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AND MAGNETIC SCHRÖDINGER OPERATORS
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Abstract. In this paper we prove refined first-order interpolation inequal-

ities for periodic functions and give applications to various refinements of

the Carlson–Landau-type inequalities and to magnetic Schrödinger opera-

tors. We also obtain Lieb-Thirring inequalities for magnetic Schrödinger

operators on multi-dimensional cylinders.

1. Introduction

The Carlson inequality [3]( ∞∑
k=1

ak

)2

6 π

( ∞∑
k=1

a2
k

)1/2( ∞∑
k=1

k2a2
k

)1/2

(1.1)

has been a source of many improvements, refinements and generaliza-
tions (see [7],[12] and the references therein). The constant π here is
sharp and the inequality is strict unless {ak}∞k=1 ≡ 0.

This inequality and its various generalizations are closely connected
with classical one-dimensional interpolation inequalities for Sobolev
spaces:

‖u‖2
∞ ≤ C(m)‖u‖2θ‖u(m)‖2(1−θ), θ = 1− 1

2m
, m >

1

2
. (1.2)

In the case when x ∈ R the sharp constant and the corresponding
extremals were found in [13]:

C(m) =
1

θθ(1− θ)1−θ2m sin π
2m

.

In the periodic case x ∈ (0, 2π) with zero average condition the in-
equality holds with the same constant (without extremal functions) [9].
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Furthermore, the first-order inequality with C(1) = 1 is equivalent
(as was first observed in [6]) to (1.1) by going over from {ak}∞k=1 to
u(x) =

∑
k∈Z0

a|k|e
ikx and using Parseval’s equality. Here in what

follows ‖ · ‖∞ := ‖ · ‖L∞ , ‖ · ‖ := ‖ · ‖L2 , and Z0 := Z \ {0}.
For all m > 1/2 inequality admits a negative correction term on the

right-hand side [2], [14], in particular, in the first- and second-order
cases the correction term can be written in closed form

‖u‖2
∞ ≤ ‖u‖ ‖u′‖ − 1

π
‖u‖2, (1.3)

‖u‖2
∞ ≤

√
2

4
√

27
|u‖ ‖u′‖ − 2

3π
‖u‖2, (1.4)

where all constants are sharp and no extremals exist. Again, for
u(x) =

∑
k∈Z0

a|k|e
ikx this gives the following two improved Carlson

inequalities( ∞∑
k=1

ak

)2

≤ π

( ∞∑
k=1

a2
k

)1/2( ∞∑
k=1

k2a2
k

)1/2

−
∞∑
k=1

a2
k, (1.5)

( ∞∑
k=1

ak

)2

≤
√

2π
4
√

27

( ∞∑
k=1

a2
k

)3/4( ∞∑
k=1

k4a2
k

)1/4

− 2

3

∞∑
k=1

a2
k,(1.6)

with sharp constants. These inequalities are proved in [2],[14] in the
framework of a rather general theory and we give below in § 2 a new
direct self-contained proof of (1.3) and (1.5).

In § 3 we consider inequalities of the form

‖u‖2
∞ ≤ K(α)‖A1/2u‖‖u‖ (1.7)

for 2π-periodic functions (no zero average condition), where

‖A1/2u‖2 =

∫ 2π

0

∣∣∣∣i dudx − a(x)u

∣∣∣∣2 dx
is the quadratic form corresponding to the Schrödinger operator

Au =

(
i
du

dx
− a(x)u

)2

with magnetic potential a ∈ L1(0, 2π). The sharp constant K(α)
depends only on the flux

α :=
1

2π

∫ 2π

0

a(x)dx,
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it is finite if and only if α /∈ Z. In a somewhat similar situation consid-
ered in [10] the introduction of a magnetic field has made it possible
to prove the Hardy inequality in R2. In our periodic case a magnetic
field with non-integral flux removes the condition

∫ 2π

0
u(x)dx = 0.

The expression for K(α) is as follows

K(α) =

{
| sin(2πα)|−1, αmod(1) ∈ (0, 1/4) ∪ (3/4, 1);
1, αmod(1) ∈ [1/4, 3/4].

(1.8)

In the first case there exists a unique extremal function and for α ∈
[1/4, 3/4] there are no extremals and a negative correction term may
exist. We show in § 4 that this is indeed the case and

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖

(
1− 2e−4π‖A1/2u‖/‖u‖), α = 1/4, α = 3/4,

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖

(
1 + 2 cos(2πα)e−2π‖A1/2u‖/‖u‖), α ∈ (1/4, 3/4).

(1.9)
In § 5 we consider applications to Carlson–Landau inequalities. The

Landau improvement of (1.1) (see, for instance, [7])( ∞∑
k=1

ak

)2

6 π

( ∞∑
k=1

a2
k

)1/2( ∞∑
k=1

(k − 1/2)2a2
k

)1/2

(1.10)

has a surprisingly short (and almost elementary) proof in terms of our
interpolation inequalities. We recall the elementary inequality (which
is (1.2) with m = 1)

‖u‖2
∞ ≤ ‖u‖‖u′‖, u ∈ H1

0 (0, L), (1.11)

following from

2u(x)2 =

∫ x

0

(u(t)2)′dt−
∫ L

x

(u(t)2)′dt ≤ 2‖u‖‖u′‖.

Given a (non-negative) sequence {ak}∞k=1 we set L = 1 and consider
the function

u(x) =
√

2
∞∑
k=1

(−1)k+1ak sin(2k − 1)πx, x ∈ [0, 1]. (1.12)

We have ‖u‖∞ = u(π/2) =
√

2
∑∞

k=1 ak and by orthonormality,

‖u‖2 =
∞∑
k=1

a2
k, ‖u′‖2 = π2

∞∑
k=1

(2k − 1)2a2
k = 4π2

∞∑
k=1

(k − 1/2)2a2
k.

(1.13)
Substituting this into (1.11) we obtain inequality (1.10).
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The refinement of (1.11) obtained in [14]

‖u‖2
∞ ≤ ‖u‖‖u′‖

(
1− 2e−L‖u

′‖/‖u‖), u ∈ H1
0 (0, L) (1.14)

or, equivalently, inequality (1.9) in the symmetric case α = 1/2 give a
sharp correction term to the Carlson–Landau inequality (1.10)( ∞∑

k=1

ak

)2

≤ π‖a‖‖a‖1

(
1− 2e−2π‖a‖1/‖a‖

)
. (1.15)

Next, using a second-order inequality in [14] we obtain the following
sharp inequality( ∞∑

k=1

ak

)2

≤
√

2π
4
√

27
coth(π/2)‖a‖3/2‖a‖1/2

2

with unique extremal ak = 1/(2k − 1)4 + 4). Here we set for brevity

‖a‖2 =
∞∑
k=1

a2
k, ‖a‖2

1 =
∞∑
k=1

(k − 1/2)2a2
k, ‖a‖2

2 =
∞∑
k=1

(k − 1/2)4a2
k.

(1.16)
The whole family of Carlson–Landau inequalities(

∞∑
k=1

ak

)2

≤ k(α)

(
∞∑
k=1

a2
k

)1/2( ∞∑
k=1

(k − α)2a2
k

)1/2

, (1.17)

is studied for α ∈ [0, 1) in Theorem 5.2. Obviously, k(α) = π for
α ∈ [0, 1/2] and, furthermore, for α ∈ [0, 1/2) we have a sharp L2-
type correction term here, see (5.6). In the symmetric case α = 1/2
the correction term is exponentially small, see (1.15). For α ∈ (1/2, 1)
we show that k(α) > π, moreover, k(α) ∼ (1 − α)−1 as α → 1−, and
there exists a unique extremal.

