ABSOLUTELY CONTINUOUS SPECTRUM OF SCHR ODINGER
OPERATORS WITH SLOWLY DECAYING AND OSCILLATING
POTENTIALS

A. LAPTEV, S. NABOKO AND O. SAFRONQV

ABSTRACT. The aim of this paper is to extend a class of potentials for
which the absolutely continuous spectrum of the corresponding multidi-
mensional Sclirdinger operator is essentially supported/ysc). Our

main theorem states that this property is preserved for slowly decaying
potentials provided that there are some oscillations with respect to one
of the variables.

1. INTRODUCTION

In this paper we prove that the absolutely continuous spectrum of a class
of Schivdinger operators A +V in L%(R4), d > 3 is essentially supported
by [0, 00). This means that the spectral projection corresponding to any
subset of positive Lebesgue measure is not zero.

We develop a technique which allows one to estimate the spectral mea-
sure of—A + V in terms of eigenvalue sums. Namely as soon as we have
a "good” estimate for the eigenvalues of the Shnger operator, we can
prove that the a.c. fills the intervé, +c0). Different relations between the
discrete and continuous spectrum appeared in Damanik-Killip [9] for one
dimensional operators. They proved that if one dimensional &&amger
operators with potentials V' and—V have only finite number of eigenval-
ues then their positive spectrum is absolutely continuous.

Recently O. Safronov [23] has shown that our results can be extended to
long range potentials

Ve LYY RY, d> 3,

whose Fourier transform is square integrable near the origin. In particular
this implies that for any real function froij, € L¢+! whose Fourier trans-
form is square integrable negrthe Schodinger operator with the potential
potential

V(x) = cos(§ox)Vo(x)
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has a.c. spectrum essentially supported®hy The same assertion holds
for V e L41(RY) such that

2
/ / V(z+y)dy| do < oo.
RS y|<s

for some positive number > 0.

Our work differs from the results obtained in the scattering theory, where
the existence of wave operators is proved under more restrictive conditions
onV. Here the most known conditions dié(z)| < C'(1+ |z|)™'7%,e > 0
or |V (z)|+|VV(z)|(1+]|z|) < C(1+|x|)~=. Inthis case the corresponding
a.c. property of the spectrum is a byproduct of much stronger results on the
unitary equivalence of the operaterg\ and—A + V.

One should also notice that some generalizations of Hack-Cook theorem
require onlyV € L' + LP with p < d. This means that fo > 4 one
should apply the modified theorem [23] rather than its preliminary version
(see Theorem 2.2) which deals with potentials frbfm Also the operator
has lots of a.c. if there is a cone whéredecays very fast.

As in our previous paper [17] the multidimensional case is reduced to
a problem for a one-dimensional second order elliptic integro-differential
operator. The “potential” type term appears to be a dissipative Fredholm in-
tegral operator depending on the spectral parameter. Such an operator might
have poles appearing in an operator version of the so-called first Buslaev-
Faddeev-Zakharov (BFZ) trace formula. Their contribution appears with
the "right” sign and therefore can be ignored.

There are two new crucial elements compared with [17]. One of them
suggests new "spectrally local” Lieb-Thirring inequalities for & mo-
ments of the negative eigenvalues of Sxhnger operators (compare with
O.Safronov [22]). Before applying this result we need an argument from
A.Laptev and T.Weidl [18] lifting the corresponding eigenvalue estimates
for their 1/2-moments td/2-moments by using an induction with respect
to dimension. This argument forces us to consider the problem starting from
dimensiond > 3. The second new element is concerned with a parallel con-
sideration of a couple of Scbdinger operators with potentials and—V'.

This leads to the cancellation of the teﬁf? de,l VdOdr appearing in the
BFZ first trace formula.

Note that the first result based on Buslaev-Faddeev-Zakharov trace
formulae for the study of the a.c. properties of the spectrum of one-
dimensional Sclidinger operators was suggested in the paper by P.Deift
and R.Killip [11]. Their theorem gave a natural generalization of the re-
sults obtained by by M.Christ, A.Kiselev and C.Remling in [7], M.Christ,
A.Kiselev [8] and C.Remling[21]. R.Killip [14] was first in proving a
“local” one-dimensional result. That is i € L2(2a,2b), a > 0, and
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V € L3(R), then the absolutely continuous spectrum fills the interval
(a?,b?).

