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ABSTRACT. The aim of this paper is to extend a class of potentials for
which the absolutely continuous spectrum of the corresponding multidi-
mensional Schr̈odinger operator is essentially supported by[0,∞). Our
main theorem states that this property is preserved for slowly decaying
potentials provided that there are some oscillations with respect to one
of the variables.

1. INTRODUCTION

In this paper we prove that the absolutely continuous spectrum of a class
of Schr̈odinger operators−∆+V in L2(Rd), d ≥ 3 is essentially supported
by [0,∞). This means that the spectral projection corresponding to any
subset of positive Lebesgue measure is not zero.

We develop a technique which allows one to estimate the spectral mea-
sure of−∆ + V in terms of eigenvalue sums. Namely as soon as we have
a ”good” estimate for the eigenvalues of the Schrödinger operator, we can
prove that the a.c. fills the interval(0,+∞). Different relations between the
discrete and continuous spectrum appeared in Damanik-Killip [9] for one
dimensional operators. They proved that if one dimensional Schrödinger
operators with potentials+V and−V have only finite number of eigenval-
ues then their positive spectrum is absolutely continuous.

Recently O. Safronov [23] has shown that our results can be extended to
long range potentials

V ∈ Ld+1(Rd), d ≥ 3,

whose Fourier transform is square integrable near the origin. In particular
this implies that for any real function fromV0 ∈ Ld+1 whose Fourier trans-
form is square integrable nearξ0 the Schr̈odinger operator with the potential
potential

V (x) = cos(ξ0x)V0(x)
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has a.c. spectrum essentially supported byR+. The same assertion holds
for V ∈ Ld+1(Rd) such that∫

Rd

∣∣∣∫
|y|<δ

V (x+ y) dy
∣∣∣2 dx <∞.

for some positive numberδ > 0.
Our work differs from the results obtained in the scattering theory, where

the existence of wave operators is proved under more restrictive conditions
onV . Here the most known conditions are|V (x)| ≤ C(1 + |x|)−1−ε, ε > 0
or |V (x)|+|∇V (x)|(1+|x|) ≤ C(1+|x|)−ε. In this case the corresponding
a.c. property of the spectrum is a byproduct of much stronger results on the
unitary equivalence of the operators−∆ and−∆ + V .

One should also notice that some generalizations of Hack-Cook theorem
require onlyV ∈ L1 + Lp with p < d. This means that ford > 4 one
should apply the modified theorem [23] rather than its preliminary version
(see Theorem 2.2) which deals with potentials fromL4. Also the operator
has lots of a.c. if there is a cone whereV decays very fast.

As in our previous paper [17] the multidimensional case is reduced to
a problem for a one-dimensional second order elliptic integro-differential
operator. The “potential” type term appears to be a dissipative Fredholm in-
tegral operator depending on the spectral parameter. Such an operator might
have poles appearing in an operator version of the so-called first Buslaev-
Faddeev-Zakharov (BFZ) trace formula. Their contribution appears with
the ”right” sign and therefore can be ignored.

There are two new crucial elements compared with [17]. One of them
suggests new ”spectrally local” Lieb-Thirring inequalities for the3/2 mo-
ments of the negative eigenvalues of Schrödinger operators (compare with
O.Safronov [22]). Before applying this result we need an argument from
A.Laptev and T.Weidl [18] lifting the corresponding eigenvalue estimates
for their 1/2-moments to3/2-moments by using an induction with respect
to dimension. This argument forces us to consider the problem starting from
dimensiond ≥ 3. The second new element is concerned with a parallel con-
sideration of a couple of Schrödinger operators with potentialsV and−V .
This leads to the cancellation of the term

∫∞
0

∫
Sd−1 V dθdr appearing in the

BFZ first trace formula.
Note that the first result based on Buslaev-Faddeev-Zakharov trace

formulae for the study of the a.c. properties of the spectrum of one-
dimensional Schr̈odinger operators was suggested in the paper by P.Deift
and R.Killip [11]. Their theorem gave a natural generalization of the re-
sults obtained by by M.Christ, A.Kiselev and C.Remling in [7], M.Christ,
A.Kiselev [8] and C.Remling[21]. R.Killip [14] was first in proving a
“local” one-dimensional result. That is if̂V ∈ L2(2a, 2b), a > 0, and



ABSOLUTELY CONTINUOUS SPECTRUM 3

V ∈ L3(R), then the absolutely continuous spectrum fills the interval
(a2, b2).

For the three dimensional case our theorems require onlyV ∈ L4(R3)
rather than the conditionV ∈ L3(R3). Note that the secondL2-condition
(2.7) on the Fourier transform ofV with respect to one of variables near
the origin, becomes interesting if there are cancellations provided by oscil-
lations of the potentialV near infinity.

There is extensive literature concerning the properties of the spectrum
of oscillating potentials starting from the classical Wigner-von Neumann
construction [34], see also M.Skriganov [32] and H.Behncke [3], [4]. Some
examples of oscillating potentials with respect to the radial variable were
given in M.Reed and B.Simon [24], vol.3 Ch XI.

Our Theorems 2.1 and 2.2 are applied to a class of potentials described in
terms of the Fourier transform either with respect to one of the variables or
with respect to all variables. Some related results for a class of Schrödinger
operators with anisotropic behaviour of potentials at infinity were consid-
ered in the paper by V.G.Deich, E.L.Korotjaev and D.R. Yafaev [10].

This article is a natural development of our previous paper [17]. For the
sake of completeness we recall the arguments of Section 3-4 and 8 from
[17] which become in this text Sections 4-6 and 10 respectively.

2. THE MAIN RESULTS

Let us consider a Schrödinger operator−∆ +V in L2(Rd), d ≥ 3, where

(2.1) V ∈ L∞(Rd), V (x)→ 0, as |x| → ∞.

Let V̂ be the Fourier transform ofV with respect to the first variable

(2.2) V̂ (ξ, y) =

∫
R

e−iξsV (s, y) ds, x = (s, y) ∈ Rd.

Theorem 2.1.Letd ≥ 3 and letV be a real valued function onRd obeying
(2.1)and let for someδ > 0∫

Rd

V 4(x) dx <∞,
∫
Rd−1

(∫ δ

−δ
|V̂ (ξ, y)|2 dξ

)
dy <∞.

