THE NEGATIVE SPECTRUM OF A CLASS OF TWO-DIMENSIONAL SCHRÖDINGER OPERATORS WITH SPHERICALLY SYMMETRIC POTENTIALS

BY

A. Laptev

ABSTRACT. We obtain an inequality for the number of the negative eigenvalues of a two-dimensional Schrödinger operator with circular symmetric potentials.

1. Introduction and the main result. Let $H = H_{b,V}$ be a Schrödinger operator in $L^2(\mathbb{R}^d), d \ge 2$,

(1.1)
$$H_{b,V} = -\Delta + b|x|^{-2} - V, \qquad x \in \mathbb{R}^d, \quad b \in \mathbb{R},$$

where $V \ge 0$ is a locally integrable function in \mathbb{R}^d . Denote by $N_b(V)$ the number of the negative eigenvalues of the operator (1.1). If $d \ge 3$ and $b > -(d-2)^2/4$, then

(1.2)
$$N_b(V) \leqslant C(b,d) \int_{\mathbb{R}^d} V^{d/2} \, dx$$

is known as the Cwikel-Lieb-Rosenblum inequality (see [C],[L] and [R]).

It is also known that if d = 2 and b = 0, then an arbitrary small perturbation by a nonnegative potential $V \in L^1(\mathbb{R}^2)$ generates at least one negative eigenvalue and therefore one cannot expect the inequality (1.2) to be true.

It was shown in [S1,2] and in a sharper form in [BL] that under some additional conditions on V if d = 2 and b = 0, then the problem can be separated in two problems. The first one is defined by the restriction of the operator (1.1) to the subspace of functions depending on |x| and thus is reduced to a well studied onedimensional Schrödinger operator with the potential $\tilde{V}(r) = \frac{1}{2\pi} \int_{|x|=r} V d\theta$. In particular, for this class of operators there are necessary and sufficient conditions in [BS] describing when the asymptotics $N_{b=0}(\alpha \tilde{V}) = O(\alpha)$, as $\alpha \to \infty$ is true. The second problem is defined by a class of functions whose mean values over \mathbb{S}^1 are equal zero. For the function from this subspace we have Hardy's inequality (see [Mz], [OK]) which automatically gives the "supporting" term $b|x|^{-2}$ with some b > 0.

All this suggests that in order to study the case d = 2, we have to pay special attention to the operator (1.1), where b > 0.

¹⁹⁹¹ Mathematics Subject Classification. 35P15, 35P20.

Supported by the Swedish Natural Sciences Research Council, Grant M-AA/MA 09364-320.

BY A. LAPTEV

Notice, however, that if we "take off" the resonance state at 0 by choosing b > 0, then the condition $V \in L^1(\mathbb{R}^2)$ still does not guarantee even the semiboundness of (1.1) from below.

Let $\mathcal{H}^1(\mathbb{R}^2)$ be a so-called homogeneous H^1 class of functions defined by

(1.3)
$$\mathcal{H}^1(\mathbb{R}^2) = \left\{ u : \int \left(|\nabla u|^2 + \frac{|u|^2}{|x|^2} \right) dx < \infty \right\}.$$

It turns out that for a circular symmetric potential $V = V(|x|), V \in L^1(\mathbb{R}^2)$, the quadratic form

(1.4)
$$h_{b,V}[u] = \int_{\mathbb{R}^2} (|\nabla u|^2 + b|x|^{-2}|u|^2) \, dx - \int_{\mathbb{R}^2} V|u|^2 \, dx$$

defined on $\mathcal{H}^1(\mathbb{R}^2)$ is semibounded and closed in $L^2(\mathbb{R}^2)$ and, hence, defines a selfadjoint operator $H_{b,V}$.

The aim of this note is to show that for the operator $H_{b,V}$ defined by the quadratic form (1.4), the estimate (1.2) is fulfilled.

Our main result is the following theorem:

Theorem. Let d = 2, b > 0 and $V(x) = V(|x|) \ge 0$. Then

$$N_b(V) \leqslant \frac{A(b)}{4\pi} \int_{\mathbb{R}^2} V(x) \, dx,$$

where

(1.5)
$$A(b) = \sup_{\mu>0} \Big\{ \mu^{-1/2} \cdot \Big(\# \{ n : n^2 + b - \mu < 0, \ n \in \mathbb{Z} \} \Big) \Big\}.$$

Remark 1. Notice that $A(b) \to \infty$, as $b \to 0$. In particular, $A(b) = \mu^{-1/2}$, if $b < \mu \leq 1 + b$.

Remark 2. Theorem gives a simple class of potentials in two-dimensional case where the inequality (1.2) is fulfiled. For its generalization see [LN].

2. An auxiliary result. When proving Theorem we use the limiting case of the Lieb-Thirring inequality for a one-dimensional Schrödinger operator. Namely, let

(2.1)
$$L v(t) = -v''(t) - W(t) v(t), \qquad W \ge 0, \quad t \in \mathbb{R}^1,$$

be a selfadjoint operator in $L^2(\mathbb{R})$ whose negative spectrum is descrete. Denote by $\{-\mu_k\}_{k=1}^{\infty}$, the negative eigenvalues of the operator L.