For the three dimensional case our theorems require Bnly L*(R?)
rather than the conditiol’ € L3(R?). Note that the seconfi*-condition
(2.7) on the Fourier transform df with respect to one of variables near
the origin, becomes interesting if there are cancellations provided by oscil-
lations of the potential” near infinity.

There is extensive literature concerning the properties of the spectrum
of oscillating potentials starting from the classical Wigner-von Neumann
construction [34], see also M.Skriganov [32] and H.Behncke [3], [4]. Some
examples of oscillating potentials with respect to the radial variable were
given in M.Reed and B.Simon [24], vol.3 Ch XI.

Our Theorems 2.1 and 2.2 are applied to a class of potentials described in
terms of the Fourier transform either with respect to one of the variables or
with respect to all variables. Some related results for a class ob8ictyer
operators with anisotropic behaviour of potentials at infinity were consid-
ered in the paper by V.G.Deich, E.L.Korotjaev and D.R. Yafaev [10].

This article is a natural development of our previous paper [17]. For the
sake of completeness we recall the arguments of Section 3-4 and 8 from
[17] which become in this text Sections 4-6 and 10 respectively.

2. THE MAIN RESULTS
Let us consider a Schdinger operator A +V in L?(R%), d > 3, where
(2.1) Ve L®RY, V(z)—0, as |z| — oco.

Let V be the Fourier transform df with respect to the first variable

(2.2) V(€ y) = /Re_’fs‘/(s,y) ds, = =(s,y)€ R

Theorem 2.1.Letd > 3 and letV be a real valued function oR¢ obeying
(2.1)and let for someé > 0

/Rd Vi(z)dr < oo, /Rd1</_i’v(£’y>’2d€>dy<oo'

Then the absolutely continuous spectrum of the operathr+ V' is essen-
tially supported byj0, o).

The latter theorem gives some qualitative information about the abso-
lutely continuous spectrum of Séitinger operators. The next result is
related to more delicate properties of the a.c. spectrum. It provides some
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guantitative characteristics of the spectral measure which is a multidimen-
sional continuous analog of the well-known Sé@emndition for orthogonal
polynomials and Jacobi matrices (compare with [17]).

Let), be the unit ball irR?, 99, = S?!, andV be a real valued function
onRR?\ Q,. We consider the operatdf in L>(R? \ ;) with the Dirichlet
boundary conditions of¢!

(2.3) Hu = Hou+ Vu=—Au+ Vu, uloq, = 0.
Let us assume for the sake of simplicity that there is- 1 such that
(2.4) V+|a—|dQ:O for 1< |z|] <y,
T
whereay = % — 1. Let Ey(w), w C R, be the spectral projection

of the operatorr{. We construct a measureon the real line such that for
spherically symmetric functiong

@8 (Eal)f.f) = [ IFOPdu). @ c R. = (0,50),

where

(2.6) .

F(\) = %/ sin(k(r—1))f(r) V24 suppf C {z:1<|z| <}
0

andk? =\ > 0.

Let us extend’ by zero intof2; and then defing as in (2.2).
The following theorem is the main result of the paper.

Theorem 2.2.Letd > 3 and letV be a real valued function oR¢ \ ¢,
obeying(2.1)and(2.4). Let

2.7) /Rd\ﬂl Vi(z) dz < oo, /Rd_l (/i |V(§,y)|2d§>dy < 00

for somed > 0. Then
2.8) / log(1/p'(t)) dt _ oo,
o (1+832)/t
wherep is defined in(2.5). If (2.4)is satisfied thei(2.8)is equivalent to
/OO log((En(Nf. H)dX
0 (1+ A3/2)v/X ’