Then the absolutely continuous spectrum of the operator−∆ + V is essen-
tially supported by[0,∞).

The latter theorem gives some qualitative information about the abso-
lutely continuous spectrum of Schrödinger operators. The next result is
related to more delicate properties of the a.c. spectrum. It provides some



4 LAPTEV, NABOKO AND SAFRONOV

quantitative characteristics of the spectral measure which is a multidimen-
sional continuous analog of the well-known Szegő condition for orthogonal
polynomials and Jacobi matrices (compare with [17]).

Let Ω1 be the unit ball inRd, ∂Ω1 = Sd−1, andV be a real valued function
onRd \ Ω1. We consider the operatorH in L2(Rd \ Ω1) with the Dirichlet
boundary conditions onSd−1

(2.3) Hu = H0u+ V u = −∆u+ V u, u|∂Ω1 = 0.

Let us assume for the sake of simplicity that there isc1 > 1 such that

(2.4) V +
αd
|x|2

= 0 for 1 < |x| < c1,

whereαd = (d−1)2

4
− d−1

2
. Let EH(ω), ω ⊂ R, be the spectral projection

of the operatorH. We construct a measureµ on the real line such that for
spherically symmetric functionsf

(2.5) (EH(ω)f, f) =

∫
ω

|F (λ)|2dµ(λ), ω ⊂ R+ = (0,∞),

where
(2.6)

F (λ) =
1

k

∫ c1

0

sin(k(r−1))f(r) r(d−1)/2dr, suppf ⊂ {x : 1 < |x| < c1}.

andk2 = λ > 0.
Let us extendV by zero intoΩ1 and then definêV as in (2.2).
The following theorem is the main result of the paper.

Theorem 2.2. Let d ≥ 3 and letV be a real valued function onRd \ Ω1

obeying(2.1)and (2.4). Let

(2.7)
∫
Rd\Ω1

V 4(x) dx <∞,
∫
Rd−1

(∫ δ

−δ
|V̂ (ξ, y)|2 dξ

)
dy <∞

for someδ > 0. Then

(2.8)
∫ ∞

0

log(1/µ′(t)) dt

(1 + t3/2)
√
t
<∞,

whereµ is defined in(2.5). If (2.4) is satisfied then(2.8) is equivalent to

(2.9)
∫ ∞

0

log
(
d
dλ

(EH(λ)f, f)
)
dλ

(1 + λ3/2)
√
λ

> −∞,

for any bounded spherically symmetric functionf 6= 0 with suppf ⊂ {x :
1 < |x| < c1}.
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Remark 1.The inequality (2.8) guarantees that the a.c. spectrum ofH is
essentially supported by[0,∞), sinceµ′ > 0 almost everywhere and gives
quantitative information about the measureµ.
Remark 2.If d = 1, then the conditions (2.7) do not provide existence of
the absolutely continuous spectrum onR+. This is confirmed by examples
of sparse potentials constructed in [15]. The validity of Theorem 2.2 in
dimensiond = 2 remains open.
Remark 3.The equivalence of (2.8) and (2.9) follows from the fact that ifF
is defined as in (2.6), then the function(1 + λ2)−1 log(|F (λ)|) is inL1(R+)
see, for example, P. Koosis [16] (section IIIG2).
Remark 4.When proving Theorem 2.2 we use the projection operatorP0

on the spherical functionY0 which leads us to a scalar one-dimensional
problem (4.2) with an operator valued potentialQz. Had we used instead
of P0 the projection

∑n
j=1 Pj, wherePj are projections on the spherical

functionsYj, then we would have obtained the corresponding system of
one-dimensional equations with an operator valued potential which could
be treated similarly. This would imply that the multiplicity of the a.c. spec-
trum is not smaller thann. Sincen is arbitrary, we obtain the a.c. spectrum
is of infinite multiplicity.

Example. The statement of the theorem holds true for a 3-dimensional
operator with the potential

V (x, y, z) = v1(x)v(y, z), v ∈ L4(R2).

Herev1 is a so-called Wigner-von Neumann potential

v1(x) =
m∑
j=1

cj
sin(ωjx) + o(1)

1 + |x|pj
, |x| → ∞,

whereωj > 0, pj > 1/4, cj ∈ R, m ∈ N, is a function whose Fourier
transform vanishes on a small interval containing zero. For example, one
can consider

v1(x) = Re
m∑
j=1

∫ 1+ωj

ωj

Cj exp(ikx)

(k − ωj)1−pj
dk,

with appropriate constantsCj.

3. ESTIMATES FOR THE DISCRETE SPECTRUM

Throughout the paper,T± denotes the positive and negative part of a self
adjoint operatorT , i.e. 2T± = |T | ± T . Denote bySp, p > 0 the standard
Neumann-Schatten classes of compact operators

Sp = {T : tr (T ∗T )p/2 <∞}.
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Consider a one dimensional Schrödinger operatorJ = − d2

dx2 + V (x) in
L2(R) with a real valued potentialV ∈ C∞0 (R).

Theorem 3.1.LetV ∈ C∞0 (R). Then for anyδ > 0

(3.1) tr
(
− d2

dx2
+ V (x)

)3/2

−
≤ C

(∫
R

V 4dx+

∫ δ

−δ
|V̂ (ξ)|2 dξ

)
,

where the constantC = C(δ, ||V ||∞) andV̂ (ξ) =
∫

exp (−iξx)V (x) dx.

Proof. For eachT ∈ S1, one can define a complex-valued function
det(1 + T ), so that

|det(1 + T )| ≤ exp(‖T‖S1).

ForT ∈ S4 one defines

(3.2) det4(1 + T ) = det((1 + T )e−T+T 2/2−T 3/3).

It is proved in [30], Section 9, Theorem 9.2(b), that there is a constantc > 0
such that

(3.3) |det4(1 + T )| ≤ exp(c‖T‖4
S4

), c > 0.

Note that ifJ0 is the operatorJ0 = − d2

dx2 in L2(R), then

lim
ε→0
| det

(
I + V (J0 − (λ± iε))−1

)
| ≥ 1.