Finally, in § 6 we consider applications to the Lieb–Thirring inequal-
ities and first give a new alternative proof of the main result in [4] on
the one-dimensional Sobolev inequalities for orthonormal families of
vector-functions along with generalizations to higher-order derivatives
and 1-D magnetic forms. This gives the Lieb–Thirring estimate for the
negative trace of a 1-D magnetic Schrödinger operator with a matrix-
valued potential. Then we combine this result with the main ideas
and results in [1], [4], [8], and [11] to obtain in Theorem 6.4 esti-
mates for the 1/2- and 1- moments of the negative eigenvalues of the
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Schrödinger-type operator in Td1x ×Rd2
y . For example, for d1 = d2 = 1

and the operator

HΨ = − d2

dy2
Ψ +

(
i
d

dx
− a(x)

)2

Ψ− V (x, y)Ψ = −λΨ

on the cylinder Ry×S1
x we have the following estimates for its negative

eigenvalues: ∑
k

λ
1/2
k ≤ 1

3
√

3
K(α)

∫
R×S1

V 3/2(x, y)dydx,

∑
k

λk ≤
1

8
√

3
K(α)

∫
R×S1

V 2(x, y)dydx.

(1.18)

For d1 = 2, d2 = 0 and the operator

HΨ =

(
i
d

dx1

− a1(x1)

)2

Ψ+

(
i
d

dx2

− a2(x2)

)2

Ψ−V (x, y)Ψ = −λΨ

on the torus T2 with αj = 1
2π

∫ 2π

0
a(xj)dx /∈ Z, j = 1, 2 we have∑

k

λk ≤
π

24
K(α1)K(α2)

∫
T2

V 2(x1, x2)dx1dx2. (1.19)

Note that in the region where K(α) = 1, the constants in (1.18)
coincide with the best-known constants in the corresponding Lieb–
Thirring inequalities for the Schrodinger operator in R2, see [4], [8].
However, the constant in (1.19) contains an extra factor π/

√
3, since

when we apply “the lifting argument with respect to dimensions” [11]
in the direction x, we do not have semiclassical estimates for the γ-
Riesz means with γ ≥ 3/2 for the negative eigenvalues in the periodic
case. This factor along with K(αj) accumulates with each iteration of
the lifting procedure with respect to the x-variables, see Theorem 6.4.

2. Proof of first-order inequality

We consider the following maximization problem for 2π-periodic
functions with zero average: for D ≥ 1 find V(D) – the solution of the
following extremal problem

V(D) := sup
{
|u(0)|2, ‖u‖2 = 1, ‖u′‖2 = D

}
. (2.20)

The next lemma gives an implicit formula for the function V(D).
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Lemma 2.1. The following expression holds for V(D):

V(D) =
1

2π

(
∑

k∈Z0

1
λ+k2

)2∑
k∈Z0

1
(λ+k2)2

, (2.21)

where λ = λ(D) is a unique solution of the functional equation∑
k∈Z0

k2

(λ+k2)2∑
k∈Z0

1
(λ+k2)2

= D (=: D(λ)). (2.22)

Furthermore, λ(1) = −1 and λ(∞) =∞.

Proof. Using the Fourier series u(x) =
∑

k∈Z0
uke

ikx and the Parseval

equalities ‖u‖2 = 2π
∑

k∈Z0
|uk|2, ‖u′‖2 = 2π

∑
k∈Z0

k2|uk|2, for every
λ > −1 we have by the Cauchy–Schwartz inequality

|u(0)|2 =

∣∣∣∣∑
k∈Z0

uk

∣∣∣∣2 ≤
(∑
k∈Z0

|uk|

)2

=

=

(∑
k∈Z0

|uk|(λ+ k2)1/2(λ+ k2)−1/2

)2

≤

≤
∑
k∈Z0

|uk|2(λ+ k2)
∑
k∈Z0

1

λ+ k2
=

=
1

2π
(λ‖u‖2 + ‖u′‖2)

∑
k∈Z0

1

λ+ k2
=

=
1

2π
‖u‖2(λ+ ‖u′‖2/‖u‖2)

∑
k∈Z0

1

λ+ k2
.

(2.23)

Moreover, for (and only for)

uk = u
(λ)
k := const

1

λ+ k2

the above inequalities turn into equalities. Fixing for definiteness

const := 1
2π

we consider the function Gλ(x) = 1
2π

∑
k∈Z0

eikx

λ+k2
, for

which

‖(Gλ)
′
x‖2

‖Gλ‖2
=

∑
k∈Z0

k2

(λ+k2)2∑
k∈Z0

1
(λ+k2)2

=: D(λ).

(We also observe that Gλ solves the equation − d2

dx2
Gλ + λGλ = δ.)
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Then we see that for every fixed λ > −1 the normalized function
Gλ(x)/‖Gλ‖ is the extremal function in problem (2.20) with D =
D(λ), and the value of the solution function V(D) is

V(D) =
1

2π
(λ+D(λ))

∑
k∈Z0

1

λ+ k2
=

=
1

2π

(
λ+

∑
k∈Z0

k2

(λ+k2)2∑
k∈Z0

1
(λ+k2)2

)∑
k∈Z0

1

λ+ k2
=

1

2π

(
∑

k∈Z0

1
λ+k2

)2∑
k∈Z0

1
(λ+k2)2

.

We now have to show that there exists a unique λ = λ(D) solv-
ing (2.22) for every fixed D ≥ 1. We first observe that D(λ) → 1 as
λ → −1 and D(λ) → ∞ as λ → ∞. It remains to show that D(λ) is
strictly monotone increasing. We have

d

dλ
D(λ) =

2

(
∑

k∈Z0

1
(λ+k2)2

)2
·
∑
k,l∈Z0

k2(k2 − l2)

(λ+ k2)3(λ+ l2)3
=

=
2

(
∑

k∈Z0

1
(λ+k2)2

)2
·
∑

k,l∈Z0,k>l

k2(k2 − l2) + l2(l2 − k2)

(λ+ k2)3(λ+ l2)3
=

=
2

(
∑

k∈Z0

1
(λ+k2)2

)2
·
∑

k,l∈Z0,k>l

(k2 − l2)2

(λ+ k2)3(λ+ l2)3
> 0.

The proof is complete. �

We set

G(λ) := Gλ(0) =
1

2π

∑
k∈Z0

1

λ+ k2
. (2.24)

The following variational characterization of V(D) is important.

Theorem 2.1. For a fixed D ≥ 1

V(D) = min
λ∈[−1,∞)

(λ+D)G(λ). (2.25)

Proof. Since G(λ) → +∞ as λ → −1 and G(λ) = O(λ−1/2) as λ →
+∞, it follows that the minimum is attained for each fixed D ≥ 1 at
some point λ∗ = λ∗(D). Then

d

dλ

(
(λ+D)G(λ)

)
|λ=λ∗ = 0,

which gives

D = −G(λ)

G′(λ)
− λ.
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In view of (2.24) this equation coincides with (2.22) and therefore
λ∗(D) coincides with the unique inverse function λ(D) constructed in
Lemma 2.1. This gives

(λ(D) +D)G(λ(D)) = −G(λ(D))2

G′(λ(D))
= V(D).

The proof is complete. �

Of course, it is impossible to find an explicit formula for the inverse
function λ = λ(D), therefore it is impossible to find an explicit formula
for V(D). However, it is possible to find the asymptotic expansion of
V(D) as D → ∞. All that we need to know for this purpose is the
asymptotic expansion of the function G(λ) as λ→∞. This expansion,
in turn, is found by the Poisson summation formula (or by means of
the explicit formula (2.32)):

G(λ) =
1

2π

∑
k∈Z0

1

λ+ k2
=

1

2
λ−1/2 − 1

2π
λ−1 +O(e−πλ

1/2

) as λ→∞.

