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Abstract. We find a subclass of potentials satisfying the CLR type inequalities for
the number of negative eigenvalues of the operator (−∆)l + |x|−2l − V , l ∈ N, in Rd

for the limiting case when d = 2l.

1. Introduction

1.1. CLR-type inequalities. We study the selfadjoint operator in L2(Rd)

(1.1) H = HV = (−∆)l + b|x|−2l − V, l ∈ N, b ∈ R,

where V is a nonnegative, locally integrable function (potential) in Rd. The oper-
ator (1.1) can be accurately defined by its quadratic form. Denote by Nb(V ) the
number of negative eigenvalues of the operator (1.1).

If 2l < d and V ∈ Ld/2l(Rd), then for any b > −((d − 2) . . . (d − 2l))2/22l the
following inequality holds

(1.2) Nb(V ) 6 C(b, d, l)
∫

V d/2l dx.

For l = 1 (1.2) is known as the Cwikel-Lieb-Rozenblum (CLR) inequality.
If 2l > d and b > 0, then the inclusion V ∈ Ld/2l(Rd) does not imply (1.2). In

fact, this inclusion does not guarantee even the semiboundedness of the operator
(1.1) from below. For 2l > d some different type estimates of the number of the
negative eigenvalues were obtained in [BS1] for d odd and in [BLS] for d even. In
the case 2l = d the corresponding results are less complete (see [BL], [BLS], [L] and
[S1,2]). It was first shown in [S1,2], and then in a sharper form in [BL] and [BLS],
that if 2l = d and b = 0, then the problem can be separated into two problems.
The first one is defined by the restriction of the operator (1.1) to the subspace of
functions depending on |x| and, hence, is reduced to a well studied one-dimensional
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differential operator with the potential equal to the mean value Ṽ of V over Sd−1.
In particular, for this class of operators there are (see [BS1]) necessary and sufficient
conditions on the potential Ṽ which give N0(αṼ ) = O(α), as α →∞. The second
problem is defined by a class of functions whose mean values over Sd−1 are equal to
zero. On this subspace we have the Hardy inequality which automatically provides
us with the “supporting” term b|x|−2l with some b > 0. This suggests that in order
to study the case 2l = d, we have to pay special attention to the operator (1.1),
where b > 0.

The purpose of this paper is to find a subclass of potentials from L1(Rd), such
that the inequality (1.2) holds for d = 2l and b > 0. We shall always assume that
b = 1. For an arbitrary b > 0 all the statements of this paper remain true but the
constants depend on b. For b = 1 (1.2) takes the form

(1.3) N(V ) = N1(V ) 6 C(d)
∫

V (x) dx.

The right hand side of (1.3) does not require more than V ∈ L1(Rd). We prefer to
deal with the problem

(1.4) Hµ = (−∆)l + |x|−2l − µ,

where µ is a nonnegative, finite measure in Rd. If µ is an absolutely continuous
measure, dµ = V dx, and b = 1, then (1.4) coincides with (1.1). Let |∇lu|2 :=∑
|β|=l(l!/β!)|∂βu|2. We shall impose such conditions on µ that the quadratic form

(1.5) hµ[u, u] =
∫

(|∇lu|2 + |x|−2l|u|2) dx−
∫
|u|2 dµ

defined on Hl(Rd) (see(1.8)) is semibounded and closed in L2(Rd) and, hence,
defines a selfadjoint operator Hµ. Notice that necessary and sufficient conditions of
closability and semiboundedness of a wide classes of quadratic forms were obtained
in [M, Ch.8 and 12].

For b = 0 the operator (1.1) has already been studied in [S1,2], where some
estimates of N0(V ) were obtained in terms of Orlicz classes. This paper deals with
the problem of finding a class of potentials, such that the prescribed inequality
(1.3) is satisfied. Our conditions are different, and the results of this paper and
those obtained in [S1,2] complement each other. In particular, if dµ = V dx and
V (x) = V (|x|) ∈ L1(Rd), d = 2l, then our results imply the inequality (1.3) (see
also [L]).

1.2. The main results. In order to formulate the main result we introduce the
following definition and notation.

The open ball with centre at x ∈ Rd and radius r > 0 is denoted by B(x, r),

B(x, r) = {y ∈ Rd : |y − x| < r}.