for any bounded spherically symmetric functipg¢ 0 with suppf C {z :
1<|z| <}

(2.9)
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Remark 1.The inequality (2.8) guarantees that the a.c. spectrufi of
essentially supported b9, c0), sincey’ > 0 almost everywhere and gives
quantitative information about the measure
Remark 2.1f d = 1, then the conditions (2.7) do not provide existence of
the absolutely continuous spectrum Bn. This is confirmed by examples
of sparse potentials constructed in [15]. The validity of Theorem 2.2 in
dimensiond = 2 remains open.
Remark 3.The equivalence of (2.8) and (2.9) follows from the fact that if
is defined as in (2.6), then the functioh+ \?)~' log(]F((\)|) isin L' (R )
see, for example, P. Koosis [16] (section 111G2).
Remark 4.When proving Theorem 2.2 we use the projection oper&gor
on the spherical function;, which leads us to a scalar one-dimensional
problem (4.2) with an operator valued potential. Had we used instead
of P, the projectionZ;?:1 P;, where P; are projections on the spherical
functionsY;, then we would have obtained the corresponding system of
one-dimensional equations with an operator valued potential which could
be treated similarly. This would imply that the multiplicity of the a.c. spec-
trum is not smaller than. Sincen is arbitrary, we obtain the a.c. spectrum
is of infinite multiplicity.

Example. The statement of the theorem holds true for a 3-dimensional
operator with the potential

V(w,y,2) = ni(x)v(y, z), ve LY(R?).
Herewv, is a so-called Wigner-von Neumann potential

sin(w;z) 4+ o(1)
Ul(x) = ch 1:_ |$’pj ) |.I| — 00,
j=1

wherew; > 0, p; > 1/4, ¢; € R, m € N, is a function whose Fourier
transform vanishes on a small interval containing zero. For example, one

can consider
2 M Csexpika
vi(z) = Re Z/w (e wj)lpz d:

j=1 Y wj

with appropriate constants;.

3. ESTIMATES FOR THE DISCRETE SPECTRUM

Throughout the papet,. denotes the positive and negative part of a self
adjoint operatof’, i.e. 27, = |T'| £ T. Denote byS,, p > 0 the standard
Neumann-Schatten classes of compact operators

S, ={T : tr (T"T)"? < oo}
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Consider a one dimensional Sodinger operato/ = —% + V(z) in
L*(R) with a real valued potentidl € C5°(R).

Theorem 3.1.LetV € C3°(R). Then for any) > 0
2

d 3/2 6
@1 tr (—@ + V(x))_ < c(/R Vide + /_5 ngn%zg),
where the constar® = C(6, ||V||o) andV (¢) = [ exp (—ifx)V (z) dz.

Proof. For eachT’ € &, one can define a complex-valued function
det(1 + T), so that

|det(1 +T)| < exp(||T'|s,)-
ForT € &, one defines
(3.2) dety(1+T) = det((1 4 T)e THT*/2-T°/3),

Itis proved in [30], Section 9, Theorem 9.2(b), that there is a constan
such that

(3.3) dets(1+T)| < exp(c|T|ls,), ¢>0.
Note that if.J; is the operatot/, = —% in L*(R), then
lim | det (1 FV(Jo— (A £ z’a))—l)\ > 1.
In order to prove Theorem 3.1 we need the following auxiliary statement:

Lemma 3.1. Let V(z) be a smooth real valued function of finite support.
For everys > 0 there is a constant’ = C'(4, ||V||~) such that for allz:

[z = [[V]loo] = [V]]oc + 07

it holds
(3.4) |log dety(I +V(Jo —2)7Y)| < <

“m Z‘4||VH%4‘

Proof. Letz = X + in, whereX andn are real. One can repeat the
arguments of R.Killip and B.Simon, Proposition 5.2 [13], in order to show
that

d —1
|d_77 logdety (I +V (Jo—2)77)| =

(3.5) Itr (i[(Jo — 2) V(T — 2)7H| <

1V (Jo—2) " He, (] —2)7M.
On the other hand,
lim det4(l + V(J() — Z)_l) = 1.

nN—00
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Therefore the estimate (3.4) follows from (3.5) by the Fundamental Theo-
rem of Calculus. O

It was established in [14] that far= k2, k € R,
|V (2k)|?

—Retr(V(Jo—2)")?*= T

Therefore forz = k2, k € R,
(3.6)
0 <log|det(I +V(Jy— 2)"")| +log|det(I — V(Jy — 2)7")|
=—Retr(V(Jy—2)"")? +log|dety(I +V(Jo — 2)™ )|
|V (2k) P
2k?