(2.26)

Lemma 2.2. It holds as D →∞

V(D) = D1/2 − 1

π
− 1

2π2
D−1/2 +O(D−1). (2.27)

Proof. This is a particular case of the general result of Proposition 2.1
in [14]. In addition to (2.26) we have

G′(λ) = −1

4
λ−3/2 +

1

2π
λ−2 +O(λ−5/2), (2.28)

and, hence,

D(λ) = −G(λ)

G′(λ)
− λ = λ+

2

π
λ1/2 +

4

π2
+O(λ−1/2). (2.29)

The well-defined inverse function λ(D) (see (2.22)) has the asymptotic
behaviour

λ(D) = D − 2

π
D1/2 − 2

π2
+O(D−1/2) as D →∞. (2.30)

Substituting this into (2.26), (2.28), we obtain for V(D) = −G2(λ(D))
G′(λ(D))

the asymptotic expansion (2.27). The proof is complete. �

The third term in (2.27) is negative, hence,

V(D) < D1/2 − 1

π
(2.31)
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for all sufficiently large D ≥ D0. Therefore we shall have proved
inequality (1.3) once we have shown that (2.31) holds for all D ≥ 1.
Moreover, Lemma 2.2 implies that both constants in (1.3) are sharp.

Theorem 2.2. Inequality (2.31) holds for all D ≥ 1.

Corollary 2.1. Inequalities (1.3) and (1.5) hold and all the constants
there are sharp.

Proof. By homogeneity and (2.31), for a u ∈ Ḣ1

u(0)2 ≤ ‖u‖2V
(
‖u′‖2

‖u‖2

)
< ‖u‖2 · ‖u

′‖
‖u‖
− 1

π
‖u‖2.

�

Proof of the theorem. The proof is based on the variational represen-
tation (2.25) and the explicit formula for G(λ):

G(λ) =
1

2π

∑
k∈Z0

1

λ+ k2
=

1

2π

π
√
λ coth(π

√
λ )− 1

λ
. (2.32)

We estimate G(λ) by a more convenient expression

G(λ) <
π
√
λ− 1 + e−π

√
λ

2πλ
=: G0(λ), (2.33)

where the above inequality by equivalent transformations reduces to
x < sinh(x), x > 0.

Thus, in view of (2.25) and (2.33), for D ≥ 1

V(D) ≤ (λ+D)G0(λ)
∣∣
λ=(D1/2−1/2)2

=: V0(y(D)),

where y = y(D) := D1/2 − 1/2, y ≥ 1/2 and

V0(y) =
1

2πy2

(
πy − 1 + e−πy

)(
y2 + (y + 1/2)2

)
.

Now

V(D)−D1/2 +
1

π
< V0(y)−

(
y +

1

2

)
+

1

π
=

=
1

8πy2

(
(8y2 + 4y + 1)e−πy − (4− π)y − 1

)
=:

1

8πy2
W (y).

(2.34)

Next,

W ′(y) =
(
−8πy2 + (16− 4π)y + 4− π

)
e−πy − 4 + π
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and the coefficient of e−πy is negative for y ≥ 1/2. ThereforeW ′(y) < 0
and W (y) is decreasing for y ≥ 1/2 and

W (y) ≤ W (1/2) = 5e−π/2 − 3 + π/2 = −0.3898 < 0, (2.35)

which completes the proof of (2.31). �

Remark 2.1. The proof of inequality (2.31) in the last theorem is
in the spirit of Hardy’s first proof [6] of the original Carlson inequal-
ity (1.1) and is, in fact, self-contained and formally independent of the
previous argument. It follows from (2.23) that

V(D) ≤ (λ+D)G(λ),

where λ ≥ −1 is an arbitrary free parameter. Therefore inequal-
ity (2.31) will be proved if we succeed in finding such a substitution
λ = λ(D) for which

(λ(D) +D)G(λ(D)) < D1/2 − 1

π
for all D ≥ 1.

Now estimates (2.34) and (2.35) in the proof of Theorem 2.2 are saying
that the substitution λ(D) = D − D1/2 + 1/4 will do the job. This
substitution agrees in the leading term with (2.30). The lower order
terms are ‘experimental’. Also, without knowing (2.30) finding this
substitution becomes much more difficult.

On the other hand, the proof of sharpness is contained in Lemma 2.2.
Alternatively, we can verify sharpness of (1.3) (and (1.5)) at the test

function
∑

k∈Z0

eikx

λ+k2
by letting λ→∞.

3. Magnetic inequality

We are interested in the inequality

‖u‖2
∞ ≤ K(α)

(∫ 2π

0

∣∣∣∣i dudx − a(x)u

∣∣∣∣2 dx
)1/2(∫ 2π

0

|u(x)|2dx
)1/2

,

(3.1)
where u is a 2π-periodic function (which may be a constant so no zero-
mean condition is assumed), and a ∈ L1(0, 2π). Here K(α) denotes a
sharp constant and we show below that it depends only on the flux

α :=
1

2π

∫ 2π

0

a(x)dx, (3.2)

and K(α) <∞ if and only if α /∈ Z.



MAGNETIC INTERPOLATION INEQUALITIES 11

Constant magnetic potential. We first consider the case when
a(x) ≡ α ∈ (0, 1). Setting

A =

(
i
d

dx
− α

)2

we consider the positive-definite self-adjoint operator

A(λ) := A+ λI, λ ≥ −min(α2, (1− α)2)

and its Green’s function Gλ(x, ξ):

A(λ)Gλ(x, ξ) = δ(x− ξ),

which is found in terms of the Fourier series

Gλ(x, ξ) =
1

2π

∑
n∈Z

ein(x−ξ)

(n+ α)2 + λ
,

so that

Gλ(ξ, ξ) =
1

2π

∑
n∈Z

1

(n+ α)2 + λ
=: G(λ) , (3.3)

The series can be summed explicitly (for instance, by the Poisson
summation formula)

G(λ) =
1

2
√
λ
· sinh(2π

√
λ)

cosh(2π
√
λ)− cos(2πα)

. (3.4)

By Theorem 2.2 in [14] with θ = 1/2 (see also Remark 3.1)

K(α) =
1

θθ(1− θ)1−θ · sup
λ>0

λθG(λ) = 2 sup
λ>0

√
λG(λ) = sup

ϕ>0
F (ϕ),

(3.5)
where

F (ϕ) :=
sinhϕ

coshϕ− cos(2πα)

and ϕ = 2π
√
λ. Next, the derivative

d

dϕ
F (ϕ) =

1− coshϕ cos(2πα)

(coshϕ− cos(2πα))2
> 0

if cos(2πα) ≤ 0, that is, if α ∈ [1/4, 3/4], so that in this case F is
increasing and the supremum is ‘attained’ at infinity, which gives

K(α) = 1 for
1

4
≤ α ≤ 3

4
.



12 A.ILYIN, A.LAPTEV, M.LOSS, S.ZELIK

Otherwise, for α ∈ (0, 1/4)∪(3/4, 1) the function F (ϕ) attains a global
maximum at

ϕ∗(α) = arccosh

(
1

cos(2πα)

)
,

which gives

K(α) = F (ϕ∗(α)) =
1

| sin(2πα)|
.

Finally, it is clear from the argument as well as from the result that
it is αmod(1) that really matters.

Non-constant magnetic potential. Now

A =

(
i
d

dx
− a(x)

)2

, (3.6)

and for the flux α defined in (3.2) let

ϕn(x) =
1√
2π
ei
(
n+α)x−

∫ x
0 a(y)dy

)
.

Then {ϕn}∞n=−∞ is an orthonormal system in L2(0, 2π). Note that
since n ∈ Z, these functions are periodic and also satisfy the equation(

i
d

dx
− a(x)

)
ϕn = −(n+ α)ϕn

and therefore we also have

Aϕn = (n+ α)2ϕn.