In order to prove Theorem 3.1 we need the following auxiliary statement:

Lemma 3.1. Let V (x) be a smooth real valued function of finite support.
For everyδ > 0 there is a constantC = C(δ, ||V ||∞) such that for allz:

|z − ||V ||∞| = ||V ||∞ + δ2

it holds

(3.4) | log det4(I + V (J0 − z)−1)| ≤ C

|Im z|4
||V ||4L4 .

Proof. Let z = λ + iη, whereλ and η are real. One can repeat the
arguments of R.Killip and B.Simon, Proposition 5.2 [13], in order to show
that

| d
dη

log det4(I + V (J0 − z)−1)| =

|tr (i[(J0 − z)−1V ]4(J − z)−1)| ≤
||V (J0 − z)−1||4S4

||(J − z)−1||.

(3.5)

On the other hand,

lim
η→∞

det4(I + V (J0 − z)−1) = 1.
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Therefore the estimate (3.4) follows from (3.5) by the Fundamental Theo-
rem of Calculus. �

It was established in [14] that forz = k2, k ∈ R,

−Re tr(V (J0 − z)−1)2 =
|V̂ (2k)|2

2k2
.

Therefore forz = k2, k ∈ R,

0 ≤ log |det(I + V (J0 − z)−1)|+ log |det(I − V (J0 − z)−1)|
= −Re tr(V (J0 − z)−1)2 + log |det4(I + V (J0 − z)−1)|

+ log |det4(I − V (J0 − z)−1)| = |V̂ (2k)|2

2k2
+ log |det4(I + V (J0 − z)−1)|

+ log |det4(I − V (J0 − z)−1)|.

(3.6)

Let now

σ(k) = k2(k2 − δ2)4, L = {k : |k2 − ||V ||∞| = ||V ||∞ + δ2}.
Then applying (3.4) we obtain

(3.7)
∣∣∣∫

L

log det4(I + V (J0 − k2)−1)σ(k) dk
∣∣∣ ≤ C||V ||4L4 .

Now let iβj(V ) be the zeros oflog det4(I +V (J0− k2)−1) and letB(k, V )
be the Blaschke product

B(k, V ) =
∏
j

k − iβj(V )

k + iβj(V )
.

Then

Re
∫ δ

−δ
log det4(I + V (J0 − z)−1)σ(k) dk

= Re
∫

L

log det4(I + V (J0 − z)−1)σ(k) dk − Re
∫

L

log(B(k, V ))σ(k) dk.

(3.8)

Thus, combining the inequality (3.6) with the estimate (3.7) and the relation
(3.8), we obtain

(3.9)
∑
j

f(βj(V )) +
∑
j

f(βj(−V )) ≤ C
(∫

R

V 4dx+

∫ δ

−δ
|V̂ (2ξ)|2 dξ

)
,

where

f(t) = Re
∫

L

log
(k − it
k + it

)
σ(k) dk, t > 0.
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Integrating by parts and using the fact thatσ is even we obtain

f(t) = Re
∫

L

( 1

k − it
− 1

k + it

)
Ξ(k) dk = Re

∫
|k|=2t

1

k − it
Ξ(k) dk = 2πΞ(it),

where

Ξ(k) =

∫ k

0

σ(τ) dτ.

This implies

f(t) ≥ 2πδ8

3
t3.

The proof is complete.�

4. THE BEGINNING OF THE PROOF OFTHEOREM 2.2

In this section we reduce problem (2.3) to a one-dimensional problem
with an operator valued potential. Such a reduction has been already used
in [17].

Assume thatV ∈ C∞0 and introduce polar coordinates(r, θ), x = rθ ∈
R
d, θ ∈ Sd−1. Denote by{Yj}∞j=0 the orthonormal inL2(Sd−1) basis of

(real) spherical functions, i.e. eigenfunctions of the Laplace-Beltrami oper-
ator−∆θ, and letPj be the orthogonal projection given by

Pju(r, θ) = Yj(θ)

∫
Sd−1

Yj(θ
′)u(r, θ′) dθ′.

ClearlyP0u depends only onr. Denote

V1 = P0V P0, H0,1 = P0H0P0,

V1,2 = P0V (I − P0), V2,1 = V ∗1,2,

V2 = (I − P0)V (I − P0), H0,2 = (I − P0)H0(I − P0).

Then the operatorH − z can be represented as a matrix:

H − z =

(
H0,1 + V1 − z V1,2

V2,1 H0,2 + V2 − z

)
,

and the equation
(H − z)u = P0f, Im z 6= 0,

is equivalent to

(4.1) (H0,1 +Tz−z)P0u = P0f, (H0,2 +V2−z)−1V2,1P0u = (P0−I)u.

Here the operatorTz is defined by

Tz = V1 − V1,2(H0,2 + V2 − z)−1V2,1

onL2((1,∞), rd−1 dr).
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By using the unitary operator from L2((1,∞), dr) to
L2((1,∞), rd−1 dr),

Uu(r) = r−(d−1)/2u,

we reduce (4.1) to the problem for the following one-dimensional
Schr̈odinger operator inL2(1,∞)

(4.2) Lzu(r) = −d
2u

dr2
+Qzu, u ∈ L2(1,∞), u(1) = 0,

where

Qz = V1 +
αd
r2
−V1,2(U∗H0,2U +V2− z)−1V2,1, αd =

(d− 1)2

4
− d− 1

2
.

We are going to approximate the problem by the corresponding problem
with a smooth compactly supported potentialV and the termαd/r2 substi-
tuted byζε(r)αd/r2, whereζε/r2 → 1/r2, asε → 0, in the both spaces
L1(1,∞) andL2(1,∞) andζε ∈ C∞0 (1,+∞). The same should be done
with the term∆θu/r

2, i.e. it should be substituted byζε(r)∆θu/r
2.

So when approximating the problem we always assume that

(4.3) Qz = V1 + ζε(r)
αd
r2
− V1,2(Sε + V2 − z)−1V2,1,

where

(4.4) Sεu = −d
2u

dr2
− ζε(r)

∆θu

r2
, u(1, θ) = 0.

According to (4.1) we obtain

(4.5) P0(H − z)−1P0 = U(Lz − z)−1U∗.