+log |dety(I — V(Jo — 2)7Y)| = + log |dety (I + V (Jo — 2)7 1)
+log|dety(I — V(Jo — 2)71)|.
Let now

o(k) = k(K = 0*)% L= {k: |k = [|V]l| = VIl +0°}.

Then applying (3.4) we obtain
@7 | [ Jogdeta(r + VO~ 1) k) k| < VI
£

Now leti3;(V) be the zeros dbg dety (I + V(Jo — k*)~') and letB(k, V)
be the Blaschke product

zﬁ] (V)

H k+iB;(V)
Then
(3.8)

5
Re/ logdety(I + V(Jy — 2) Yo (k) dk
-5

= Re / logdety(I +V(Jo — 2) )o(k)dk — Re / log(®B(k,V))o(k) dk.
I I

Thus, combining the inequality (3.6) with the estimate (3.7) and the relation
(3.8), we obtain

é ~
@9) X FBWV)+ X f3V) <o [ Vider [ Veopa)

where

F(t) = Re/)glog(Z_i_Z)a(k) dk, t>0.
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Integrating by parts and using the fact thas even we obtain

£(t) = Re/g( ! ! )E(k) dk = Re/lk LSk dk = 273 (it),

k—it k—+it Iy

where

k

E(kz):/ o(t)dr

0
This implies

218

OB 7; .

The proof is complete[]

4. THE BEGINNING OF THE PROOF OH HEOREM 2.2

In this section we reduce problem (2.3) to a one-dimensional problem
with an operator valued potential. Such a reduction has been already used
in [17].

Assume thal” € C§° and introduce polar coordinatés ¢), = = rf €
R? 6 € S?"'. Denote by{Y;}3, the orthonormal inZ*(S?"') basis of
(real) spherical functions, i.e. eigenfunctions of the Laplace-Beltrami oper-
ator—Ay, and letP; be the orthogonal projection given by

Pu(r,0) =Y;(0) | Yi(0)u(r,¢)de.

gd-1
Clearly Pyu depends only on. Denote
Vi=RVP, Hy=RHD,
Vie= RV —-F), Vo=V,
Vo= —-P)V(I—P), Hys=(—P)HyI - F).
Then the operatol — = can be represented as a matrix:

_ (Hop+Vi—=z Vi
H 2_( Vo H0,2+V2—Z)7

and the equation
(H—2)u=Fyf, Imz#D0,
is equivalent to
(4.1) (Hop+T.—z)Pou= Byf, (Hop+Va—2z) Vo Pou = (Py—I)u.
Here the operatdf, is defined by
T,=Vi —Vig(Hoo+ Vo — Z)_1V271
on L?((1,00), % dr).



ABSOLUTELY CONTINUOUS SPECTRUM 9

By using the unitary operator from L?((1,00),dr) to
L*((1,00), %" dr),
Uu(r) = r~ @072,
we reduce (4.1) to the problem for the following one-dimensional
Schibdinger operator i*(1, co)

d2
(4.2) Lu(r) = 3 +Q.u, u€ L*1,00), u(l) =0,
where
d—1)? d-—1
Q. = VH—%—W,Q(U*H0,2U+‘/é—2)_l‘/é,1, g = ( 1 ) -5

We are going to approximate the problem by the corresponding problem
with a smooth compactly supported potentiahnd the termv,/r* substi-
tuted by(.(r)aq/r?, wherel./r? — 1/r?, ase — 0, in the both spaces
L'(1,00) and L?(1,00) and(. € C5°(1,+00). The same should be done
with the termA,u/r?, i.e. it should be substituted lgy(r) Agu /7.

So when approximating the problem we always assume that

(4.3) Q. =Vi+((r )— — Via(Se + Vo — 2) Vo,
where
(4.4) Sy = —i —C(r )Af’“, u(1,6) =

According to (4.1) we obtaln
(4.5) Py(H — 2) 'Py=U(L, — 2)"'U".