In addition, the system {ϕn}∞n=−∞ is complete (since ϕn(x) = c(x)e−inx

with |c(x)| = 1/
√

2π). Then the Green’s function for the operator
A+ λI equals

Gλ(x, ξ) =
∑
n∈Z

ϕn(x− ξ)
(n+ α)2 + λ

=
1

2π

∑
n∈Z

ei
(
n+α)(x−ξ)−

∫ x
ξ a(y)dy

)
(n+ α)2 + λ

and the expression for Gλ(ξ, ξ) is exactly the same as in (3.3) and
therefore everything after (3.3) is the same as in the case of a constant
magnetic potential.

Thus, we have proved the following result.
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Theorem 3.1. Inequality (3.1) holds for α /∈ Z and the sharp constant
K(α) is given by (1.8). Furthermore, for αmod(1) ∈ (0, 1/4)∪(3/4, 1)
there exists a unique extremal function

uλ(x) =
∑
n∈Z

ϕn(x)

(n+ α)2 + λ
=

1√
2π

∑
n∈Z

ei
(
n+α)x−

∫ x
0 a(y)dy

)
(n+ α)2 + λ

, (3.7)

where

λ = λ(α) :=

[
1

2π
arccosh

(
1

cos(2πα)

)]2

.

There are no extremals for αmod(1) ∈ [1/4, 3/4].

Remark 3.1. In our one-dimensional case and operators with explic-
itly known spectrum and eigenfunctions it makes sense to give a direct
proof of (3.5). In fact, using the Fourier series u(x) =

∑
k∈Z ukϕk(x)

and without loss of generality assuming that u(x) attains its maximum
at x = 0 we have for an arbitrary λ > 0 the following inequality

|u(0)|2 =
1

2π

∣∣∣∣∑
k∈Z

uk

∣∣∣∣2 =

=
1

2π

∣∣∣∣∑
k∈Z

uk((k + α)2 + λ)1/2((k + α)2 + λ)−1/2

∣∣∣∣2 ≤
≤ 1

2π

∑
k∈Z

1

(k + α)2 + λ)

∑
k∈Z

(|uk|2((k + α)2 + λ)) =

= G(λ)(‖A1/2u‖2 + λ‖u‖2),

which turns into equality for u(x) as in (3.7). For λ∗ = ‖A1/2u‖2/‖u‖2

we see that

‖A1/2u‖2 + λ∗‖u‖2 = 2λ1/2
∗ ‖A1/2u‖‖u‖

and therefore

‖u‖2
∞ ≤ 2 sup

λ>0
λ1/2G(λ)‖A1/2u‖‖u‖,

which shows that K(α) ≤ 2 supλ>0 λ
1/2G(λ). To see that we have

equality here, we first assume that the supremum is attained at a
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finite point λ∗ <∞. Then∑
k∈Z

1

(k + α)2 + λ∗
= 2λ∗

∑
k∈Z

1(
(k + α)2 + λ∗

)2

[
= 2λ∗‖uλ∗‖2

]
,

∑
k∈Z

1

(k + α)2 + λ∗
= 2

∑
k∈Z

(k + α)2(
(k + α)2 + λ∗

)2

[
= 2‖A1/2uλ∗‖2

]
,

where the first equality is (λ1/2G(λ))′λ=λ∗
= 0, and the validity of the

second follows from the fact that the sum of the two equalities is a
valid identity. Since the left-hand side is equal to

√
2π‖uλ∗‖∞ and

λ∗ = ‖A1/2uλ∗‖2/‖uλ∗‖2, recalling (3.3) we obtain

‖uλ∗‖2
∞ =

1

2π

(∑
k∈Z

1

(k + α)2 + λ∗

)2

= 2λ∗‖uλ∗‖2G(λ∗) =

=2λ1/2
∗ G(λ∗)λ

1/2
∗ ‖uλ∗‖2 = 2

(
λ1/2
∗ G(λ∗)

)
‖A1/2uλ∗‖‖uλ∗‖.

This proves that K(α) = 2 supλ>0 λ
1/2G(λ) if λ∗ <∞. Now we look at

the case when λ∗ =∞. Let 2 limλ→∞ λ
1/2G(λ) = K ′ ≥ K(α). Setting

HN(λ) = 2λ1/2
∑
|n|≤N

1
(n+α)2+λ

we see that there exists a sequence

N(j) → ∞ and a sequence λ(j) → ∞ such that HN(j)(λ(j)) → K ′.
Since HN(0) = HN(∞) = 0, it follows that HN(j)(λ) attains a maxi-
mum at a λ∗(j) <∞. The previous argument shows that HN(j)(λ∗(j))

is the sharp constant in our inequality restricted to Span {ϕn}N(j)
n=−N(j).

Therefore

K(α) ≥ lim sup
j→∞

HN(j)(λ∗(j)) ≥ lim
j→∞

HN(j)(λ(j)) = K ′.

As we have seen both cases are possible depending on whether α ∈
[1/4, 3/4] or α ∈ (0, 1/4) ∪ (3/4, 1).

4. Correction term

In the region α ∈ [1/4, 3/4] no extremals exist and therefore the
might be a correction term in (1.7). By symmetry the cases α and
1−α are identical, therefore we can and shall assume that α ∈ (0, 1/2].
We now show that the correction term indeed exists. We consider the
maximization problem

V(D) := sup{|u(0)|2 : ‖u‖2 = 1, ‖A1/2‖2 = D}, D ≥ α2. (4.1)
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Similarly to Theorem 2.1 (see also the general result in Theorem 2.3
in [14]) we have

V(D) = min
λ≥−α2

G(λ)(λ+D). (4.2)

We first consider the cases α = 1/2 and α = 1/4. We recall the
elementary inequality (1.11) and its refinement (1.14) obtained in [14]
and show that the case α = 1/2 or 1/4 essentially reduces to the proof
of (1.14) in [14]. In fact, for α = 1/4 the key function (3.4) becomes

G(λ) =
1

2
√
λ

tanh(2π
√
λ), α =

1

4
,

and therefore

V(D) = min
λ≥−1/16

G(λ)(λ+D) ≤ min
λ≥0

1

2
√
λ

tanh(2π
√
λ)(λ+D).

Up to a constant factor in the argument of tanh the minimum on
the right-hand side was estimated in [14] (see (3.103), (3.104) there),
where it was shown that

min
λ≥0

1

2
√
λ

tanh
λ1/2

2
(λ+D) <

√
D
(
1− 2e−

√
D
)

(4.3)

Setting here µ = 16π2λ we obtain for V(D) in (4.1) with α = 1/4

V(D) <
√
D(1− 2e−4π

√
D). (4.4)

The case α = 1/2 is similar. Now in (3.4) we have

G(λ) =
1

2
√
λ

tanh(π
√
λ), α =

1

2
,

and in a totally similar way we find

V(D) ≤ min
λ≥0

1

2
√
λ

tanh(π
√
λ)(λ+D) <

√
D
(

1− 2e−2π
√
D
)
.

Thus, we have proved the following inequalities

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖(1− 2e−4π‖A1/2u‖/‖u‖), α = 1/4, 3/4,(4.5)

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖(1− 2e−2π‖A1/2u‖/‖u‖), α = 1/2. (4.6)

The case α ∈ (1/4, 3/4) can be treated using the general method
of [14]. Our goal is to prove the inequality

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖(1 + 2 cos(2πα)e−2π‖A1/2u‖/‖u‖), 1/4 < α < 3/4,

(4.7)
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which is equivalent to

V(D) ≤
√
D(1 + 2 cos(2πα)e−2π

√
D), D ≥ α2. (4.8)

In view of (4.2), to prove this inequality it suffices to find such a
substitutiuon λ = λ∗(D) for which

G(λ∗(D))(λ∗(D)+D) ≤
√
D(1+2 cos(2πα)e−2π

√
D), D ≥ α2. (4.9)

The exact solution λ = λ(D) for the minimizer, that is,

λ(D) = argmin{G(λ)(λ+D)} (4.10)

is the inverse function to the function D = D(λ)

D(λ) = −G(λ)

G′(λ)
− λ.