We see also that if suppV ∪suppζε(| · |) ⊂ {x ∈ Rd : c1 < |x| < c2}, c1 >
1, then for the operator (4.3) we have

Qz = Qzχ = χQz,

whereχ is an operator of multiplication by the characteristic function of the
interval(c1, c2), c1 > 0. It is important for us thatQz is an analytic operator
valued function ofz with a negative imaginary part in the upper half plane
and which has a positive imaginary part in the lower half plane.

5. GREEN’ S FUNCTION.

In sections 5-7 we assume thatV is not a potential but the operatorPV P ,
P =

∑n
j=0 Pj, which approximatesV for largen. It can be interpreted as

an operator of multiplication by a matrix valued function ofr. In this case
the functionV1 remains the same as before. SincePj are projections on real
spherical functions, this matrix is real. Recall that the factor1/r2 in front of
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−∆θ andαd is also substituted by a smooth compactly supported function
ζε/r

2.
Let us consider the equation

(5.1) − d2

dr2
ψ(r) + (Qzψ)(r) = zψ(r), r ≥ 1, z ∈ C,

with Qz given by (4.3) and letψk(r) be the solution of the equation (5.1)
satisfying

ψk(r) = exp (ikr), k2 = z, Im k > 0, ∀r > c2.

Then this solution also satisfies the following “integral” equation

(5.2) ψk(r) = eikr − k−1

∫ ∞
r

sin k(r − s)(Qzψk)(s) ds.

In order to describe the properties ofψk(r) we systematically use the fol-
lowing analytic Fredholm theorem (see, for example, M.Reed and B.Simon
[24], Theorem VI.14 or D.Yafaev Ch.I, Section 8):

Theorem 5.1.LetD ⊂ C be an open connected set and letT(k) be an an-
alytic operator valued function onD such thatT(k) is a compact operator
in a Hilbert space for eachk ∈ D. Then

(1) either(I − T(k))−1 exists for nok ∈ D,
(2) or (I − T(k))−1 exists for allk ∈ D \D0, whereD0 is a discrete subset
of D. In this case(I − T(k))−1 is meromorphic inD with possible poles
belonging toD0.

We first apply this theorem in order to prove the statement which is quite
standard in the resonance theory.

Lemma 5.1. The operatorQz has a meromorphic continuation into the
second sheet of the complex plane.

Proof. LetSε be the same operator as in (4.4) and letS̃ = −d2/dr2 be an
operator inL2((1,∞), PL2(Sd−1)) with the Dirichlet boundary condition
at 1. Let φ ∈ C∞0 (R+) be a function which is identically equal to one on
the support of the matrix-functionV andζε. Then

φ(Sε + V2 − z)−1φ =
(
I + φ(S̃ − z)−1

(
V2 + ζε

∆θ

r2

))−1

φ(S̃ − z)−1φ.

Obviously both operatorsφ(S̃ − z)−1(V2 + ζε
∆θ

r2 ) andφ(S̃ − z)−1φ have
an analytic continuation into the second sheet of the complex plane through
the positive semi-axis. By using Theorem 5.1 we obtain that the operator(

I + φ(S̃ − z)−1
(
V2 + ζε

∆θ

r2

))−1
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and thus the operatorQz defined in (4.3) have meromorphic continuations
into the second sheet of the complex plane.�

Let us now apply Theorem 5.1 to the operator

T(k)ψ(r) = −k−1

∫ ∞
r

sin k(r − s)(Qzψ)(s) ds

in L2(1, c2). We conclude that the equation (5.2) is uniquely solvable for
all k except perhaps a discrete sequence of points and that its solutionψk
is a meromorphic with respect tok function with values inL2(1, c2), in a
neighbourhood of every Imk ≥ 0, k 6= 0. Clearly

(5.3) ψk(x) = a(k)eikx + b(k)e−ikx, 1 < x < c1,

and therefore botha(k) andb(k) are meromorphic functions (even in some
neighborhoods of pointsk 6= 0 of the real axis).

Consider the resolvent operatorR(z) = (Lz − z)−1, whereLz is defined
in (4.2). Ifχc1 is the operator of multiplication by the characteristic function
of (1, c1). ThenR(z)χc1 is an integral operator with the kernel:

(5.4) Gz(r, s) =

{
ψk(s)
ψk(1)

sin(k(r−1))
k

, for r < s < c1,
ψk(r)
ψk(1)

sin(k(s−1))
k

, for s < min{c1, r}.

Indeed, assuming that supp(f) ⊂ (1, c1) we can easily check that the func-
tion

u(r) =
1

ψk(1)

{∫ ∞
r

sin(k(r − 1))

k
ψk(s)f(s) ds

+

∫ r

1

ψk(r)
sin(k(s− 1))

k
f(s) ds

}
satisfies the equation

(5.5) − d2

dr2
u(r) + (Qzu)(r)− zu(r) = f(r), r ≥ 1, z ∈ C,

and moreoveru(1) = 0.
Here we should also mention that sinceψk(1) is meromorphic ink in a

neighborhood of anyk 6= 0, we conclude thatψk(1) = 0 only on a discrete
subset of the closed upper half plane, having no accumulation points except
perhaps zero.

6. WRONSKIAN AND PROPERTIES OF THEM -FUNCTION.

Let as in (4.3)

Qz = V1 − V1,2(Sε + V2 − z)−1V2,1.
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The function

(6.1) M(k) =
ψ′k(1)

ψk(1)
, Im k ≥ 0,

is now well defined and called the WeylM -function of the operator (5.1).
Let us consider the Wronskian

(6.2) W [ψk, ψk](r) = ψ′k(r)ψk(r)− ψk(r)ψ
′
k(r).

Note thatψk satisfies the equation (5.1) withQz andz instead ofQz andz.
Sinceψk is a solution of the equation (5.1) we find

d

dr
W [ψk, ψk](r) = (z−z)ψk(r)ψk(r)+(Qzψk)(r)ψk(r)−ψk(r)(Qzψk)(r).

So we obtain

(6.3) ±Im {W [ψk, ψk](c2)−W [ψk, ψk](c1)} ≥ 0, for ± Im z ≥ 0+,

which means that for all realk we have the following inequality

k

Im M(k)
≤ |ψk(1)|2.