Condition (∗). Let µ be a nonnegative measure in Rd, d > 1, whose support
F = supp µ is a bounded set. We say that the measure µ satisfies Condition (∗)
with constants γ1 and γ2, where γ1, γ2 > 1, if for any x ∈ Rd and r 6 γ−1

2 diam F
we have that

µ(B(x, γ1r)) > 2µ(B(x, r)).
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Denote

Ωc1,c2 := {x ∈ Rd : c1 6 |x| < c2} = B(0, c2) \B(0, c1), 0 6 c1 < c2 6 ∞,

Ωk := Ωc1,c2 , where c1 = 2k−1, c2 = 2k, k ∈ Z
and

Ω̃k := Ωc1,c2 , where c1 = 2k−2, c2 = 2k+1, k ∈ Z.

Our main result is the following statement:

Theorem 1.1. Let µ be a finite, nonnegative Borel measure in Rd, d even, whose
restrictions µ|Ωk

, k ∈ Z satisfy Condition (∗) with constants γ1 and γ2 independent
of k. Then the quadratic form (1.5) is semibounded from below, closed on Hl(Rd)
and the number of negative eigenvalues N(µ) of the corresponding operator

(1.6) Hµ = (−∆)l + |x|−2l − µ, l = d/2 ∈ N,

satisfies

(1.7) N(µ) 6 C µ(Rd),

where C = C(γ1, γ2, d).

The proof of this theorem of is given in Section 4.

Remark 1.1. It can be easily checked (see Section 5) that Condition (∗) is satisfied
for any spherically symmetric measure. In particular, if µ is the δ-function of Sd−1,
then the constants γ1 and γ2 can for example, be chosen as γ1 = γ2 = 2. In
fact, Condition (∗) is satisfied for the δ-function of an arbitrary compact smooth
submanifold of Rd of a positive dimension.

The next result is related to absolutely continuous measures µ = V dx. Its proof
follows from Theorem 1.1, but requires some additional technical preparations (see
Section 5). Let us introduce a class of functions L1(R+, Lp(Sd−1)) defined in polar
coordinates in Rd, x = (r, θ), r ∈ R+ = (0,∞), as

‖f‖L1(R+, Lp(Sd−1)) =
∫ ∞

0

(∫

Sd−1
|f(r, θ)|p dθ

)1/p

rd−1 dr < ∞.

Theorem 1.2. Let d be even, l = d/2, V > 0 and V ∈ L1(R+, Lp(Sd−1)), 1 < p 6
∞. Then the number of the negative eigenvalues of the operator (1.1) with b = 1
satisfies

N(V ) 6 C‖V ‖L1(R+, Lp(Sd−1)),

where C = C(d, p).

In particular, we immediately obtain the following

Corollary 1.3. Let l = d/2 ∈ N, V > 0 and V (x) = V (|x|). If V ∈ L1(Rd), then
the inequality (1.3) is fulfilled.

Remark 1.2. Even for the class of spherically symmetric potentials the inequality
(1.3) fails if we do not introduce the “supporting” term |x|−2l. Indeed, as it was
shown in [BL] and in [BLS], if µ = V (x)dx and V is a smooth potential, such that

V (x) ∼ |x|−2l ln−2 |x|(ln ln |x|)−1/q, as |x| → ∞, q > 1,

then the number of negative eigenvalues of the operator (−∆)l − V satisfies the
following asymptotic formula

N0(αV ) = αqcq + o(αq), α →∞,

although V ∈ L1(Rd) for any q > 0. This is in contrast with (1.3).
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1.3. Some notation. We shall denote by Lp(Rd, µ) the class of Lp-integrable
functions with respect to a measure µ. If µ coincides with the Lebesgue measure,
then we omit µ and write Lp(Rd, µ) = Lp(Rd). Let G be an open subset of Rd. By
H l(G) we denote the Sobolev class of the order l equipped by the standard Hilbert
metric

H l(G) =
{

f :
∫

G

(
|∇lf |2 + |f |2

)
dx < ∞

}
.

The integral over the whole space is written without indicating the domain of inte-
gration. The class of functions Hl(Rd), l = d/2, l ∈ N, is a so-called homogeneous
H l class and defined by

(1.8) Hl(Rd) =
{

f :
∫ (

|∇lf |2 +
|f |2
|x|2l

)
dx < ∞

}
.

C and c will be different constants whose values are unimportant. By P l is denoted
the class of polynomials in Rd of degree less than or equal to l. By vd we denote
the volume of the unit ball in Rd,

vd := |B(0, 1)| = vol{x ∈ Rd : |x| < 1} =
πd/2

Γ(1 + d/2)
.