It is impossible to find λ(D) explicitly. However, using (3.4) we can
find the asymptotic expansion

D(λ) = λ− 4πaλ3/2e−2π
√
λ +O(e−4π

√
λ) as λ→∞,

where
a := 2 cos(2πα).

Therefore the inverse function λ(D) (see (4.10)) has the asymptotic
behavior

λ(D) = D + 4πaD3/2e−2π
√
D +O(e−4π

√
D) as D →∞,

truncating which we set

λ∗(D) = D(1 + 4πa
√
De−2π

√
D).

Returning to (4.8) we find that

G(λ∗(D))(λ∗(D) +D) =
√
DΦ(y),

where y := e−2π
√
D and

Φ(y) :=
1− ay log y√
1− 2ay log y

· 1− y2
√

1−2ay log y

1 + y2
√

1−2ay log y − ay
√

1−2ay log y
.

Therefore inequality (4.9) is equivalent to

Φ(y) < 1 + ay (4.11)

for y ∈ [0, e−2πα]. The function Φ(y) has the asymptotic expansion

Φ(y) = 1 + ay + (−a2(log y)2/2− 2 + a2)y2 +O(y3) as y → 0+,

in which the coefficient of the quadratic term is negative for all suf-
ficiently small y. Therefore inequality (4.11) holds for all sufficiently
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small y ∈ [0, y0]. The graphs of the function Φ(y) − (1 + ay) on the
whole intervals y ∈ [0, e−2πα] for α = 1/3, 3/8, and 1/2 are shown in
Fig. 1. This ‘proves’ that inequality (4.11) holds for all y ∈ [0, e−2πα]

Figure 1. Graphs of Φ(y)− (1 + ay) on y ∈ [0, e−2πα]
for α = 1/3, α = 3/8, and α = 1/2; a = 2 cos(2πα)

and we obtain, as a result, that the following theorem holds.

Theorem 4.1. For α = 1/4 and α = 3/4

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖

(
1− 2e−4π‖A1/2u‖/‖u‖),

while for α ∈ (1/4, 3/4)

‖u‖2
∞ ≤ ‖A1/2u‖‖u‖

(
1 + 2 cos(2πα)e−2π‖A1/2u‖/‖u‖).

All constants are sharp.

5. Carlson–Landau inequalities

One-dimensional inequalities of L∞-L2-L2-type with various bound-
ary conditions are closely connected with Carlson–Landau inequalities
and their various improvements.

Carlson–Landau inequality with correction term. In the next
theorem we show that both inequality (1.7) in the symmetric case
α = 1/2, and inequality (1.11) are equivalent to (1.10), while their
refined forms (1.14) and (4.6) are, in fact, equivalent and provide a
sharp exponential correction term to Landau’s improvement of Carl-
son’s inequality. A sharp second-order Carlson-type inequality in the
flavor of (1.10) is also given. The notation introduced in (1.16) is used
in the following theorem.
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Theorem 5.1. The following inequality holds( ∞∑
k=1

ak

)2

≤ π‖a‖‖a‖1

(
1− 2e−2π‖a‖1/‖a‖

)
, (5.1)

where all constants are sharp and no extremals exist.
In the second-order case it holds( ∞∑

k=1

ak

)2

≤
√

2 π
4
√

27
coth(π/2)‖a‖3/2‖a‖1/2

2 . (5.2)

Inequality (5.2) saturates at a unique extremal

ak =
1

(2k − 1)4 + 4
, (5.3)

Proof. Given a non-negative sequence {ak}∞k=1 we construct the se-
quence {bk}∞k=−∞ by setting for k = 0, 1, . . . ,

b0 = b−1 := a1, b1 = b−2 := a2, . . . , bk = b−(k+1) := ak+1, . . . .

Then for a periodic function

u(x) =
∑
k∈Z

bke
ikx

we have

‖u‖∞ =
∑
k∈Z

bk = 2
∞∑
k=1

ak, ‖u‖2 = 2π
∑
k∈Z

b2
k = 4π

∞∑
k=1

a2
k,

and

‖A1/2u‖2 = 2π
∞∑
k=0

(k + 1/2)2b2
k + 2π

−∞∑
k=−1

(k + 1/2)2b2
k =

= 2π
∞∑
k=1

(k − 1/2)2a2
k + 2π

∞∑
k=1

(k − 1/2)2b2
−k = 4π

∞∑
k=1

(k − 1/2)2a2
k.

Substituting this into the second inequality in (4.6) gives (5.1).
An alternative and a simpler proof was given in § 1 by using (1.11)

and its refinement (1.14).
As for the second-order inequality, for u ∈ H2(0, L) ∩ H1

0 (0, L) we
have the sharp inequality [14, Theorem 3.9]

‖u‖2
∞ ≤

√
2

4
√

27
coth(π/2)‖u‖3/2‖u′′‖1/2, (5.4)
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saturating at a unique extremal function (for L = 1)

u∗(x) =
∞∑
k=1

(−1)k+1 sin(2k − 1)πx

(2k − 1)4 + 4
. (5.5)

Setting L = 1, substituting u(x) from (1.12) into (5.4) and taking into
account that ‖u′′‖2 = 16π4

∑∞
k=1(k − 1/2)4a4

k we obtain inequality
(5.1), while the unique extremal (5.3) is produced by (5.5).

We finally observe that unlike all the previous Carlson-type inequal-
ities (namely, (1.1), (1.5), (1.6), (1.10), (5.1)) inequality (5.2) has a
unique extremal (5.3). �

Intermediate Carlson–Landau inequalities. In conclusion we con-
sider the family of intermediate Carlson–Landau-type inequalities (1.17)
in the whole range α ∈ [0, 1). In the case α = 1/2 the Carlson–Landau
inequality was supplemented with an exponentially small remainder
term in Theorem 5.1.

We now consider the region α ∈ [0, 1/2). Obviously, k(α) = π and
we show below that there exists a (sharp) correction term:(

∞∑
k=1

ak

)2

≤ π

(
∞∑
k=1

a2
k

)1/2( ∞∑
k=1

(k − α)2a2
k

)1/2

− (1− 2α)
∞∑
k=1

a2
k.

(5.6)
For α = 0 it is the classical Carlson inequality supplemented with a
lower order term in (1.5).

To prove (5.6) we apply our method directly to sequences without
going over to functions. We consider the variational problem: for
D ≥ (1− α)2 find

V(D,α) := sup


(
∞∑
k=1

ak

)2

:
∞∑
k=1

a2
k = 1,

∞∑
k=1

(k − α)2a2
k = D

 .

(5.7)
In complete analogy with (2.23) and Theorem 2.1 we find that

V(D,α) = min
α≥−(1−α)2

(λ+D)G(λ), (5.8)

where

G(λ) =
∞∑
k=1

1

(k − α)2 + λ
. (5.9)
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Using the Euler ψ-function ψ(z) = d
dz

log Γ(z) and its representation

ψ(z) = −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
we factorize the denominator in (5.9) and find

G(λ) =
i(ψ(1− α− i

√
λ)− ψ(1− α + i

√
λ))

2
√
λ

=:
1

2
√
λ
F (α, λ) .

(5.10)
Using the Stirling expansion for the ψ-function

ψ(z) = ln z − 1

2z
− 1

12z2
+O(z−3),

we get as λ→∞

G(λ) =
π

2
λ−1/2 − 1

2
(1− 2α)λ−1 +O(λ−2).

For the unique point of a minimum λ(D) in (5.8) we have the equation

D = −G(λ)

G′(λ)
− λ = λ+

2(1− 2α)

π
λ1/2 +

4(1− 2α)2

π2
+O(λ−1/2),

giving

λ(D) = D − 2(1− 2α)

π
D1/2 − 2(1− 2α)2 +O(D−1/2). (5.11)

Substituting this into V(D,α) = −G(λ(D))2

G′(λ(D))
we obtain the expansion

V(D, a) = πD1/2 − (1− 2a)− (2a− 1)2

2π
D−1/2 +O(D−1).