Moreover, if we represent the solutionψk for realk in the form

ψk(x) = a(k)eikx + b(k)e−ikx, x < c1,

then it follows from (6.3) that

|a|2 − |b|2 ≥ 1, k = k.

Clearly

M(k) = ψ′k(1)(ψk(1))−1 = ik(1− ρ(k))(1 + ρ(k))−1,

where
ρ(k) := e−2ikb(k)a(k)−1.

The latter implies

ρ(k) = (ik −M(k))(ik +M(k))−1.

Since|a|2 − |b|2 ≥ 1 we obtain that for realk

|a(k)|−2 ≤ 1− |ρ(k)|2 =
4kIm M

|ik +M(k)|2
.

Note that since ImM ≥ 0, then for anyk > 0 we have

|ik +M(k)|2 = k2 + |M |2 + 2kIm M ≥ k2

and therefore

(6.4) |a(k)|−2 ≤ 4k−1
(
Im M

)
, k > 0.



ABSOLUTELY CONTINUOUS SPECTRUM 13

¿From (6.1) and (6.2) we obtain

(6.5) ImM(k) > 0 if Im k2 > 0.

Thus, there are constantsC0 ∈ R andC1 ≥ 0 and a positive measureµ,
such that ∫ ∞

−∞

dµ(t)

1 + t2
<∞,

where

(6.6) M(k) = C0 + C1z +

∫
R

( 1

t− z
− t

1 + t2

)
dµ(t), k2 = z.

Finally, note thatR(z) = P0(U∗H0U + V − z)−1P0 and hence we can
formally write that

M(k) =
∂2

∂r∂s
Gz(r, s)|(1,1) = (P0(U∗H0U + V − z)−1P0δ

′
1, δ
′
1),

whereδ′1 is the derivative of the delta functionδ(r−1). Letχc1 be the char-
acteristic function of(1, c1). The representation (5.4) for the resolvent oper-
ator gives us the representation for the operatorχc1P0EU∗H0U+V (ω)P0χc1,
whereEU∗H0U+V (ω) is the spectral measure ofU∗H0U + V :

(6.7) (P0EU∗H0U+V (ω)P0f, f) =

∫
ω

|F (λ)|2dµ(λ)

and where

F (λ) =
1

k

∫ c1

0

sin(k(r − 1))f(r) dr, suppf ⊂ (1, c1), k2 = λ.

SinceF is a boundary value of an analytic function, we obtain thatF (λ) 6=
0 for a.e.λ. This means thatEH(ω) 6= 0 if µ′ > 0 a.e. onω.

7. TRACE INEQUALITIES

Recall that we assume thatV is not a potential but the operator∑n
j=0 PjV

∑n
j=0 Pj, which approximatesV for largen. As before we sub-

stitute the term−∆θ/r
2 andαd/r2 on (1,∞) by a ”compactly supported”

approximations−ζε(r)∆θ/r
2 andζε(r)αd/r2, whereζε ∈ C∞0 (1,∞) and

ζε(r)/r
2 → 1/r2 in L1(1,∞) andL2(1,∞) asε→ 0. Then the coefficient

a(k) introduced in (5.3) will depend onε and we shall writeaε(k) instead
of a(k). ¿From (5.2) and (4.3) we find that

exp(−ikr)ψk(r) = 1− 1

2ik

∫ ∞
r

(1−e2ik(s−r))(ζε(s)αd/s
2+V1(s)) ds+o(1/k)
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and thus
(7.1)

aε(k) = lim
r→−∞

exp(−ikr)ψk(r) = 1− 1

2ik

∫
(ζε(r)αd/r

2+V1) dr+o(1/k),

ask → ∞. Now let iβm andγj be zeros and poles ofaε(k) in the open
upper half plane. Note that−γj are also poles ofaε(k) (this will follow from
(7.5)). We shall show in Proposition 7.1 that{−β2

m} are the eigenvalues of
a certain self-adjoint operator of a Schrödinger type. Therefore we choose
βm > 0. Let B be the corresponding Blaschke product

B(k) =
∏
m

(k − iβm)

(k + iβm)

∏
j

(k − γj)
(k − γj)

.

Clearly|B(k)| = 1, B(k) = B(−k), k ∈ R, and we obtain

(7.2)
∫ +∞

−∞
log(aε(k)/B(k)) dk

=
π

2

∫
(ζε(r)αd/r

2 + V1(r)) dr + 2π
(∑

βm −
∑

Im γj

)
,

provided that for some integerl ≥ 0 the coefficientaε(k) has an expansion
aε(k) =

∑
j≥−l cjk

j at zero. The existence of such an expansion as well
as the condition|aε(k)| − 1 = O(1/|k|2) ask → ±∞ will be proven in
Appendix.

Let P =
∑n

j=0 Pj and letĤε be the operator inL2(R, PL2(Sd−1)) such
that
(7.3)

Ĥεu = −d
2u

dr2
− ζε

∆θu

r2
, (I −P0)u(1, ·) = 0, u(r, ·) ∈ PL2(Sd−1), ∀r,

whereζε is the same as above.

Proposition 7.1. Each−β2
m is one of the eigenvalues−β2

m(V ) of the oper-
ator Ĥε + V . Moreover,

(7.4)
∫ +∞

−∞
log |aε(k)| dk ≤ 2π

(∑
βm(V ) +

∑
βm(−V )

)
+π

∫ ∞
0

ζε(r)αd
r2

dr.