We see also that if sugpusuppl.(]-]) C {z € R?Y: ¢ < |z| < 2}, €1 >
1, then for the operator (4.3) we have

Qz = QzX = XQz7

wherey is an operator of multiplication by the characteristic function of the
interval(c1, c2), ¢1 > 0. Itis important for us thaf), is an analytic operator
valued function otz with a negative imaginary part in the upper half plane
and which has a positive imaginary part in the lower half plane.

5. GREEN' S FUNCTION.

In sections 5-7 we assume thais not a potential but the operatbi/ P,
P = Z;‘:O P;, which approximate$” for largen. It can be interpreted as
an operator of multiplication by a matrix valued functionrofin this case
the functionV; remains the same as before. Sid¢ere projections on real
spherical functions, this matrix is real. Recall that the fatto? in front of
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—Ay anday Is also substituted by a smooth compactly supported function
¢ /r2.
Let us consider the equation
2

—SU() + (Qu)() = (), T 21, 2€C,

with @, given by (4.3) and let).(r) be the solution of the equation (5.1)
satisfying

(5.1)

Ur(r) = exp (ikr), k*=z, Imk >0, Vr > c,.
Then this solution also satisfies the following “integral” equation

(5.2) Ui(r) =™ — k7 /OO sin k(r — 5)(Q:vk)(s) ds.

In order to describe the propertieswaf(r) we systematically use the fol-
lowing analytic Fredholm theorem (see, for example, M.Reed and B.Simon
[24], Theorem VI1.14 or D.Yafaev Ch.l, Section 8):

Theorem 5.1.Let D C C be an open connected set and&t:) be an an-
alytic operator valued function o such that¥(k) is a compact operator
in a Hilbert space for each € D. Then

(1) either(I — T(k))~* exists for nak € D,

(2) or (I —%(k)) ! exists for allk € D\ Dy, whereD, is a discrete subset
of D. In this case(/ — T(k))~' is meromorphic inD with possible poles
belonging taD,.

We first apply this theorem in order to prove the statement which is quite
standard in the resonance theory.

Lemma 5.1. The operator(). has a meromorphic continuation into the
second sheet of the complex plane.

Proof. Let S. be the same operator as in (4.4) anddet —d?/dr? be an
operator inL?((1,00), PL?(S%1)) with the Dirichlet boundary condition
atl. Let¢ € C°(R,) be a function which is identically equal to one on
the support of the matrix-functiori and¢.. Then

-1

85+ Vo= 20 = (1405 =27 (B e2)) o5 - 27
Obviously both operatorg(S — )~} (Va + (-5¢) and¢(S — z)~'¢ have

an analytic continuation into the second sheet of the complex plane through
the positive semi-axis. By using Theorem 5.1 we obtain that the operator

(105 -2 (n+e22))”
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and thus the operatdp. defined in (4.3) have meromorphic continuations
into the second sheet of the complex planke.

Let us now apply Theorem 5.1 to the operator
() =k [ sk - 5)(Qu)(s) ds

in L?(1,cy). We conclude that the equation (5.2) is uniquely solvable for
all k£ except perhaps a discrete sequence of points and that its safytion
is @ meromorphic with respect fofunction with values inL?(1, c;), in a
neighbourhood of every Irh > 0, & # 0. Clearly

(5.3) Ur(x) = a(k)e™ + b(k)e ™™ 1<z <,

and therefore both(k) andb(k) are meromorphic functions (even in some
neighborhoods of points # 0 of the real axis).

Consider the resolvent operatBtz) = (L, — z)~!, whereL, is defined
in (4.2). If x., is the operator of multiplication by the characteristic function
of (1,¢1). ThenR(z)x,, is an integral operator with the kernel:

Y (s) sin(k(r—1))
1 )
(54) GZ(T‘? S) = %:Er; sin(k(s—1))

o fors< min{cy,r}.

Indeed, assuming that sugp C (1, c;) we can easily check that the func-

forr < s < ¢,

tion
ut) = o { [ s as
s [ o™ =D a5}
satisfies the equation
55 L)+ (Quu)(r) —zulr) = ), r21zeC

and moreover (1) = 0.

Here we should also mention that singg1) is meromorphic irk in a
neighborhood of any # 0, we conclude that, (1) = 0 only on a discrete
subset of the closed upper half plane, having no accumulation points except
perhaps zero.