Acknowledgments. The authors are grateful to L.I. Hedberg, V.G. Maz’ya and
M. Solomyak for useful remarks and discussions.

2. Covering Lemmas

Let us first recall a classical result of Besicovitch [B1,2] (see also [G], Ch.1)

Lemma 2.1. Let A ⊂ Rd, d > 1, be a compact set and r be a positive function on
A. Then there exists a finite subset J ⊂ A and a family of balls {B(x, r(x))}x∈J ,
such that the following two conditions are fulfilled:

(1) ∪x∈JB(x, r(x)) ⊃ A,

(2) for any y ∈ A

#{x : x ∈ J and B(x, r(x)) 3 y} 6 C,

where the constant C = C(d) depends only on the dimension d.

Lemma 2.1 was first applied for the problem of spectral estimates in [BS2]. The
next result follows from Lemma 2.1 and already appeared in [R] for absolutely
continuous measures. It will be used in the proof of Theorem 1.1.

Lemma 2.2. Let µ be a finite, continuous, nonnegative Borel measure in Rd.
Suppose that its support F = supp µ is a bounded set. Then for any m ∈ N
there exists a finite set J ⊂ F and a family of balls {B(x, r(x))}x∈J satisfying the
following conditions:

(1) ∪x∈JB(x, r(x)) ⊃ F ,

(2) µ(B(x, r(x))) 6 µ(Rd)
m 6 µ(B(x, r(x))), x ∈ J ,

(3) for any y ∈ Rd

#{x : x ∈ J and y ∈ B(x, r(x))} 6 C1(d),

(4) #{x : x ∈ J} 6 C2(d) m. Here the constants C1 and C2 depend only on
the dimension d.
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Proof. For an arbitrary x ∈ F and m ∈ N define

(2.1) r̃(x) = sup
{

r(x) ∈ R+ : µ(B(x, r(x)) 6 µ(Rd)
m

}
.

Then

µ(B(x, r̃(x))) 6 µ(Rd)
m

, x ∈ F,

and obviously

(2.2) µ(B(x, r̃(x))) > µ(Rd)
m

, x ∈ F.

Applying now Lemma 2.1 we find a finite set J such that (1)–(3) are fulfilled. Since
the support of F is a compact set, then (3) and (2.2) imply (4). The proof is
complete. ¤
Remark 2.1. If supp µ ⊂ Ω1 = B(0, 2) \ B(0, 1), then in Lemma 2.2 we could
choose the family of covering balls {B(x, r(x))}, x ∈ J , such that their supports
were lying in Int Ω̃1 = Int (B(0, 4) \B(0, 1/2)). Indeed, when introducing r̃(x), we
could require in addition that the supremum is taken over r(x) 6 1/2. Then the
proof of the conditions (1)-(3) remains the same. The estimate for the number of
points x ∈ J satisfying (4) with r̃(x) < 1/2 is the same, but the number of balls
with r̃(x) = 1/2 is bounded.

3. Some inequalities from real analysis

We collect here preliminary material which prevents us from being distracted
while proving the main result.

The next statement is a version of the well-known Poincaré inequality (see, for
example, [M, Ch.1.1.11] or [AH, Ch.8.1]).

Lemma 3.1. For any l ∈ N and any ball B(0, r) ⊂ Rd, r > 0, there exists a linear
operator (orthogonal projection in L2(B(0, r))

(3.1) T : L2(B(0, r)) ↪→ P l−1,

such that
‖f − Tf‖2L2(B(0,r)) 6 C(d) r2l ‖∇lf‖2L2(B(0,r)).

The proof of the following statement is due to Adams [A] (see also [M, Ch.8]
and [AH, Th. 7.2.2] where there are also many other related results). It concerns
Sobolev spaces Hα of any (not necessarily integer) positive order α.

Theorem 3.2. Let α < d/2 and µ be a finite, nonnegative measure in Rd, F =
supp µ ⊂ B(0, 1) and suppose that there is a constant C∗, such that for some β > 0
and any r, 0 < r < ∞

µ(B(x, r)) 6 C∗rβ , x ∈ F.

If β
p = d

2 − α, p > 2, then the embedding operator

Hα(B(0, 1)) ↪→ Lp(B(0, 1), µ)

is bounded and its norm does not exceed cC
1/p
∗ , where c = c(α, d, β) is independent

of the measure µ.