The third term here is negative, hence

V(D, a) < πD1/2 − (1− 2a) (5.12)

for all sufficiently large D. To see that this inequality holds for all D
we truncate the expansion (5.11) by setting

λ∗(D) := D − 2(1− 2α)

π
D1/2,

and consider the explicitly given function

V∗(D,α) := (λ∗(D) +D)G(λ∗(D)).

Since by definition V(D,α) ≤ V∗(D,α), to establish (5.12) for all D
it suffices to show that the following function is negative

R(D,α) := V∗(D,α)− πD1/2 + (1− 2a)
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for all D ≥ (1− α)2. We have the asymptotic expansion

R(D,α) = −(1− 2α)2D−1/2 +O(D−1)

giving that R(D,α) < 0 for all sufficiently large D. The graphs of
R(D,α) for different α are shown in Fig. 2, where one can see a very
rapid convergence to 0 for α = 1/2.

Figure 2. Graphs of R(D,α) for α = 0, α = 1/4,
α = 1/3, and α = 1/2.

The case when α ∈ (1/2, 1) is qualitatively different and very similar
to the ‘magnetic’ inequalities in Theorem 3.1. Namely, k(α) > π and
there exists a (unique) extremal in (1.17). In fact, repeating word
for word the argument in Remark 3.1 (replacing

∑
k∈Z by

∑
k∈N) we

obtain that
k(α) = 2 sup

λ>0

√
λG(λ) = sup

λ>0
F (α, λ),

where F is defined in (5.10). Since limλ→∞ F (α, λ) = π, it follows that
k(α) ≥ π. The supremum is, in fact, a maximum, that is attained at a
(unique) point λ∗(α), for which λ∗(α) ∼ (1−α)2 and k(α) ∼ 1/(1−α)
as α → 1− (this easily follows from the asymptotic behavior of ψ(z)
near 0: ψ(z) = −γ − 1/z +O(z2)), see Fig. 3.

Thus, with the help of reliable computer calculations we obtain the
following result.

Theorem 5.2. Inequality (5.6) holds for α ∈ [0, 1/2). The constants
are sharp, no extremals exist.

For α ∈ (1/2, 1) the sharp constant in (1.17) is

k(α) = max
λ>0

i
(
ψ(1− α− i

√
λ)− ψ(1− α + i

√
λ)
)
.
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Figure 3. Global maximums of F (α, λ) for α = 0.99,
α = 0.9, α = 0.6.

The maximum is attained at a (unique) point λ∗(α) and there exists a
unique extremal

ak =
1

(k − α)2 + λ∗(α)
.

6. Lieb–Thirring estimates for magnetic Schrödinger
operators

One-dimensional Sobolev inequalities for matrices. In this sec-
tion we give an alternative proof of the main result in [4] along with
its generalization to higher order derivatives and magnetic operators.

Let {φn}Nn=1 be an orthonormal family of vector-functions

φn(x) = (φn(x, 1), . . . , φn(x,M))T

and

(φn, φm) =
M∑
j=1

∫
D

φn(x, j)φm(x, j)dx =

∫
D

φn(x)Tφm(x)dx = δnm.

Here D = R or D = S1. In the latter case we assume that for all n
and j ∫ 2π

0

φn(x, j)dx = 0.

We consider the M ×M matrix U(x, y)

U(x, y) =
N∑
n=1

φn(x)φn(y)
T

(6.1)
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so that [U(x, y)]jk =
∑N

n=1 φn(x, j)φn(y, k). Clearly,

U(x, y)∗ = U(y, x)

and by orthonormality∫
D

U(x, y)U(y, z)dy =
N∑

n,n′=1

∫
D

φn(x)φn(y)
T
φn′(y)φn′(z)

T
dy =

=
N∑
n=1

φn(x)φn(z)
T

= U(x, z).

In addition, U(x, x) is positive semi-definite, since (U(x, x)a, a) =∑N
n=1 |aTφn(x)|2 ≥ 0.

Theorem 6.1. Let m > 1/2. Then∫
D

Tr[U(x, x)2m+1]dx ≤ C(m)2m

N∑
n=1

M∑
j=1

∫
D

|φ(m)
n (x, j)|2dx, (6.2)

where C(m) is defined in (1.2). In particular, for m = 1, 2∫
D

Tr[U(x, x)3]dx ≤
N∑
n=1

M∑
j=1

∫
D

|φ′n(x, j)|2dx,

∫
D

Tr[U(x, x)5]dx ≤ 4

27

N∑
n=1

M∑
j=1

∫
D

|φ′′n(x, j)|2dx.

Proof. We first consider the periodic case. We write

Ũ(n, x) =

∫ 2π

0

e−iyn√
2π
U(y, x)dy

so that

U(y, x) =
∑
k∈Z0

eiyk√
2π
Ũ(k, x) .

We have∑
k∈Z0

Ũ(k, x)∗Ũ(k, x) =

∫ 2π

0

U(y, x)∗U(y, x)dy = U(x, x), (6.3)

where Z0 = Z \ {0}, and we further have∑
k∈Z0

|k|2mŨ(k, x)∗Ũ(k, x) =

∫ 2π

0

[∂(m)
y U(y, x)]∗∂(m)

y U(y, x)dy
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so that by orthonormality

Tr

[∫ 2π

0

∑
k∈Z

|k|2mŨ(k, x)∗Ũ(k, x)dx

]
=

= Tr

[∫ 2π

0

∫ 2π

0

N∑
n,n′=1

φ
(m)
n′ (y)φn′(x)

T
φn(x)φ

(m)
n (y)

T

dxdy

]
=

Tr

[∫ 2π

0

N∑
n=1

φ(m)
n (y)φ

(m)
n (y)

T

dy

]
=

N∑
n=1

M∑
j=1

∫ 2π

0

|φ(m)
n (x, j)|2dx.

(6.4)
Now consider

Tr[U(x, x)2m+1] =
∑
k∈Z0

Tr[U(x, x)2mŨ(k, x)]
eixk√

2π
=

∑
k∈Z0

Tr

[
[|k|2mI + Λ(x)2m]−1/2U(x, x)2mŨ(k, x)×

[|k|2mI + Λ(x)2m]1/2
]
eixk√

2π
,

where Λ(x) is an arbitrary positive definite matrix. Using below the
Cauchy–Schwarz inequality for matrices we get the upper bounds

Tr[U(x, x)2m+1] ≤
1√
2π

∑
k∈Z0

∣∣Tr
[
[|k|2mI + Λ(x)2m]−1/2U(x, x)2m ×

Ũ(k, x)[|k|2mI + Λ(x)2m]1/2
]∣∣∣ ≤

1√
2π

∑
k∈Z0

(
Tr
[
U(x, x)2m[|k|2mI + Λ(x)2m]−1U(x, x)2m

])1/2×

(
Tr
[
[|k|2mI + Λ(x)2m]Ũ(k, x)∗Ũ(k, x)

])1/2

≤

1√
2π

(∑
k∈Z0

Tr
[
U(x, x)2m[|k|2mI + Λ(x)2m]−1U(x, x)2m

])1/2

×

(∑
k∈Z0

Tr
[
[|k|2mI + Λ(x)2m]Ũ(k, x)∗Ũ(k, x)

])1/2

.
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For the first factor we have∑
k∈Z0

Tr
[
U(x, x)2m[|k|2mI + Λ(x)2m]−1U(x, x)2m

]
=

Tr

[
U(x, x)2m

∑
k∈Z0

[|k|2mI + Λ(x)2m]−1U(x, x)2m

]
<

2πc(m) Tr
[
U(x, x)2mΛ(x)−(2m−1)U(x, x)2m

]
,

where we have used the matrix inequality∑
k∈Z0

[|k|2mI + Λ(x)2m]−1 < 2πc0(m)Λ(x)−(2m−1), c0(m) =
1

2m sin π
2m

.