6. WRONSKIAN AND PROPERTIES OF THEV/-FUNCTION.
Letasin (4.3)
Q.=Vi—Via(S.+ Vo — 2)_1V2g~
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The function

()
(1)’

is now well defined and called the Weyf -function of the operator (5.1).

Let us consider the Wronskian

(6.2) W [k, i) () = W (r)dbu(r) — du(r)di(r).

Note thaty, satisfies the equation (5.1) with. andz instead ofQ, andz.
Sinceyy, is a solution of the equation (5.1) we find

%W@, Ui](r) = (2=2) ()i (r)+(Qzvon) (r)eu (r) =i (r) (Q:e) (1)

So we obtain
(6.3) £Im {W g, ¥i](c2) — W[, Y] (c1)} >0, for +1mz > 0+,

which means that for all re&l we have the following inequality

i < P
Moreover, if we represent the solutign for realk in the form
Yr(x) = a(k)e™ + b(k)e ™™z < ¢,
then it follows from (6.3) that

e =

(6.1) M(k) Imk >0,

I
>

Clearly
M(k) = ¢5,(1) (1)) ™" = ik(1 = p(k)) (1 + p(k) 7",
where
p(k) == e 2*b(k)a(k)™ .

The latter implies

p(k) = (ik — M(k))(ik + M(k))~".
Since|al? — |b|> > 1 we obtain that for reat
_ 4klm M

lik + M(k)|?>
Note that since Im\/ > 0, then for anyk > 0 we have
ik 4+ M(E)|* = E* + |M|* + 2kIm M > k?

and therefore
(6.4) la(k)|7? < 4k~'(Im M), k> 0.

la(k)[7* < 1—[p(k)[?



ABSOLUTELY CONTINUOUS SPECTRUM 13

¢,From (6.1) and (6.2) we obtain

(6.5) ImM (k) >0 if Imk?* > 0.
Thus, there are constants, € R andC; > 0 and a positive measuye
such that
> dp(t)
/_oo T+ =%
where
1 t
6.6 M(k) = — ——— ) du(t k2 = 2.
66 M) =Co+Crzt [ (= = i) dnlt), K=

Finally, note thatR(z) = Py(U*HoU + V — z)~'P, and hence we can
formally write that
82
- ords
whered] is the derivative of the delta functierir — 1). Let x., be the char-
acteristic function of1, ¢;). The representation (5.4) for the resolvent oper-

ator gives us the representation for the opergtoPy Eu- m,v-+v (w) PoXe, s
whereEy-g,uv+v(w) is the spectral measure 6f HyU + V:

M(k)

G.(r.8)lan = (PAUHU +V — 2)" Pos} ),

6.7) (PEu-nursv @S ) = [ IFO)Pdu(y
and where
1 [ . 9
F(\) = E/o sin(k(r — 1)) f(r)dr, suppf C (1,¢1), k= A

SinceF is a boundary value of an analytic function, we obtain thiat) -
0 for a.e.\. This means thakby (w) # 0if ¢/ > 0 a.e. onw.

7. TRACE INEQUALITIES

Recall that we assume that is not a potential but the operator
> -0 BV 370, Pj, which approximate$” for largen. As before we sub-
stitute the term-A,/r? anday/r? on (1, 00) by a "compactly supported”
approximations—(.(r)Ag/r* and . (r)aq/r?, where(. € C5°(1,00) and
C(r)/r* = 1/r?in L'(1,00) andL?(1, c0) ase — 0. Then the coefficient
a(k) introduced in (5.3) will depend onand we shall write:. (k) instead
of a(k). ¢ From (5.2) and (4.3) we find that

exp(—ikr)p(r) = 1—% 00(1—62““(5”“))(Cs(s)ozd/SQ—i-Vl(s)) ds+o(1/k)
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and thus
(7.1) )
a(k) = lim_exp(—ikr)un(r) = 1=z [ (G(r)aa/r* +Vi) dr+o(1/k),

ask — oo. Now letis,, and~; be zeros and poles af (k) in the open
upper half plane. Note that¥; are also poles af. (k) (this will follow from
(7.5)). We shall show in Proposition 7.1 tHat 3% } are the eigenvalues of
a certain self-adjoint operator of a Séldinger type. Therefore we choose
Gm > 0. LetB be the corresponding Blaschke product

= i) 17 (k=)
20 =11 G L=

B(—k), k € R, and we obtain

m

Clearly|B(k)| =1, B

oo
(7.2) / log(a. (k) /B (k)) dk

o0}

—~
??4

~—
I

= 2 [t + il dr - 2m(Y = S m )

provided that for some integér> 0 the coefficient:. (k) has an expansion
as(k) = > s c;k? at zero. The existence of such an expansion as well
as the conditiona. (k)| — 1 = O(1/|k|*) ask — oo will be proven in
Appendix.