In particular, this theorem implies the following weaker result for the case 2α =
2l = d:
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Corollary 3.3. Let l = d/2 and µ be a finite, non-negative measure in Rd, F =
supp µ ⊂ B(0, 1) and suppose there exists a constant C∗, such that for some β > 0
and any r, 0 < r < ∞,

µ(B(x, r)) 6 C∗rβ , x ∈ F.

Then the embedding operator

H l(B(0, 1)) ↪→ L2(B(0, 1), µ)

is bounded and its norm does not exceed C C
1/2
∗ , where C = C(l, β).

Proof. The proof is very simple. Choose p > 1 and α′, such that l > α′ = d/2 −
β/2p > 0. Applying the Hölder inequality with q = p/(p− 1) and Theorem 3.2 we
find

‖u‖L2(B(0,1),µ) 6 ‖u‖L2p(B(0,1),µ) µ1/2q(B(0, 1)) 6 cC
1/2p
∗ ‖u‖Hα′ (B(0,1)) C

1/2q
∗

6 CC
1/2
∗ ‖u‖Hl(B(0,1)).

This completes the proof. ¤
Using dilation and Corollary 3.3 we obtain (see [M, Lemma 1.4.7])

Lemma 3.4. Let l = d/2 ∈ N, β > 0, µ nonnegative, finite measure in Rd and
supp µ ⊂ B(0, r), r > 0. Then there exists a constant C = C(β, d), such that

(3.2) ‖f‖2L2(B(0,r),µ) 6 C rβ M
(
‖∇lf‖2L2(B(0,r)) + r−d‖f‖2L2(B(0,r))

)
,

where

(3.3) M = sup
x∈Rd, ρ>0

µ(B(x, ρ))
ρβ

and C = C(l, β).

Lemmas 3.1 and 3.4 immediately give us

Corollary 3.5. Let T be the orthogonal projection defined in (3.1), l = d/2 ∈ N,
β > 0, let µ be a nonnegative, finite measure in Rd and suppµ ⊂ B(0, r), r > 0.
Then there exists a constant C = C(β, d), such that

(3.4) ‖f − Tf‖2L2(B(0,r),µ) 6 C rβ M ‖∇lf‖2L2(B(0,r)),

where M is given by (3.3) and C = C(l, β).

Remark 3.1. When proving the next lemma we use the following simple remark: if
µ satisfies Condition (∗) with the constants (γ1, γ2), then there are constants α > 0
and κ > 0 such that for any 0 < r < ∞, γ > 1 and γr 6 γ1 diam F/γ2 we have

(3.5) µ(B(x, γr)) > κγαµ(B(x, r)), x ∈ Rd.

For example, we can take α = ln 2/ ln γ1 and κ = 1/2.
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Let m, L ∈ N, A > 1 be constants satisfying the inequalities AL/m 6 1 <
AL+1/m and let C1(d) be the constant appearing in Lemma 2.1. By using Lemma
2.2 we choose a family of balls Bv,j = B(xvj , rvj), xvj ∈ Rd, rvj > 0, v = 0, 1, . . . , L,
j = 1, 2, . . . , nv, so that for any v = 0, 1, . . . , L the following conditions are fulfilled:

(3.6) nv 6 C(A, d)mA−v,

F ⊂ ∪nv
j=1Bv,j , #{j : 1 6 j 6 nv, y ∈ Bv,j} 6 C1(d)

for any y ∈ Rd and

µ(Bv,j) 6 Avµ(Rd)
m

6 µ(B̄v,j), j = 1, 2, . . . , nv.

Let Λ = Λ(d) denote the maximum number of balls with the following properties:
i) radii of the balls do not exceed 1/2; ii) all the balls intersect B(0, 1); iii) any
point x ∈ Rd belongs to not more than C1(d) balls.

Lemma 3.6. Let µ be a finite, nonnegative measure in Rd, F = supp µ be a
bounded set and µ satisfies Condition (∗) with the constants (γ1, γ2). Let A, m,
L, Λ(d) be the constants and {Bv,j}nv

j=1, v = 0, 1, . . . , L, be the families of balls
introduced above. Then for any ball B(x, r) satisfying

µ(B(x, r)) > Kµ(Rd)
m

,

there exists a ball Bu,i = B(xui, rui), 0 6 u 6 L−1, 1 6 i 6 nu, with the properties

|x− xui| 6 3r and
r

2u
> rui > r

ζ2u
,

where ζ is defined by (ζ/2)ακ = KA and K > max (Λ(d), A).

