the definition of \mathcal{K} imply

(4.6)
$$\int_{\overline{\Omega}_k} |f(x)|^2 d\mu(x) \leqslant \frac{1}{3} \left(\int_{\widetilde{\Omega}_k} |\nabla^l f(x)|^2 dx + \int_{\widetilde{\Omega}_k} \frac{|f(x)|^2}{|x|^{2l}} dx \right).$$

Summing up the inequalities (4.3) and (4.6) we obtain (4.1). Besides, (4.4) gives $\dim E_0 = \sum_{k \in \mathcal{K}} \dim E_k = \sum_{k \in \mathcal{K}} m_k \leq C(d)\mu(\mathbb{R}^d)$. The theorem is proved. \Box

5. Proof of Theorem 1.2

5.1. Some properties of L^p classes of functions. Let $Q = (0, 1)^d$, $d \in \mathbb{N}$. We begin with an auxiliary statement.

Proposition 5.1. Let $f \ge 0$ and $f \in L^p(Q)$, $1 . Then there exists <math>g \in L^p(Q)$, such that $g \ge f$ a.e.,

$$||g||_{L^p(Q)} \leq C(p,d) ||f||_{L^p(Q)}$$

and the measure g dx satisfies Condition (*) with some constants $\gamma_1 = \gamma_1(p, d)$ and

Proof. Let $u \in L^p(\mathbb{R}^d)$ and let $Pu = \chi_Q u = u|_Q$ be the restriction of u to the cube Q. Introduce the Hardy-Littlewood maximal function

$$\mathcal{M} f(x) = \sup_{\rho > 0} \frac{1}{|B(x,\rho)|} \int_{B(x,\rho)} |f(y)| \, dy.$$

Then by using the Hardy-Littlewood-Wiener theorem (see for example Th.I.1 in [St]) we find that there is a constant A = A(p), such that

$$\|P\mathcal{M}f\|_p \leqslant \|\mathcal{M}f\|_p \leqslant A\|f\|_{L^p(Q)}.$$

Define (cf. [GR])

(5.1)
$$g(x) = \sum_{k=0}^{\infty} 2^{-k} A^{-k} (P\mathcal{M})^k f(x)$$

Obviously supp $g \subset Q$, $f \leq g$ a.e., $\|g\|_p \leq 2 \|f\|_p$, and

$$(5.2) P\mathcal{M}\,g(x) \leqslant 2A\,g(x).$$

It only remains to check that the measure g dx satisfies Condition (*). Thus we should find constants (γ_1, γ_2) , such that for any $x_0 \in \mathbb{R}^d$ and $r \leq \gamma_2^{-1} \sqrt{d}$

(5.3)
$$\int_{B(x_0,\gamma_1 r)} g(x) \, dx \ge 2 \int_{B(x_0,r)} g(x) \, dx.$$

Let $\gamma_1 = \gamma_2 = \gamma > 1$ be a constant whose value is to be found. Then for any $x \in Q \cap \{B(x_0, \gamma r) \setminus B(x_0, r)\}$ the inequality (5.2) implies

$$\begin{split} g(x) &\ge \frac{1}{2A \left| B(x,r+|x-x_0|) \right|} \int_{B(x,r+|x-x_0|)} g(y) \, dy \\ &\ge \frac{1}{2A v_d \left(r+|x-x_0|\right)^d} \int_{B(x_0,r)} g(y) \, dy. \end{split}$$

Integrating this inequality over the set $Q \cap \{B(x_0, \gamma r) \setminus B(x_0, r)\}$ we obtain

$$\begin{split} \int_{Q \cap \{B(x_0,\gamma r) \setminus B(x_0,r)\}} g(x) \, dx \\ & \geqslant \frac{1}{2Av_d} \int_{Q \cap \{B(x_0,\gamma r) \setminus B(x_0,r)\}} \frac{1}{(r+|x-x_0|)^d} \, dx \int_{B(x_0,r)} g(y) \, dy \\ & \geqslant \frac{1}{2^{d+1}Av_d} \int_{B(x_0,\gamma r) \setminus B(x_0,r)} \frac{1}{(r+|x-x_0|)^d} \, dx \int_{B(x_0,r)} g(y) \, dy \\ & = \frac{v_d d}{2^{d+1}Av_d} \int_r^{\gamma r} \frac{u^{d-1}}{(r+u)^d} \, du \int_{B(x_0,r)} g(y) \, dy \\ & \geqslant \frac{d}{2d+1A} \int_r^{\gamma r} \frac{u^{d-1}}{(u+u)^d} \, du \int g(y) \, dy = \frac{d}{2^{2d+1}A} \ln \gamma \int g(y) \, dy. \end{split}$$

If we now choose γ , such that

$$d\ln\gamma \geqslant 2^{2d+2}A,$$

then (5.3) is satisfied and therefore the proof is complete. \Box

When defining Condition (*) we used the family of balls. There is a natural question whether instead of balls we can use other families of sets. The next lemma answers this question.