Proof. Obviously, if s < c1 < c2 < r, then the kernel of the operator
P0(Ĥε + V − z)−1P0 equals

(7.5) g(r, s, k) = −exp ik(r − s)
2ikaε(k)

.
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The proof of the latter relation is a counterpart of the proof of (5.4). On the
other hand we can consider the expansion ofg near the eigenvalue−β2

m.
Denote byφm,j(r, θ), j = 1, 2 . . . n the orthonormal system of eigenfunc-
tions corresponding to−β2

m. If φ(0)
m,j =

∫
Sd−1 φm,j(r, θ) dθ, then

(7.6)

g(r, s, k) =

∑n
j=1 φ

(0)
m,j(r)φ

(0)
m,j(s)

k2 + β2
m

+ g0(r, s, k), s < c1 < c2 < r,

whereg0(r, s, k) = O(1), ask → iβm. This proves thataε(k) is a mero-
morphic function in the upper half plane and its zeros correspond to the
eigenvalues−β2

m of the operatorĤε + V . Comparing (7.5) and (7.6) we
find that the multiplicities of these zeros are equal to one. For the latter ar-
guments see [18]. Taking into account the estimate|aε(k)| ≥ 1, we obtain
the statement of the proposition if we add to (7.2) the same identity with
−V instead ofV . �

Observe that whenε → 0 the eigenvalues of̂Hε + V converge to the
eigenvalues of the operator̂H + V , whereĤ is the following operator in
L2(R, L2(Sd−1))

Ĥ = −d
2u

dr2
+

1

r2
(−∆θu+ αdu), (I − P0)u(1, ·) = 0.

Denote the eigenvalues of̂H + V by −
(
β

(0)
m

)2
, whereβ(0)

m > 0 and
let V̂ be the Fourier transform ofV with respect to the first variable as in
Theorem 2.2.

Proposition 7.2. For anyδ > 0 there is a constantC = C(δ, ‖V ‖∞) > 0
such that ∑

β(0)
m ≤ C

(∫
Rd

V 4dx+

∫
Rd−1

∫ δ

−δ
|V̂ (ξ, y)|2 dξdy

+‖V (x)‖1/2
∞

)
.

(7.7)

Proof. For any self-adjoint operatorT and t > 0 denoteN(t, T ) =
rankET (−∞,−t). Then∑

β(0)
m =

∫ ||V ||∞
0

N(t, Ĥ + V )
dt

2
√
t
≤∫ ||V ||∞

0

(1 +N(t, ĤD + V ))
dt

2
√
t

= tr (ĤD + V )
1/2
− + ||V ||1/2∞ ,

where

ĤD = −d
2u

dr2
− ∆θu

r2
+
αd
r2
u, u(1, ·) = 0.
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Let−∆ + V be the operator inL2(Rd). Then the mini-max principle tells
us that

(7.8)
∑

β(0)
m ≤ tr (−∆ + V )

1/2
− + ‖V ‖1/2

∞ .

Applying the Lieb-Thirring inequality for operator valued potentials (see
[12]) and Theorem 3.1 we obtain

tr (−∆ + V )
1/2
− ≤ C

∫
Rd−1

(
− d2

ds2
+ V (s, y)

)d/2
−

dy

≤ C0

∫
Rd−1

(
− d2

ds2
+ V (s, y)

)3/2

−
dy

≤ C1

(∫
Rd

V 4dx+

∫
Rd−1

∫ δ

−δ
|V̂ (ξ, y)|2 dξdy

)
,

whereC0 = C(‖V ‖∞) andC1 = C(δ, ‖V ‖∞). The latter inequality to-
gether with (7.8) implies (7.7). �

Now the trace formula (7.4) and the inequality (7.7) lead us to

lim sup
ε→0

∫ +∞

−∞
log |aε(k)| dk

≤ C
(∫

Rd

V 4dx+

∫
Rd−1

∫ δ

−δ
|V̂ (ξ, y)|2 dξdy + ‖V ‖1/2

∞ + 1
)
.

(7.9)

For a perturbationV satisfying the conditions of Theorem 2.2 the Weyl
functionM can also be defined asM(k) = ∂2

∂r∂s
Gz(r, s)|(1,1), whereGz is

the integral kernel of the operatorP0(U∗HU − z)−1P0.
For any pair of finite numbersr2 > r1 ≥ 0 and forV ∈ C∞0 (Rd \ Ω1) it

follows from Corollary 5.3 [13] that

(7.10)
1

2

∫ r2

r1

log
k

4Im M(k)
dk ≤ lim sup

ε→0

∫ +∞

−∞
log |aε(k)| dk.

Therefore (7.9) and (7.10) imply

Proposition 7.3. For any pair of finite numbersr2 > r1 ≥ 0 and forV ∈
C∞0 (Rd \ Ω1)

1

2

∫ r2

r1

log
k

4Im M(k)
dk

≤ C
(∫

Rd

V 4dx+

∫
Rd−1

∫ δ

−δ
|V̂ (ξ, y)|2 dξdy + ‖V ‖1/2

∞ + 1
)
,

(7.11)

whereC = C(δ, ‖V ‖∞).
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8. THE END OF THE PROOF OFTHEOREM 2.2

LetQ = [0, 1)d. The the cubesQm = Q + m, m ∈ Zd, form a partition
of Rd to which we associate classes of functionsu such that the sequence of
(quasi-) norms||u||Lp(Qm), q > 0, belongs tò∞. These classes are denoted
by `∞(Zd;Lp(Q)). It is clear that (2.1) implies

(8.1) V ∈ `∞(Zd;Lp(Q)), p > d,

and therefore by [6] it guarantees the boundedness of the operator√
|V |(−∆ + 1)−1/2.
The next proposition allows us to approximateV by compactly supported

smooth functionsVn.

Proposition 8.1. Let V satisfy the conditions of Theorem 2.2. Then there
exists a sequenceVn of compactly supported smooth functions converging
to V

(8.2)
∫
|Vn|4 dx < C(V ), ||Vn||∞ < C(V )

and

(8.3)
∫
Rd−1

∫ δ/2

−δ/2
|V̂n(ξ, y)|2 dξdy < C(V )

such that the Weyl functionsMn corresponding toVn converge uniformly
to M(k) whenk2 belongs to any compact subset of the upper half plane.
Therefore the sequence of measuresµn converges weakly to the spectral
measureµ.

Proof. LetW± =
√
V±. Since the classC∞0 is dense inLp for anyp > 0,

we can find a pair of sequencesW−
n ∈ C∞0 andW+

n ∈ C∞0 satisfying

(8.4) W±
n → W± inL8(Rd); W±

n → W± in `∞(Zd;Lp(Q)), 2p > d.

Introduce a sequence of functions{Vn}∞n=1

Vn = (W+
n )2 − (W−

n )2.

