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Abstract. We obtain an inequality for the number of the negative eigenvalues of a
two-dimensional Schrödinger operator with circular symmetric potentials.

1. Introduction and the main result. Let H = Hb,V be a Schrödinger operator
in L2(Rd), d > 2,

(1.1) Hb,V = −∆ + b|x|−2 − V, x ∈ Rd, b ∈ R,

where V > 0 is a locally integrable function in Rd. Denote by Nb(V ) the number of
the negative eigenvalues of the operator (1.1). If d > 3 and b > −(d− 2)2/4, then

(1.2) Nb(V ) 6 C(b, d)
∫

Rd

V d/2 dx

is known as the Cwikel-Lieb-Rosenblum inequality (see [C],[L] and [R]).
It is also known that if d = 2 and b = 0, then an arbitrary small perturbation

by a nonnegative potential V ∈ L1(R2) generates at least one negative eigenvalue
and therefore one cannot expect the inequality (1.2) to be true.

It was shown in [S1,2] and in a sharper form in [BL] that under some additional
conditions on V if d = 2 and b = 0, then the problem can be separated in two
problems. The first one is defined by the restriction of the operater (1.1) to the
subspace of functions depending on |x| and thus is reduced to a well studied one-
dimensional Schrödinger operator with the potential Ṽ (r) = 1

2π

∫
|x|=r

V dθ. In
particular, for this class of operators there are necessary and sufficient conditions
in [BS] describing when the asymptotics Nb=0(αṼ ) = O(α), as α → ∞ is true.
The second problem is defined by a class of functions whose mean values over S1

are equal zero. For the function from this subspace we have Hardy’s inequality
(see [Mz], [OK]) which automatically gives the “supporting” term b|x|−2 with some
b > 0.

All this suggests that in order to study the case d = 2, we have to pay special
attention to the operator (1.1), where b > 0.
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Notice, however, that if we “take off” the resonance state at 0 by choosing b > 0,
then the condition V ∈ L1(R2) still does not guarantee even the semiboundness of
(1.1) from below.

Let H1(R2) be a so-called homogeneous H1 class of functions defined by

(1.3) H1(R2) =
{

u :
∫ (

|∇u|2 +
|u|2
|x|2

)
dx < ∞

}
.

It turns out that for a circular symmetric potential V = V (|x|), V ∈ L1(R2), the
quadratic form

(1.4) hb,V [u] =
∫

R2
(|∇u|2 + b|x|−2|u|2) dx−

∫

R2
V |u|2 dx

defined on H1(R2) is semibounded and closed in L2(R2) and, hence, defines a
selfadjoint operator Hb,V .

The aim of this note is to show that for the operator Hb,V defined by the qua-
dratic form (1.4), the estimate (1.2) is fulfilled.

Our main result is the following theorem:

Theorem. Let d = 2, b > 0 and V (x) = V (|x|) > 0. Then

Nb(V ) 6 A(b)
4π

∫

R2
V (x) dx,

where

(1.5) A(b) = sup
µ>0

{
µ−1/2 ·

(
#{n : n2 + b− µ < 0, n ∈ Z}

)}
.

Remark 1. Notice that A(b) → ∞, as b → 0. In particular, A(b) = µ−1/2, if
b < µ 6 1 + b.

Remark 2. Theorem gives a simple class of potentials in two-dimensional case where
the inequality (1.2) is fulfiled. For its generalization see [LN].

2. An auxiliary result. When proving Theorem we use the limiting case of the
Lieb-Thirring inequality for a one-dimensional Schrödinger operator. Namely, let

(2.1) L v(t) = −v′′(t)−W (t) v(t), W > 0, t ∈ R1,

be a selfadjoint operator in L2(R) whose negative spectrum is descrete. Denote by
{−µk}∞k=1, the negative eigenvalues of the operator L.

Lemma. If W ∈ L1(R1) and W > 0, then

(2.2)
∑

k

µ
1/2
k 6 1

2

∫
W (t) dt.

The constant 1/2 appearing in the right hand side in (2.2) is sharp and this was
recently proved in [HLT]. The upper estimate for

∑
k µ

1/2
k via ‖W‖L1(R1) with some

constant greater than 1/2 was first proved in [W]. Notice also that the equality in
(2.2) is achieved when W (t) = δ(t) and we have only one negative eigenvalue equal
(−1/4). Both proves obtained in [HLT] and [W] are based on the Birman-Schwinger
principle [B], [Sch].
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3. Proof of Theorem. Let us consider the quadratic form (1.4) and introduce
the polar coordinates x = (r, θ), r ∈ R+, θ ∈ [0, 2π]. Then the form (1.4) can be
rewritten as

(3.1) hb,V [u] =
∫ ∞

0

∫ 2π

0

(
|u′r|2 + r−2

(|u′θ|2 + (b− r2V (r))|u|2)
)

r dr dθ.

Let {−λn} be the negative eigenvalues of H. Then in view of the variational
principal we obtain

Nb(V ) = #{n : −λn(H) < 0} = dim{u : (Hu, u) 6 0, u ∈ C∞0 (R2 \ {0})}.

This allows us to assume that u ∈ C∞0 (R2 \ {0}) when estimating the number of
the negative eigenvalues generated by the form (3.1). Changing variables r = et

and denoting w(t, θ) = u(et, θ), t ∈ R, θ ∈ [0, 2π], we transfer the form (3.1) to

(3.2) h̃[w] :=
∫ ∞

−∞

∫

S1

(
|w′t|2 +

(|w′θ|2 + (b− Ṽ )|w|2)
)

dt dθ,

where

(3.3) Ṽ (t) = e2tV (et).

Let {−µk(Ṽ )} and {vk(t)}, k ∈ N be the eigenvalues and eigenfunctions of the
operator (2.1) where W := Ṽ . Separating variables we find that the eigenfunctions
of the operator defined by the quadratic form h̃ are equal to vk(t)einθ, n ∈ Z, k = N,
and the corresponding eigenvalues are b + n2 − µk. Thus we obtain

N(V ) = #{(k, n) : b + n2 − µk, k ∈ N, n ∈ Z}

6 A(b)
∑

µ
1/2
k 6 A(b)

2

∫ ∞

−∞
Ṽ (t) dt =

A(b)
2

∫ ∞

−∞
V (et) e2t dt

=
A(b)
4π

∫ ∞

0

∫ 2π

0

V (r) r dx =
A(b)
4π

∫

R2
V (x) dx,

where A(b) is defined in (1.5).
The proof is complete. ¤
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