Let P = " , P; and letH. be the operator i.2(R, PL?(S%"!)) such
that
(7.3)

o — d?u A

_W_C(577 (I_P0>u(1>) =0, U(T,') € PL2<Sd_1)7 ‘v’r,
where(. is the same as above.

Proposition 7.1. Each—/?, is one of the eigenvalues3? (V) of the oper-
ator H, + V. Moreover,

0o [ rolant) k< 20(3 1) + Y (1)

+7T/ Cg(?ad dr.
0

r

P(oof. Obviously, ifs < ¢; < ¢ < r, then the kernel of the operator
Py(H. +V — z)"' Ry equals
_expik(r —s)

(7:5) g(r;s, k) = 2ika. (k)
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The proof of the latter relation is a counterpart of the proof of (5.4). On the
other hand we can consider the expansiom okar the eigenvalue 32 .
Denote byg,, ;(r,0), j = 1,2...n the orthonormal system of eigenfunc-
tions corresponding te-32,. If ¢£2?j = Jou1 Omj(r,0) db, then

(7.6)

(r,5,k) = 22;1 ¢£2?j(r)¢$?j(s)
g » < - ]{32 + 572)1

wheregy(r, s, k) = O(1), ask — if3,,. This proves that.(k) is a mero-
morphic function in the upper half plane and its zeros correspond to the
eigenvalues- 32, of the operatotf/. + V. Comparing (7.5) and (7.6) we
find that the multiplicities of these zeros are equal to one. For the latter ar-
guments see [18]. Taking into account the estimaté:)| > 1, we obtain

the statement of the proposition if we add to (7.2) the same identity with
—V instead of/. [J

Observe that whea — 0 the eigenvalues ofl. + V converge to the
eigenvalues of the operatéf + V', whereH is the following operator in
L*(R, L2(8%71))

- d?u 1
H=—-——+ ﬁ<—A9U +aqu), (I —Fyu(l,-)=0.

+ go(r, s, k), s<c<c<r,

Denote the eigenvalues df + V by —(ﬁﬁ,?))Q, where 3% > 0 and

let V be the Fourier transform df with respect to the first variable as in
Theorem 2.2.

Proposition 7.2. For anyé > 0 there is a constant’ = C'(, ||V ||o) > 0

such that
é
S so [ viarr [ [ i dsay
Rd Ra-1 'y
IV (@) [112).

(7.7)

Proof. For any self-adjoint operatdf and¢ > 0 denoteN(t,7) =
rank Ep(—oo, —t). Then

o 1V ]loo . i
- Nt H+V)— <
> /0 ( o

Vlloo ) gt .
/ (14 N(t, Fp+ V)L =t (Fp + V)2 4 (V][22
0 2/t
where ,
N d A
Hp = e LY u(l,-) =0.

Cdr? r2 r2
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Let —A + V be the operator if.?(R¢). Then the mini-max principle tells
us that

(7.8) B <tr (—A+ V)4V

Applying the Lieb-Thirring inequality for operator valued potentials (see
[12]) and Theorem 3.1 we obtain
2

d d/2
_ 1/2 - 2
tr(—A+V)°<C Rd—l( o + V(s,y))_ dy

2

d 3/2
< _
<G /Rd1( i " V(s,y))_ dy

< (/Rd Vide + /Rdl /_i !V(S,y)IQdfdy>,

whereCy = C(||V|lw) andCy = C(4, ||V ]|«). The latter inequality to-
gether with (7.8) implies (7.7). I

Now the trace formula (7.4) and the inequality (7.7) lead us to

+o0
lim sup / log |a. (k)| dk

(7.9)
< C(/Rd V4da:+/Rdl /_z V(&) * dédy + V|| + 1)-

For a perturbatiorV’ satisfying the conditions of Theorem 2.2 the Weyl
function M can also be defined ag (k) = af—Zst(r, s)|(1,1), whereG. is
the integral kernel of the operatéh(U*HU — z)" ' .