The sequencesW±
n can be chosen so that∫ δ/2

−δ/2
|V̂n(ξ, y)|2 dξdy < C(V ).

ThenVn ∈ C∞0 and the relations (8.2), (8.4) hold true. Let

(8.5) S0u = −d
2u

dr2
− ∆θu

r2
, u(1, θ) = 0
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acting inL2
(

(1,∞);L2(Sd−1)
)

. Suppose now thatΓ0(z) and Γn(z) are

the resolvent operators ofS0 andS0 + Vn respectively. Recall that byδ′1
we denote the derivative of the delta functionδ(r − 1). The expression
Γ0(z)δ′1, Im z 6= 0, can be understood as an exponentially decaying func-
tion (Hankel’s function) which coincides with the corresponding solution
of the equation

(8.6) −d
2ψ

dr2
+
αd
r2
ψ = zψ, ψ(1) = −1.

According to assumptions (8.4) we have that

W±
n Γ0(z)δ′1 → W±Γ0(z)δ′1,

in L2(Rd). Thus in order to prove that the Weyl functions

Mn(k) =
∂2

∂r∂s
Gn,z(r, s)|(1,1) = (Γn(z)δ′1, δ

′
1)

= (Γ0(z)δ′1, δ
′
1)− ((W+

n −W−
n )Γ0(z)δ′1, (W

+
n +W−

n )Γn(z)δ′1)

converge, it is sufficient to show that

(8.7) (W+
n +W−

n )Γn(z)δ′1 → (W+ +W−)(S0 + V − z)−1δ′1

in L2(Rd).
Let us denoteWn = W+

n + W−
n andWn

(0) = W+
n −W−

n . Clearly, if
W±
n → W± in the class (8.1) with2p > d, asn→∞, then

(8.8) WnΓ0(z)W (0)
n → (W+ +W−)Γ0(z)(W+ −W−)

in the operator norm topology.
Then (8.7) follows from the identity

WnΓn(z)δ′1 = (I +WnΓ0(z)W (0)
n )−1WnΓ0(z)δ′1.

�

Similarly we can prove the following result which allows us to pass from∑l
j=0 PjV

∑l
j=0 Pj to V .

Proposition 8.2. Let V be a compactly supported smooth function. Then
the Weyl functionsMl corresponding to the potential

∑l
j=0 PjV

∑l
j=0 Pj

converge uniformly toM whenk2 belongs to any compact subsetK of
the upper half plane and therefore the sequence of measuresµl converges
weakly to the spectral measureµ constructed for the potentialV .

Proof. Let us denoteVl =
∑l

j=0 PjV
∑l

j=0 Pj let Γ0(z) and letΓl(z) be
the resolvent operators ofS0 defined in (8.5) andS0 + Vl respectively. As
in Proposition 7.1 the expressionΓ0(z)δ′1, Im z 6= 0, is understood as the
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exponentially decaying solution of the equation (8.6). According to our
assumptions

VlΓ0(z)δ′1 =
l∑

j=0

PjV Γ0(z)δ′1 → V Γ0(z)δ′1

in L2(Rd). Thus in order to prove that the Weyl functions

Ml(k) =
∂2

∂r∂s
Gn,z(r, s)|(1,1) = (Γl(z)δ′1, δ

′
1)

= (Γ0(z)δ′1, δ
′
1)− (VlΓ0(z)δ′1,Γl(z)δ′1)

converge, it is sufficient to show thatΓl(z)δ′1 converges to(S0 +V −z)−1δ′1
in L2(Rd) uniformly on compact subsetsK of the complex plane. The latter
follows from the identity

Γl(z)δ′1 = (S0 + V − z)−1δ′1 − Γl(z)(Vl − V )(S0 + V − z)−1δ′1 =

= (S0 + V − z)−1δ′1 + Γl(z)(I −
l∑

j=0

Pj)V (S0 + V − z)−1δ′1+

+Γl(z)
l∑

i=0

PiV (I −
l∑

j=0

Pj)(S0 + V − z)−1δ′1

and from the bound

||Γl(z)|| ≤ 1

Im z
≤ C, z ∈ K.

�
Finally according to inequality (7.11) and Propositions 8.1 and 8.2 we

observe that there exists a sequence of measuresµl weakly convergent toµ,
such that for any fixedc > 0∫ c

0

log(1/µ′l(t)) dt

(1 + t3/2)
√
t
< C(V ), ∀l,

whereC(V ) is independent ofc. Therefore due to the statement on the
upper semi-continuity of an entropy (see [13]) we obtain∫ ∞

0

log(1/µ′(t)) dt

(1 + t3/2)
√
t
<∞.

The proof of Theorem 2.2 is complete.
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9. PROOF OFTHEOREM 2.1

The proof is reduced to the references on [5], [2] and Theorem 2.2. Let
−∆ be the Laplace operator inL2(Rd). According to [5], ifV satisfies the
conditions of Theorem 2.2, then

(−∆ + V − z)−n − (H + V − z)−n ∈ S1

for somez and sufficiently largen > 0. The latter relation implies that
−∆ + V andH + V have the same a.c. spectrum. Now by Theorem 2.11
and Corollary 2.13 of [2], the a.c. spectrum does not change if we add toV
any realL∞-functionV0 with a finite support. Indeed, in this case

(−∆ + V − z)−n − (−∆ + V + V0 − z)−n ∈ S1

for somez and sufficiently largen > 0. This proves Theorem 2.1.

10. APPENDIX

Here we show thataε(k) appearing in (7.1) is a meromorphic function in a
neighborhood of zero and|aε(k)| = 1 + O(1/|k|2), ask → ±∞ which, in
particular, means thatlog |aε(k)| ∈ L1(R).

1. Let P =
∑n

j=0 Pj, V = PV P . Introduce matricesA(k) andB(k)

defined in the spacePL2(Sd−1), such that the solution of the equation (for
the matrix valued functionΦ)

(10.1) −d
2Φ

dr2
+
ζε
r2

(
−∆θΦ + αdΦ

)
+ V Φ = k2Φ

satisfies the following conditions

Φ = exp(ikr)P, for r > c2,

and
exp(ikr)A(k) + exp(−ikr)B(k) for r < c1.