(6.5)
In fact, the action of the matrix on the left-hand side on each eigen-
vector e = e(x) of Λ(x) with eigenvalue λ = λ(x) > 0 from the
orthonormal basis {ej(x), λj(x)}Mj=1 results in multiplication of it by

the number
∑

k∈Z0

1
|k|2m+λ2m

for which we have∑
k∈Z0

1

|k|2m + λ2m
= λ−(2m−1) 1

λ

∑
k∈Z0

1

(|k|/λ)2m + 1
<

λ−(2m−1) 2

∫ ∞
0

dx

x2m + 1
= λ−(2m−1)2πc0(m),

since the function 1/(x2m + 1) is monotone decreasing on [0,∞).
For the second factor we simply have∑

k∈Z0

Tr
[
[|k|2mI + Λ(x)2m]Ũ(k, x)∗Ũ(k, x)

]
=

∑
k∈Z0

Tr
[
|k|2mŨ(k, x)∗Ũ(k, x)

]
+
∑
k∈Z0

Tr
[
Λ(x)2mŨ(k, x)∗Ũ(k, x)

]
.

If we now chose Λ(x) = β(U(x, x) + εI) and let ε → 0 we obtain
(observing that λ4m/(λ + ε)2m−1 → λ2m+1 as ε → 0 for λ ≥ 0; this is
required in case when U(x, x) is not invertible)

Tr[U(x, x)2m+1] ≤ c0(m)1/2β−(2m−1)/2 Tr[U(x, x)2m+1]1/2×(∑
k∈Z0

Tr
[
|k|2mŨ(k, x)∗Ũ(k, x)

]
+ β2m Tr[U(x, x)2m+1]

)
,



26 A.ILYIN, A.LAPTEV, M.LOSS, S.ZELIK

where we have also used (6.3), or

Tr[U(x, x)2m+1] ≤

c0(m)

(
β−(2m−1)

∑
k∈Z0

Tr
[
|k|2mŨ(k, x)∗Ũ(k, x)

]
+ β Tr[U(x, x)2m+1]

)
.

If we optimize over β, we obtain

Tr[U(x, x)2m+1] ≤ c0(m)
1

θθ(1− θ)1−θ×(
Tr[U(x, x)2m+1]

)θ(∑
k∈Z0

Tr
[
|k|2mŨ(k, x)∗Ũ(k, x)

])1−θ

or

Tr[U(x, x)2m+1] ≤ C(m)2m
∑
k∈Z0

Tr
[
|k|2mŨ(k, x)∗Ũ(k, x)

]
.

If we integrate with respect to x and use (6.4), we obtain (6.2).
In the case of x ∈ R the proof is similar. We use the Fourier

transform instead of the Fourier series and the matrix equality∫ ∞
−∞

[|p|2mI + Λ(x)2m]−1dp = 2πc0(m)Λ(x)−(2m−1)

instead of (6.5). �

The one-dimensional periodic magnetic case is treated similarly.
Suppose that as before we have a family of orthonormal periodic
vector-functions (no zero average condition is assumed). As before
we construct the matrix U (6.1).

Theorem 6.2. The following inequality holds∫ 2π

0

Tr[U(x, x)3]dx ≤ K(α)2

N∑
n=1

M∑
j=1

∫ 2π

0

|(i∂x − a(x))φn(x, j)|2dx,

(6.6)
where K(α) is defined in (1.8).

Proof. We define the matrix Fourier coefficients for all n ∈ Z. We now
have ∑

k∈Z

Ũ(k, x)∗Ũ(k, x) =

∫ 2π

0

U(y, x)∗U(y, x)dy = U(x, x) ,
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and∑
k∈Z

(k+α)2Ũ(k, x)∗Ũ(k, x) =

∫ 2π

0

[(i∂y−a)U(y, x)]∗(i∂y−a)U(y, x)dy

so that instead of (6.4) we now have∫ 2π

0

∑
k∈Z

(k+α)2Ũ(k, x)∗Ũ(k, x)dx =
N∑
n=1

M∑
j=1

∫ 2π

0

|(i∂x−a)φn(x, j)|2dx.

(6.7)
As in the proof of Theorem 6.1 we have

Tr[U(x, x)3] ≤

1√
2π

(∑
k∈Z

Tr
[
U(x, x)2[(k + α)2I + Λ(x)2]−1U(x, x)2

])1/2

×

(∑
k∈Z

Tr
[
[(k + α)2I + Λ(x)2]Ũ(k, x)∗Ũ(k, x)

])1/2

.

Now as a matrix inequality∑
k∈Z

[(k + α)2I + Λ(x)2]−1 < πK(α)Λ(x)−1,

since the action of the matrix on the left-hand side on an eigenvector
e = e(x) of Λ(x) with eigenvalue λ = λ(x) is a multiplication of it by
the number

∑
k∈Z

1
(k+α)2+λ2

and in view of (3.5)∑
k∈Z

1

(k + α)2 + λ2
< πK(α)

1

λ
.

If we again set Λ(x) = β(U(x, x) + εI) and let ε→ 0 we obtain

Tr[U(x, x)3] ≤

≤ K(α)

2

(
β−1

∑
k∈Z

(k + α)2 Tr[Ũ(k, x)∗Ũ(k, x)] + β Tr[U(x, x)3]

)
.

If we optimize over β, we get

Tr[U(x, x)3] ≤

≤ K(α)

(∑
k∈Z

(k + α)2 Tr[Ũ(k, x)∗Ũ(k, x)]

)1/2(
Tr[U(x, x)3]

)1/2
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and hence

Tr[U(x, x)3] ≤ K(α)2
∑
k∈Z

(k + α)2 Tr[Ũ(k, x)∗Ũ(k, x)]

from which our inequality follows by integration in x and using (6.7).
�

Remark 6.1. In the scalar case M = 1 inequality (6.6) becomes

∫ 2π

0

( N∑
n=1

|φn(x)|2
)3

dx ≤ K(α)2

N∑
n=1

∫ 2π

0

|(i∂x − a(x))φn(x)|2 dx

(6.8)
and follows from (3.1) by the method of [5].

Theorem 6.2 is equivalent to the estimate of the negative trace of
the magnetic Schrödinger operator

H =

(
i
d

dx
− a(x)

)2

− V (6.9)

in L2(S1) with matrix-valued potential V .

Theorem 6.3. Let V ≥ 0 be a M ×M Hermitian matrix such that
TrV 3/2 ∈ L1(R). Then the spectrum of operator (6.9) is discrete and
the negative eigenvalues −λn ≤ 0 satisfy the estimate

∑
n

λn ≤
2

3
√

3
K(α)

∫ 2π

0

Tr[V (x)3/2]dx. (6.10)

Proof. (See [4].) Let {φn}Nn=1 be the orthonormal eigen-vector func-
tions corresponding to {−λn}Nn=1:(

i
d

dx
− a(x)

)2

φn − V φn = −λnφn.

Then, using (6.6) and Hölder’s inequality for traces

Tr[AB] ≤ (Tr([(A∗A)p/2])1/p(Tr([(B∗B)p
′/2])1/p′



MAGNETIC INTERPOLATION INEQUALITIES 29

and setting below X :=
∫ 2π

0
Tr[U(x, x)3]dx we obtain

N∑
n=1

λn =

−
N∑
n=1

M∑
j=1

∫ 2π

0

|(i∂x − a(x))φn(x, j)|2dx+

∫ 2π

0

Tr[V (x)U(x, x)]dx ≤

≤
(∫ 2π

0

Tr[V (x)3/2]dx

)2/3

X1/3 −K(α)−2X.