Proof. From the assumptions

K > Λ(d), µ(B(x, r)) > Kµ(Rd)
m

, µ(B0,j) 6 µ(Rd)
m

, j = 1, 2, . . . , n0,

it follows that there exists j0 such that B0,j0 ∩ B(x, r) 6= ∅ and r0j0 < r/2. If
r0j0 > r/ζ, then the statement of the lemma is fulfilled if we take Bu,i = B0,j0 .
Thus we can assume that r0j0 < r/ζ. Let us introduce a new ball B1 = B(x1, r/2) =
B(x0j0 , r/2). Then (3.5) implies

µ(B1) > κ
(r/2

r/ζ

)α

µ(B0,j0) > κ
(ζ

2

)α µ(Rd)
m

=
K A µ(Rd)

m

and
|x1 − x| 6 r + r/2.

At the next step we repeat our arguments for the ball B(x1, r/2) instead of B(x, r)
and the family {B1,j}n1

j=1 instead of {B0,j}n0
j=1. By using the inequalities

K > Λ(d), µ(B(x1, r/2)) > AKµ(Rd)
m

,
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µ(B1,j) 6 Aµ(Rd)
m

, j = 1, 2, . . . , n1,

we find j1 such that B(x1, r/2) ∩B(x1j1 , r1j1) 6= ∅ and r1j1 < r/4. If r1j1 > r/2ζ,
then the statement of the lemma is fulfilled if we take Bu,i = B1,j1 . Thus we can
assume that r1j1 < r/2ζ and introduce B2 = B(x2, r/4) = B(x1j1 , r/4). Then by
again applying (3.5) we obtain

µ(B2) > κ
(ζ

2

)α Aµ(Rd)
m

> K A2 µ(Rd)
m

and
|x1 − x| 6 |x1 − x|+ |x2 − x1| 6 r + r/2 + r/2 + r/4.

Continuing this process we either find a ball Bu,i, 0 6 u 6 L − 1, 1 6 i 6 nu,
satisfying the statement of the lemma or arrive at a ball BL with the property

µ(BL) > KAL

m
µ(Rd) >

AL+1

m
µ(Rd).

The last inequality is impossible since AL+1/m > 1 and, therefore, the proof is
complete. ¤

Let x0 ∈ Rd, 0 < r0 < ∞ and 0 < β < α. Denote

(3.7) ϕ(B(x0, r0)) = rβ
0 sup

x∈B(x0,r0), 0<r<r0

r−βµ
(
B(x, r) ∩B(x0, r0)

)
.

Correspondingly the value ϕ(B(x0, r0)) is defined by (3.7), where the open ball
B(x, r) is changed by B(x, r).

Lemma 3.7. Let l = d/2 ∈ N, µ be a nonnegative, finite measure satisfying Con-
dition (∗) with the constants (γ1, γ2) and supp µ ⊂ Ω1. Then for any m ∈ N there
exists a subspace E ⊂ H l(Ω̃1), such that dim E 6 C ·m and for any f ∈ H l(Ω̃1),
f ⊥ E we have

∫

Ω1

|f(x)|2 dµ(x) 6 C
′ µ(Ω1)

m

∫
eΩ1

|∇lf(x)|2 dx,

where C
′
= C

′
(d, γ1, γ2), C = C(d, γ1, γ2).

Proof. Let us assume that we can find a family of balls {Bk}S
k=1 satisfying the

properties:

(3.8) S 6 C0 m,

(3.9) F ⊂ ∪S
k=1Bk,

(3.10) #{k : 1 6 k 6 S, y ∈ Bk} 6 C1(d),



ON THE NEGATIVE EIGENVALUES OF SCHRÖDINGER OPERATORS 9

for any y ∈ Rd and

(3.11) ϕ(Bk) 6 µ(Rd)
m

6 ϕ(Bk), k = 1, . . . , S.

Denote by E the orthogonal complement of the subspace H l(Ω̃1) defined by∫
Bk

fp dx = 0, k = 1, . . . , S, where p ∈ P l−1, (see Lemma 3.1). It follows from
Corollary 3.5 and (3.11) that for any function f ⊥ E

∫

Bk

|f |2 dµ 6 C2
µ(Rd)

m

∫

Bk

|∇lf |2 dx.