Lemma. If $W \in L^1(\mathbb{R}^1)$ and $W \ge 0$, then

(2.2)
$$\sum_{k} \mu_k^{1/2} \leqslant \frac{1}{2} \int W(t) \, dt.$$

The constant 1/2 appearing in the right hand side in (2.2) is sharp and this was recently proved in [HLT]. The upper estimate for $\sum_k \mu_k^{1/2}$ via $||W||_{L^1(\mathbb{R}^1)}$ with some constant greater than 1/2 was first proved in [W]. Notice also that the equality in (2.2) is achieved when $W(t) = \delta(t)$ and we have only one negative eigenvalue equal (-1/4). Both proves obtained in [HLT] and [W] are based on the Birman-Schwinger **3.** Proof of Theorem. Let us consider the quadratic form (1.4) and introduce the polar coordinates $x = (r, \theta), r \in \mathbb{R}_+, \theta \in [0, 2\pi]$. Then the form (1.4) can be rewritten as

(3.1)
$$h_{b,V}[u] = \int_0^\infty \int_0^{2\pi} \left(|u_r'|^2 + r^{-2} \left(|u_\theta'|^2 + (b - r^2 V(r))|u|^2 \right) \right) r \, dr \, d\theta$$

Let $\{-\lambda_n\}$ be the negative eigenvalues of H. Then in view of the variational principal we obtain

$$N_b(V) = \#\{n : -\lambda_n(H) < 0\} = \dim\{u : (Hu, u) \le 0, u \in C_0^{\infty}(\mathbb{R}^2 \setminus \{0\})\}.$$

This allows us to assume that $u \in C_0^{\infty}(\mathbb{R}^2 \setminus \{0\})$ when estimating the number of the negative eigenvalues generated by the form (3.1). Changing variables $r = e^t$ and denoting $w(t, \theta) = u(e^t, \theta), t \in \mathbb{R}, \theta \in [0, 2\pi]$, we transfer the form (3.1) to

(3.2)
$$\widetilde{h}[w] := \int_{-\infty}^{\infty} \int_{\mathbb{S}^1} \left(|w_t'|^2 + \left(|w_\theta'|^2 + (b - \widetilde{V})|w|^2 \right) \right) dt \, d\theta,$$

where

(3.3)
$$\widetilde{V}(t) = e^{2t} V(e^t).$$

Let $\{-\mu_k(\widetilde{V})\}\$ and $\{v_k(t)\},\ k \in \mathbb{N}$ be the eigenvalues and eigenfunctions of the operator (2.1) where $W := \widetilde{V}$. Separating variables we find that the eigenfunctions of the operator defined by the quadratic form \widetilde{h} are equal to $v_k(t)e^{in\theta},\ n \in \mathbb{Z},\ k = \mathbb{N}$, and the corresponding eigenvalues are $b + n^2 - \mu_k$. Thus we obtain

$$\begin{split} N(V) &= \#\{(k,n) : b+n^2 - \mu_k, \ k \in \mathbb{N}, \ n \in \mathbb{Z}\} \\ &\leqslant A(b) \sum \mu_k^{1/2} \leqslant \frac{A(b)}{2} \int_{-\infty}^{\infty} \widetilde{V}(t) \, dt = \frac{A(b)}{2} \int_{-\infty}^{\infty} V(e^t) \, e^{2t} \, dt \\ &= \frac{A(b)}{4\pi} \int_0^{\infty} \int_0^{2\pi} V(r) \, r \, dx = \frac{A(b)}{4\pi} \int_{\mathbb{R}^2} V(x) \, dx, \end{split}$$

where A(b) is defined in (1.5).

The proof is complete. \Box

Acknowledgement. The author is grateful to M.Solomyak for the invitation to the Weizmann Institute (Rehovot, Israel) where the author was able to complete this paper.

BY A. LAPTEV

References

- [B] M.Sh.Birman, On the spectrum of singular boundary-value problems., Mat. Sb. 55 (1961), 125–174 (Russian); English transl. in Amer. Math. Soc. Trans. 53 (1966), 23–80.
- [BL] M.Sh.Birman and A.Laptev, *The negative discrete spectrum of a two-dimensional* Schrödinger operator, Comm. Pure Appl. Math. XLIX (1996), 967–997.
- [BS] M.Sh.Birman and M.Z.Solomyak, Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Advances in Soviet Math. 7 (1991), 1–55.
- [C] M.Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators., Ann. Math. 106 (1977), 93–100.
- [HLT] D.Hundertmark, E.H.Lieb and L.E.Thomas, A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator., Adv. Theor. Math. Phys. 2 (1998), 719– 731.
- [LN] A.Laptev and Yu.Netrusov, On the negative eigenvalues of a class of Schrödinger operators, AMS Translations, Series 2, 189 (1998), 178–186.
- [L] E.H.Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators., Bull. of the AMS. 82 (1976), 751–753.
- [Mz] V. Maz'ya, Sobolev Spases, Springer-Verlag, Berlin-Heidelberg-New York-Tokio, 1985.
- [OK] B. Opic and A. Kufner, *Hardy-type inequalities*, Pitman Research Notes in Mathematics Series, 219, Longman Scientific & Technical, Harlow, 1990.
- [R] G.V.Rosenblum, Distribution of the discrete spectrum of singular differential operators.,
 Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1976), 75-86 (Russian); English transl. in Soviet
 Math. Izv. VUZ 20 (1976), 63-71.
- [Sch] J.Schwinger, On the bound states of a given potential., Proc.Nat.Acad.Sci. 47 (1961), 122-129.
- [S1] M.Solomyak, Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, 2l = d, and applications to the spectral theory of Schrödinger operator, Israel J. Math. **86** (1994), 253–276.
- [S2] M.Solomyak, Spectral problems related to the critical exponent in the Sobolev embedding theorem, Proc. London Math. Soc. 71 (1995), 53–75.
- [W] T.Weidl, On the Lieb-Thirring constants $L_{\gamma,1}$ for $\gamma \ge 1/2$., Comm. Math. Phys. 178 (1996), 135–146.

DEPARTMENT OF MATHEMATICS,

ROYAL INSTITUTE OF TECHNOLOGY,

E-mail address: laptev@math.kth.se

S-100 44 Stockholm, Sweden