Calculating the maximum with respect to X we obtain (6.10). �

Let

Lcl
γ,d =

1

(2π)d

∫
Rd

(1− |ξ|2)γ+ dξ =
Γ(γ + 1)

2dπd/2Γ(γ + d/2 + 1)
. (6.11)

By using the Aizenmann-Lieb argument [1] we immediately obtain the
following statement for the Riesz means of the eigenvalues for magnetic
Schrödinger operators with matrix-valued potentials.

Corollary 6.1. Let V ≥ 0 be a smooth M ×M Hermitian matrix,
such that TrV γ+1/2 ∈ L1(0, 2π). Then for any γ ≥ 1 the negative
eigenvalues of the operator (6.9) satisfy the inequalities∑

λγn ≤ Lγ,1

∫ 2π

0

Tr[V (x)1/2+γ] dx,

where

Lγ,1 ≤
2

3
√

3
K(α)

Lcl
γ,1

Lcl
1,1

=
π√
3
K(α)Lcl

γ,1.

Proof. It is enough to prove this result for smooth matrix-valued po-
tentials. Note that Theorem 6.3 is equivalent to∑

n

λn ≤
2

3
√

3
K(α)(Lcl

1,1)−1

∫ 2π

0

∫ ∞
−∞

Tr
[(
|ξ|2 − V (x)

)
−

] dξdx
2π

.

Scaling gives the simple identity for all s ∈ R

sγ− = Cγ

∫ ∞
0

tγ−2(s+ t)−dt, C−1
γ = B(γ − 1, 2),
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where B is the Beta function. Let {µj(x)}Mj=1 be eigenvalues of the
matrix-function V (x). Then∑

n

λγn = Cγ
∑
n

∫ ∞
0

tγ−2(−λn + t)−dt

≤ 2K(α)

3
√

3

Cγ
Lcl

1,1

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

tγ−2 Tr
[(
|ξ|2 − V (x) + t

)
−

] dξdx
2π

dt

=
2K(α)

3
√

3

Cγ
Lcl

1,1

M∑
j=1

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

tγ−2 Tr
[(
|ξ|2 − µj + t

)
−

] dξdx
2π

dt

=
2K(α)

3
√

3
(Lcl

1,1)−1

∫ 2π

0

∫ ∞
−∞

Tr
[(
|ξ|2 − V (x)

)γ
−

] dξdx
2π

=
2

3
√

3
K(α)

Lcl
γ,1

Lcl
1,1

∫ 2π

0

Tr[V (x)1/2+γ] dx.

�

Magnetic Schrödinger operator in Tn ×Rm. Let us consider the
eigenvalue problem for the Schrödinger operator H in L2(Td1 × Rd2):

HΨ = −∆yΨ + (i∇x − A(x))2 Ψ− V (x, y)Ψ = −λΨ,

(x, y) ∈ Td1 × Rd2 , (6.12)

where Td1 = S1 × S1︸ ︷︷ ︸
d1−times

is the standard torus of dimension d1 and

A(x) = (a1(x1), . . . ad1(xd1))

is the magnetic vector potential in the “diagonal” case aj(x) = aj(xj).
Assume that

αj =
1

2π

∫ 2π

0

aj(xj) dxj 6∈ Z, 1 ≤ j ≤ d1.

Then we have

Theorem 6.4. Suppose that the potential V (x, y) ≥ 0 in (6.12) and
V ∈ Lγ+(d1+d2)/2(Td1 × Rd2). If γ ≥ 1/2, then the following bound
holds for the negative eigenvalues:∑

n

λγn ≤ Lγ,d1+d2

∫
Td1×Rd2

V γ+(d1+d2)/2(x, y) dxdy. (6.13)
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Here, if d1, d2 ≥ 1 and 1/2 ≤ γ < 1, then

Lγ,d1+d2 ≤ Rγ,d1+d2 := 2

(
2

3
√

3

)d1 Lcl
γ,d1+d2

(Lcl
1,1)d1

d1∏
j=1

K(αj) =

= 2

(
π√
3

)d1
Lcl
γ,d1+d2

d1∏
j=1

K(αj),

and, if d1 ≥ 1, d2 ≥ 0 and γ ≥ 1, then

Lγ,d1+d2 ≤
1

2
Rγ,d1+d2 .

Proof. As in Corollary 6.1 it is enough to prove this result for smooth
compactly supported potentials. We shall use the so-called “lifting
argument with respect to dimensions”, see [11].

Let x = (x1, x
′) and y = (y1, y

′), where x′ ∈ Rd1−1 and y′ ∈ Rd2−1

and let A(x) = (a1(x1), A′(x′)) . Denote

−∆′ = −(∇y′)
2, −∆A = (i∇x − A(x))2 , −∆A′ = (i∇′x′ − A′(x′))

2
.

By applying the result in [8] on the 1/2-moments we have∑
n

λ1/2
n (H) =

∑
n

λ1/2
n (−∂2

y1
−∆A −∆′ − V )

≤
∑
n

λ1/2
n

(
−∂2

y1
− (−∆A −∆′ − V )−

)
≤ 2Lcl

1/2,1

∫
R

Tr [−∆A −∆′ − V ]− dy1

= 2Lcl
1/2,1

∑
n

∫
R
λn
(
(i∂x1 − a1(x1))2 −∆A′ −∆′ − V (x, y1, y

′)
)
dy1

≤ 2Lcl
1/2,1

∑
n

∫
R
λn

(
(i∂x1 − a1(x1))2 − (−∆A′ −∆′ − V (x, y1, y

′))−

)
dy1.

Then Theorem 6.3 implies∑
n

λ1/2
n (H) ≤ 2Lcl

1/2,1L
cl
1,1

2

3
√

3Lcl
1,1

K(α1)

×
∫
R

∫ 2π

0

Tr [−∆A′ −∆′ − V (x, y1, y
′)]

3/2
− dx1dy1.

Now we first repeat this argument d1−1 times “splitting” the operator
(i∇′ − A′(x))2 and using Corollary 6.1. Then repeat it again d2 − 1
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times “splitting” the operator ∆′ and using the semiclassical estimates
for the γ-Riesz means with γ ≥ 3/2 for the negative eigenvalues of the
Schrödinger operators with matrix-valued potentials [11]. Finally we
obtain

∑
n

λ1/2
n (H) ≤ 2

(
d1+d2−1∏
l=0

Lcl
γ+l/2,1

)(
2

3
√

3 Lcl
1,1

)d1 d1∏
j=1

K(αj)

×
∫
Td1×Rd2

V γ+(d1+d2)/2(x, y) dxdy.

In order to prove (6.13) for the case d1, d2 ≥ 1 and 1/2 ≤ γ < 1, it
remains to notice that (see (6.11))

d1+d2−1∏
l=0

Lcl
γ+l/2,1 = Lcl

γ,d1+d2
.

For the proof of the case d1 ≥ 1, d2 ≥ 0 and γ ≥ 1 we argue similarly,
but we omit the first step in the previous argument starting directly
with 1-moments. �

For the special cases d1 = d2 = 1 and d1 = 2, d2 = 0 we state the
following corollary of Theorem 6.4:

Corollary 6.2. Suppose that the potential V (x, y) ≥ 0 in (6.12).
Then for d1 = d2 = 1 the following bounds hold for the 1/2- and
1-moments of the negative eigenvalues:∑

k

λ
1/2
k ≤ 1

3
√

3
K(α)

∫
R×S1

V 3/2(x, y)dydx,

∑
k

λk ≤
1

8
√

3
K(α)

∫
R×S1

V 2(x, y)dydx.

For d1 = 2, d2 = 0 we have∑
k

λk ≤
π

24
K(α1)K(α2)

∫
T2

V 2(x1, x2)dx1dx2.
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