Then using the last inequality, (3.9) and (3.10) we obtain the required statement.
Therefore in order to finish the proof of the lemma we need to construct a family

of balls satisfying conditions (3.8)-(3.11).
From (3.5) and (3.7) it is easy to see that limr→0 ϕ(B(x, r)) = 0. By applying

Lemma 2.2, where ϕ is used instead of µ, we find a family of balls {Bk}S
k=1 such

that (3.9)-(3.11) are fulfilled. We only need to check (3.8).
Choose 0 < δ 6 (κ/K)

β
β−α . Let us split the family {Bk}S

k=1 into two sets of
balls which after renumbering satisfy

(3.12) µ(Bk) <
δ µ(Rd)

m
, 1 6 k 6 s,

and

µ(Bk) > δ µ(Rd)
m

, s + 1 6 k 6 S.

The condition (3.10) gives us S − s 6 C1(d)/δm. Thus in order to complete the
proof of (3.8) it is enough to verify the estimate

(3.13) s 6 C3 m.

From now on we use the notations from Lemma 3.6. Let us claim that for any
Bk = B(xk, rk), 1 6 k 6 s, there is a ball Buk,ik

= B(xukik
, rukik

) with the
properties

|xk − xukik
| 6 4rk, rk/ζ2u 6 rukik

6 rk/2u.

Then from these inequalities and (3.10) we find that for any 0 6 v 6 L − 1 and
1 6 j 6 nv

#{k : 1 6 k 6 s, uk = v, ik = j} 6 C4(d)C1(d) = C5.

Hence by (3.6)

s 6 C5(n0 + n1 + · · ·+ nL−1) 6 C5C(A, d)m

L−1∑
v=0

A−v 6 C6(A, d)m

and therefore (3.13) is proved.
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Let us prove our claim. From (3.11) we conclude that for any 1 6 k 6 s there
exists a ball B(yk, ρk), such that ρk 6 rk, yk ∈ Bk and

(3.14) µ(B(yk, ρk) ∩B(xk, rk))(rk/ρk)β > µ(Rd)
m

.

The latter and (3.12) imply

(3.15)
( rk

ρk

)β

δ > 1.

Using now (3.5), (3.14) and (3.15) we obtain

µ(B(yk, rk)) > κ
( rk

ρk

)α

µ(B(yk, ρk))

> κ
( rk

ρk

)α

µ(B(yk, ρk) ∩B(xk, rk))

> κ
( rk

ρk

)α−β µ(Rd)
m

> κ
( 1

δ1/β

)α−β µ(Rd)
m

> K µ(Rd)
m

,

where the last inequality follows from the choice of the constant δ. By applying
Lemma 3.6 to B(yk, rk) we find the required ball Buk,ik

and hence prove the claim
and the lemma. ¤

From Lemma 3.4 and Condition (∗) also we obtain the following statement:

Lemma 3.8. Let l = d/2 ∈ N and let µ be a nonnegative, finite measure satisfying
Condition (∗) with the constants (γ1, γ2) and supp µ ⊂ Ω1. Then

∫

Ω1

|f(x)|2 dµ(x) 6 C
′′

µ(Ω1)
(∫
eΩ1

|∇lf(x)|2 dx +
∫
eΩ1

|f(x)|2 dx
)
,

where C
′′

= C(d, γ1, γ2).

4. Proof of Theorem 1.1

According to the variational principle, in order to prove Theorem 1.1 it is suffi-
cient to show that there exists a subspace E0 ⊂ H l(Rd), dim E0 6 C µ(Rd), such
that for any F ∈ Hl and f ⊥ E0 in L2(Rd) we have the following inequality

(4.1)
∫

Rd

|f |2 dµ 6
∫

Rd

|∇lf |2 dx +
∫

Rd

|f |2
|x|2l

dx.

Let us denote by µk the restriction of µ on the set Ωk. Introduce

K :=
{

k : ‖µk‖1 >
1

3 · 2d · C ′′

}
,

where C
′′

is defined in Lemma 3.8.
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Lemma 3.7 implies that for any k ∈ K and any m = mk ∈ N we can find a
C(d) ·mk - dimensional subspace Ek ⊂ L2(Ω̃k), such that for f ⊥ Ek we have

(4.2)
∫

Ωk

|f(x)|2 dµ(x) =
∫

Ω1

|f(2k x)|2 dµ(2k x)

6 C
′ µ(2k Ω1)

mk

∫
eΩ1

|∇lf(2k x)|2 dx 6 C
′ µ(Ωk)

mk

∫
eΩk

|∇lf(x)|2 dx.

Notice that if we now choose mk = 3 [(1 + C
′
) · µ(Ωk)], then

(4.3)
∫

Ωk

|f(x)|2 dµ(x) 6 1
3

∫
eΩk

|∇lf(x)|2 dx,

and moreover

(4.4)
∑

k∈K
mk 6 3(1 + C

′
) · µ(Rd).