We shall see thatA(k) andB(k) both have at most a simple pole at zero
and therefore by (10.2)aε(k) could also have a pole at zero.

Proposition 10.1.The following relation holds true:

(10.2)
1

aε(k)
P0 = P0

(
A(k) + (I − P0)e−2ikB(k)

)−1
P0.

Proof. LetG(r, s, k) be the kernel of the operator(Ĥε + V − z)−1χc1,
whereχc1 is the operator of multiplication by the characteristic function of
(1, c1). Then

G(r, s, k) =

{
Ψ(r, k)Z1(s, k), as r < s < c1

−Φ(r, k)Z2(s, k), as s < c1, s < r.
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HereΨ(r, k) = e−ikrP0 + k−1 sin(k(r − 1))(P − P0) for r < c1 and
Φ(r, k) = eikrP for r > c2. The matricesZ1(s, k) andZ2(s, k) are chosen
such thatG(r, s, k) is continuous at the diagonal and

lim
r→s−0

G′r(r, s, k) = lim
r→s+0

G′r(r, s, k) + P.

The two latter equations are equivalent to

[e−ikrP0 + k−1 sin(k(r − 1))(P − P0)]Z1+

[e−ikrB(k) + eikrA(k)]Z2 = 0;

[−ike−ikrP0 + cos(k(r − 1))(P − P0)]Z1+

[−ike−ikrB(k) + ikeikrA(k)]Z2 = P

(10.3)

and are uniquely solvable if and only ifk2 is not an eigenvalue of̂Hε + V .
The first equation of the system (10.3) gives

Z1 = −
[
eikrP0 +

k

sin(k(r − 1))
(P − P0)

][
e−ikrB(k) + eikrA(k)

]
Z2.

Therefore we obtain from the second equation of (10.3) that[
ikP0 − k ctg (k(r − 1))(P − P0)

][
e−ikrB(k) + eikrA(k)

]
Z2

+[−ike−ikrB(k) + ikeikrA(k)]Z2 = P,
(10.4)

or equivalently

(P−P0)
[(
−k ctg(k(r−1))−ik

)
e−ikrB(k)+

(
−k ctg(k(r−1))+ik

)
eikrA(k)

]
Z2

+2ikP0e
ikrA(k)Z2 = P.

Obviously

−k ctg(k(r − 1))± ik = − ke∓ik(r−1)

sin k(r − 1)
.

This implies

(P −P0)
[ −k

sin k(r − 1)

(
e−ikB(k)+eikA(k)

)]
Z2 +2ikP0e

ikrA(k)Z2 = P.

Multiplying both sides of this identity by

− sin k(r − 1)

k
e−ik(P − P0) +

e−ikr

2ik
P0

we derive

P0Z2(r, k)P0 = (2ik)−1e−ikrP0

(
A(k) + e−2ik(P − P0)B(k)

)−1
P0.

Finally, since
P0Z2(r, k)P0 = (2ikaε)

−1e−ikrP0

we obtain (10.2).�
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2. In this subsection we adapt the argument from [18]. The solutionΦ(r, k)
of (10.1) satisfies the integral equation

(10.5) Φ(r, k) = eikrP −
∫ ∞
r

k−1 sin k(r − s)V∗(s)Φ(s, k) ds,

whereV∗ = V − r−2ζε P ∆θ. Denote

X(r, k) = e−ikrΦ(r, k)− P .

Then

(10.6) X(r, k) =

∫ ∞
r

K(r, s, k) ds+

∫ ∞
r

K(r, s, k)X(s, k) ds,

where

(10.7) K(r, s, k) =
e2ik(s−r) − 1

2ik
V∗(s) .

Note that

(10.8) ‖K(r, s, k)‖ ≤ C1(V∗, n)/(1 + |k|)

for all k with Im k ≥ 0 and allk with 1 < r ≤ s. Here and below‖ · ‖
denotes the norm of an operator inPL2(Sd−1).

Solving the Volterra equation (10.6) we obtain the following convergent
series

X(r, k) =
∞∑
m=1

∫
· · ·
∫

r≤r1≤···≤rm

m∏
l=1

K(rl−1, rl, k) dr1 · · · drm .

From (10.8) we see that|X(r, k)| ≤ C2(V∗) for all 1 < r. Obviously
X(r, k) is an entire function ink. Inserting this estimate back into (10.6),
we conclude that the inequality

(10.9) ‖X(r, k)‖ ≤ C3(V∗, n)(1 + |k|)−1

holds for allr with 1 < r and allk with Im k ≥ 0.
If we rewrite (10.5) as follows

Φ(r, k) = eikr
[
P − 1

2ik

∫ ∞
r

V∗(s) ds−
1

2ik

∫ ∞
r

V∗(s)X(s, k) ds

](10.10)

+
e−ikr

2ik

[∫ ∞
r

e2iksV∗(s) ds+

∫ ∞
r

e2iksV∗(s)X(s, k) dx

]
,
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then the expressions in the brackets in the r.h.s. do not depend onr for
r ≤ 1. From (10.10) it follows that

A(k) = P − 1

2ik

∫ +∞

−∞
V∗(s) ds−

1

2ik

∫ +∞

−∞
V∗(s)X(s, k) ds ,

(10.11)

B(k) =
1

2ik

∫ +∞

−∞
e2iksV∗(s) ds+

1

2ik

∫ +∞

−∞
e2iksV∗(s)X(s, k) ds .

(10.12)

Recall that supp̃V ⊂ (1,∞). Thus for sufficiently large|k| the smooth-
ness ofV and (10.9) imply

∥∥∥∥A(k)− P +
1

2ik

∫ +∞

−∞
V∗(s)ds

∥∥∥∥ ≤ C4(V∗, n)|k|−2, Im k ≥ 0 ,

(10.13)

∥∥e−2ikB(k)
∥∥ ≤ C5(V∗, n)|k|−2 , Im k ≥ 0 .(10.14)

Note that from (10.2), (10.13) and (10.14) we now obtain thataε(k) is a
meromorphic function in a neighborhood of zero and|aε(k)| tends to 1 as
O(1/|k|2) whenk → ±∞.
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