Let $0 \in G \subset \mathbb{R}^d$ be a domain, such that

$$(5.4) B(0,r_1) \subset G \subset B(0,r_2)$$

with some $0 < r_1 < r_2 < \infty$. Define

(5.5)
$$G(x,r) = \{ y \in \mathbb{R}^d : (y-x)/r \in G, \}, \qquad r > 0.$$

Lemma 5.2. Let G be a set satisfying (5.4) and let μ be a non-negative measure, $F = \text{supp } \mu$. The following two properties are equivalent:

- (i) There exist constants γ_1 and γ_2 , such that Condition (*) holds with constants (γ_1, γ_2) .
- (ii) There exist constants γ'_1 and γ'_2 , such that for any $x \in \mathbb{R}^d$ and $r \leq \operatorname{diam} F/\gamma'_2$ we have

(5.6)
$$\mu(G(x,\gamma_1'r)) \ge 2\,\mu(G(x,r)).$$

Proof. Suppose (i) is satisfied. Let us check (ii). For any $x \in \text{supp } \mathbb{R}^d$ and $r \leq \frac{\text{diam}F}{\gamma_2 r_2}$ we have that

$$\mu(G(x, \gamma_1 r_2 r/r_1)) \ge \mu(B(x, g_1 r_2 r) \ge 2\mu(B(x, r_2 r)) \ge 2\mu(G(x, r)).$$

The latter implies $\gamma'_1 = \gamma_1 r_2/r_1$ and $\gamma'_2 = r_2 \gamma_2$. The converse statement can be proved analogously. \Box

In the proof of the next statement it is convenient to use a family of cubes

$$Q(x,r) = \{ y \in \mathbb{R}^d : |y - x|/r \in (-1,1)^d \},\$$

$$Q_1(x_1,r) = \{ y_1 \in \mathbb{R}^{d_1} : |y_1 - x_1|/r \in (-1,1)^{d_1} \},\$$

$$Q_2(x_2,r) = \{ y_2 \in \mathbb{R}^{d_2} : |y_2 - x_2|/r \in (-1,1)^{d_2} \}.$$

Proposition 5.3. Let $Q = Q_1 \times Q_2 = (0, 1)^{d_1} \times (0, 1)^{d_2}$, $d = d_1 + d_2$, $f \ge 0$ and $f \in L^1(Q_1, L^p(Q_2))$, $1 . Then there exists <math>g \in L^1(Q_1, L^p(Q_2))$, such that $g \ge f$ a.e.,

$$\|g\|_{L^1(Q_1,L^p(Q_2))} \leqslant C(p,d_1,d_2) \|f\|_{L^1(Q_1,L^p(Q_2))}$$

and the measure g dx satisfies Condition (*) with the constants $\gamma_1 = \gamma_1(p, d_1, d_2)$ and $\gamma_2 = \gamma_2(p, d_1, d_2)$.

Proof. For the functions $f(x_1, \cdot) \in L^p(Q_2)$, $x_1 \in Q_1$, we introduce $g(x_1, \cdot) \in L^p(Q_2)$ according the construction in Proposition 5.1. Clearly $g(x_1, x_2) dx_2$ satisfies Condition (*) for the family of cubes $Q_2(x_2, r)$, $x_2 \in \mathbb{R}^{d_2}$, with constants (γ_1, γ_2) uniformula with respect to $g \in Q_2$. In order to check Condition (*) for the function $g(x_1, y_2)$ and $g(x_1, y_2)$ we prove (5.6) for the family of cubes Q(x,r), $x = (x_1, x_2)$. Indeed, for any $x \in \mathbb{R}^d$ and $r < \sqrt{d}/\gamma_2$ we have

$$\begin{split} \int_{Q(x,\gamma_1r)} g(y) \, dy &= \int_{Q_1(x,\gamma_1r)} \int_{Q_2(x,\gamma_1r)} g(y_1,y_2) \, dy_2 dy_1 \\ &\geqslant 2 \int_{Q_1(x,\gamma_1r)} \int_{Q_2(x,r)} g(y_1,y_2) \, dy_2 dy_1 \\ &\geqslant 2 \int_{Q_1(x,r)} \int_{Q_2(x,r)} g(y_1,y_2) \, dy_2 dy_1. \end{split}$$

The proposition is proved. \Box

Corollary 5.4. The statement of Proposition 5.3 holds true if we replace the cube Q_2 by \mathbb{S}^{d_2} .