Assume now that k 6∈ K. Then Lemma 3.8 and the definition of the set K give us

(4.5)
∫

Ωk

|f(x)|2 dµ(x) =
∫

Ω1

|f(2k x)|2 dµ(2k x)

6 C
′′

µ(2k Ω1)
(∫
eΩ1

|∇lf(2k x))|2 dx +
∫
eΩ1

|f(2k x)|2 dx
)

= C
′′

µ(Ωk)
( ∫

eΩk

|∇lf(x)|2 dx + 2−dk

∫
eΩk

|f(x)|2 dx
)

6 2dC
′′

µ(Ωk)
( ∫

eΩk

|∇lf(x)|2 dx +
∫
eΩk

|f(x)|2
|x|2l

dx
)
.

This inequality and the definition of K imply

(4.6)
∫

Ωk

|f(x)|2 dµ(x) 6 1
3

( ∫
eΩk

|∇lf(x)|2 dx +
∫
eΩk

|f(x)|2
|x|2l

dx
)
.

Summing up the inequalities (4.3) and (4.6) we obtain (4.1). Besides, (4.4) gives
dim E0 =

∑
k∈K dim Ek =

∑
k∈Kmk 6 C(d)µ(Rd). The theorem is proved. ¤

5. Proof of Theorem 1.2

5.1. Some properties of Lp classes of functions. Let Q = (0, 1)d, d ∈ N. We
begin with an auxiliary statement.

Proposition 5.1. Let f > 0 and f ∈ Lp(Q), 1 < p 6 ∞. Then there exists
g ∈ Lp(Q), such that g > f a.e.,

‖g‖Lp(Q) 6 C(p, d)‖f‖Lp(Q)

and the measure g dx satisfies Condition (∗) with some constants γ1 = γ1(p, d) and
γ2 = γ2(p, d).
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Proof. Let u ∈ Lp(Rd) and let Pu = χQu = u|Q be the restriction of u to the cube
Q. Introduce the Hardy-Littlewood maximal function

M f(x) = sup
ρ>0

1
|B(x, ρ)|

∫

B(x,ρ)

|f(y)| dy.

Then by using the Hardy-Littlewood-Wiener theorem (see for example Th.I.1 in
[St]) we find that there is a constant A = A(p), such that

‖PM f‖p 6 ‖M f‖p 6 A‖f‖Lp(Q).

Define (cf. [GR])

(5.1) g(x) =
∞∑

k=0

2−kA−k(PM)k f(x).

Obviously supp g ⊂ Q, f 6 g a.e., ‖g‖p 6 2 ‖f‖p, and

(5.2) PM g(x) 6 2Ag(x).

It only remains to check that the measure g dx satisfies Condition (∗). Thus we
should find constants (γ1, γ2), such that for any x0 ∈ Rd and r 6 γ−1

2

√
d

(5.3)
∫

B(x0,γ1r)

g(x) dx > 2
∫

B(x0,r)

g(x) dx.

Let γ1 = γ2 = γ > 1 be a constant whose value is to be found. Then for any
x ∈ Q ∩ {B(x0, γr) \B(x0, r)} the inequality (5.2) implies

g(x) > 1
2A |B(x, r + |x− x0|)|

∫

B(x,r+|x−x0|)
g(y) dy

> 1
2Avd (r + |x− x0|)d

∫

B(x0,r)

g(y) dy.

Integrating this inequality over the set Q ∩ {B(x0, γr) \B(x0, r)} we obtain

∫

Q∩{B(x0,γr)\B(x0,r)}
g(x) dx

> 1
2Avd

∫

Q∩{B(x0,γr)\B(x0,r)}

1
(r + |x− x0|)d

dx

∫

B(x0,r)

g(y) dy

> 1
2d+1Avd

∫

B(x0,γr)\B(x0,r)

1
(r + |x− x0|)d

dx

∫

B(x0,r)

g(y) dy

=
vdd

2d+1Avd

∫ γr

r

ud−1

(r + u)d
du

∫

B(x0,r)

g(y) dy

> d

2d+1A

∫ γr

r

ud−1

(u + u)d
du

∫

B(x0,r)

g(y) dy =
d

22d+1A
ln γ

∫

B(x0,r)

g(y) dy.
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If we now choose γ, such that

d ln γ > 22d+2A,

then (5.3) is satisfied and therefore the proof is complete. ¤
When defining Condition (∗) we used the family of balls. There is a natural

question whether instead of balls we can use other families of sets. The next lemma
answers this question.