5.2. Proof of Theorem 1.2. In the polar coordinates $x = (r, \theta) \in \mathbb{R}^+ \times \mathbb{S}^{d-1}$, every set Ω_k turns into $[2^k, 2^{k+1}) \times \mathbb{S}^{d-1}$. According to Proposition 5.3 we find functions $g_k \in L^1((2^k, 2^{k+1}), L^p(\mathbb{S}^{d-1}))$, such that $g := \sum_k g_k \ge V$ a.e., $\|g\|_{L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))} \le C(p, d) \|V\|_{L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))}$ and the measures $g_k dx$ satisfy Condition (*) with constants (γ_1, γ_2) which are independent of k. Finally we have

$$N(V) \leqslant N(g) \leqslant C_1 \int g(x) \, dx \leqslant C_2 \|g\|_{L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))} \leqslant C_3 \|V\|_{L^1(\mathbb{R}_+, L^p(\mathbb{S}^{d-1}))},$$

where $C_j = C_j(d, p), j = 1, 2, 3$. This completes the proof. \Box

References

- [A] D.R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1971), 203–217.
- [AH] D.R. Adams and L.I. Hedberg, Function Spaces and Potential theory, Springer, 1996.
- [B1] A.S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc. **41** (1945), 103–110.
- [B2] A.S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc. **42** (1946), 1–10.
- [BL] M.Sh.Birman and A.Laptev, *The negative discrete spectrum of a two-dimensional* Schrödinger operator, Comm. Pure Appl. Math. **XLIX** (1996), 967–997.
- [BLS] M.Sh. Birman, A. Laptev and M. Solomyak, The negative discrete spectrum of the operator $(-\Delta)^l \alpha V$ in $L_2(\mathbb{R}^d)$ for d even and $2l \ge d$, Ark. Mat. **35** (1997), 87–126.
- [BS1] M.Sh.Birman and M.Z.Solomyak, Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations., Advances in Soviet Math. 7 (1991), 1–55.
- [BS2] M.Sh.Birman and M.Z.Solomyak, Quantitive analysis in Sobolev imbedding theorems and applications to spectral theory., Tenth Mathem. School., Izd. Inst. Mat. Akad. Nauk Ukrain, SSSR, Kiev, 1974, pp. 5–189 (Russian); English transl. in Amer. Math. Soc. Transl. (2), vol. 114, 1980, pp. 1–132.
- [C] H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires et leurs applications, Ann. École Norm. Sup. 3 (1928), 255–346.
- [GR] J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related

- [G] M. de Guzmán, Differentiation of integrals in \mathbb{R}^n , vol. 481, Lecture Notes in Mathematics, 1975.
- [L] A. Laptev, On the negative spectrum of a class of Schrödinger operators with spherically symmetric potentials, preprint KTH, Sweden. (1998).
- [M] V. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- [R] G.V.Rosenblum, Distribution of the discrete spectrum of singular differential operators., Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1976), 75-86 (Russian); English transl. in Soviet Math. Izv. VUZ 20 (1976), 63-71.
- [S1] M.Solomyak, Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, 2l = d, and applications to the spectral theory of Schrödinger operator, Israel J. Math. **86** (1994), 253–276.
- [S2] M.Solomyak, Spectral problems related to the critical exponent in the Sobolev embedding theorem, Proc. London Math. Soc. 71 (1995), 53–75.
- [St] E.M. Stein, Singular Integrals and Differentiability of Functions, Princeton University Press, Princeton, New Jersey, 1970.

DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY, S-100 44 STOCKHOLM, SWEDEN *E-mail address*: laptev@math.kth.se

DEPARTMENT OF MATHEMATICS, KING'S COLLEGE, STRAND, LONDON WC2R 2LS, ENGLAND AND POMI, FONTANKA 27, ST.PETERSBURG, 191011 RUSSIA

E-mail address: netrusov@mth.kcl.ac.uk