Let 0 ∈ G ⊂ Rd be a domain, such that

(5.4) B(0, r1) ⊂ G ⊂ B(0, r2)

with some 0 < r1 < r2 < ∞. Define

(5.5) G(x, r) = {y ∈ Rd : (y − x)/r ∈ G, }, r > 0.

Lemma 5.2. Let G be a set satisfying (5.4) and let µ be a non-negative measure,
F = supp µ. The following two properties are equivalent:

(i) There exist constants γ1 and γ2, such that Condition (∗) holds with constants
(γ1, γ2).

(ii) There exist constants γ′1 and γ′2, such that for any x ∈ Rd and r 6 diamF/γ′2
we have

(5.6) µ(G(x, γ′1r)) > 2 µ(G(x, r)).

Proof. Suppose (i) is satisfied. Let us check (ii). For any x ∈ suppRd and r 6 diamF
γ2r2

we have that

µ(G(x, γ1r2r/r1)) > µ(B(x, g1r2 r) > 2µ(B(x, r2r)) > 2µ(G(x, r)).

The latter implies γ′1 = γ1r2/r1 and γ′2 = r2γ2. The converse statement can be
proved analogously. ¤

In the proof of the next statement it is convenient to use a family of cubes

Q(x, r) = {y ∈ Rd : |y − x|/r ∈ (−1, 1)d},
Q1(x1, r) = {y1 ∈ Rd1 : |y1 − x1|/r ∈ (−1, 1)d1},

Q2(x2, r) = {y2 ∈ Rd2 : |y2 − x2|/r ∈ (−1, 1)d2}.

Proposition 5.3. Let Q = Q1 ×Q2 = (0, 1)d1 × (0, 1)d2 , d = d1 + d2, f > 0 and
f ∈ L1(Q1, L

p(Q2)), 1 < p 6 ∞. Then there exists g ∈ L1(Q1, L
p(Q2)), such that

g > f a.e.,
‖g‖L1(Q1,Lp(Q2)) 6 C(p, d1, d2)‖f‖L1(Q1,Lp(Q2))

and the measure g dx satisfies Condition (∗) with the constants γ1 = γ1(p, d1, d2)
and γ2 = γ2(p, d1, d2).

Proof. For the functions f(x1, ·) ∈ Lp(Q2), x1 ∈ Q1, we introduce g(x1, ·) ∈ Lp(Q2)
according the construction in Proposition 5.1. Clearly g(x1, x2) dx2 satisfies Con-
dition (∗) for the family of cubes Q2(x2, r), x2 ∈ Rd2 , with constants (γ1, γ2) uni-
formly with respect to x1 ∈ Q1. In order to check Condition (∗) for the function g
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we prove (5.6) for the family of cubes Q(x, r), x = (x1, x2). Indeed, for any x ∈ Rd

and r <
√

d/γ2 we have

∫

Q(x,γ1r)

g(y) dy =
∫

Q1(x,γ1r)

∫

Q2(x,γ1r)

g(y1, y2) dy2dy1

> 2
∫

Q1(x,γ1r)

∫

Q2(x,r)

g(y1, y2) dy2dy1

> 2
∫

Q1(x,r)

∫

Q2(x,r)

g(y1, y2) dy2dy1.

The proposition is proved. ¤

Corollary 5.4. The statement of Proposition 5.3 holds true if we replace the cube
Q2 by Sd2 .

5.2. Proof of Theorem 1.2. In the polar coordinates x = (r, θ) ∈ R+ ×
Sd−1, every set Ωk turns into [2k, 2k+1) × Sd−1. According to Proposition 5.3
we find functions gk ∈ L1((2k, 2k+1), Lp(Sd−1)), such that g :=

∑
k gk > V a.e.,

‖g‖L1(R+,Lp(Sd−1)) 6 C(p, d)‖V ‖L1(R+,Lp(Sd−1)) and the measures gk dx satisfy Con-
dition (∗) with constants (γ1, γ2) which are independent of k. Finally we have

N(V ) 6 N(g) 6 C1

∫
g(x) dx 6 C2‖g‖L1(R+,Lp(Sd−1)) 6 C3 ‖V ‖L1(R+,Lp(Sd−1)),

where Cj = Cj(d, p), j = 1, 2, 3. This completes the proof. ¤
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