For any pair of finite numbers, > r; > 0 and forV € C5°(R? \ ) it

follows from Corollary 5.3 [13] that

1 (™ k Hoo
7.10 — log ————— dk < i 1 (k)| dk.
710 5 [ log gy b < imsw [ logau(6)

e—0 o0

Therefore (7.9) and (7.10) imply

Proposition 7.3. For any pair of finite numbers, > r; > 0 and forV €
Coo (R Q1)

1 [ k
g gk
2 / & 1im M (k)

T1

é
<c([ viasr [ [ ey VIZ+1),
R4 Rd-1 J_§

whereC' = C(0, ||V ||o0)-

(7.11)
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8. THE END OF THE PROOF OH HEOREM 2.2

LetQ = [0,1)%. The the cube®,, = Q +m, m € Z%, form a partition
of R? to which we associate classes of functiargich that the sequence of
(quasi-) norms|u||r(q,.), ¢ > 0, belongs ta>. These classes are denoted
by ¢>°(Z%; LP(Q)). It is clear that (2.1) implies

(8.1) Ve (zh Q). p>d.

and therefore by [6] it guarantees the boundedness of the operator

VIVI(=A+1)712,

The next proposition allows us to approxim&tdy compactly supported
smooth functiond/,,.

Proposition 8.1. Let V' satisfy the conditions of Theorem 2.2. Then there
exists a sequence, of compactly supported smooth functions converging
toV

8.2) /m#m<ow» Vallw < C(V)
and

6/2 )
83) L] e o dedy < cv)

such that the Weyl function¥®,, corresponding td/,, converge uniformly

to M (k) whenk? belongs to any compact subset of the upper half plane.
Therefore the sequence of measuyrgsconverges weakly to the spectral
measureu.

Proof. Let W = /V. Since the clas€'{° is dense in’? for anyp > 0,
we can find a pair of sequencB§, € Cg° andW, € Cg° satisfying
(8.4) WF — Wy in L¥(R%); WF — Wy inf>(Z% LP(Q)), 2p > d.
Introduce a sequence of functiofig, }°° ,

Vo= (W) = (W)%

n

The sequenced’* can be chosen so that

52
(/ Vi(6,y) dedy < C(V).

—5/2
ThenV,, € Cg° and the relations (8.2), (8.4) hold true. Let

Py Agu

(8.5) Sou = T2 2o

u(1,0) =0
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acting in L2<(1,oo);L2(Sd*1)>. Suppose now thdty(z) andT,(z) are

the resolvent operators ¢f, and .S, + V,, respectively. Recall that by,

we denote the derivative of the delta functiéfr — 1). The expression
[o(2)d], Im z # 0, can be understood as an exponentially decaying func-
tion (Hankel's function) which coincides with the corresponding solution
of the equation

(8.6) ij + =2, (1) =-1.

According to assumptions (8.4) we have that
WETo(2)d8] — Wilo(2)d],

in L2(R4). Thus in order to prove that the Weyl functions

82 ! !/
M, (k) = %an(n $) 1) = (Fn(2)d1, 61)
= (To(2)d1, 1) — (W, = W,))To(2)dy, (W, + W, )T'(2)d})
converge, it is sufficient to show that
8.7) (W + W (2)8, — (W, +W_)(So+V —2)16,
in L2(R4).
Let us denotéV,, = Wr + W, andW,® = W+ — W Clearly, if
W= — W. in the class (8.1) witlp > d, asn — oo, then
(8.8) WoaLo()W, — (Wi + W_)To(2)(Wy — W)
in the operator norm topology.
Then (8.7) follows from the identity
L(2)0) = (I + W To(2)W) "W, (2)5).
[

Similarly we can prove the following result which allows us to pass from
l l
Zj:O Pjv ijo Pj toV.

Proposition 8.2. Let VV be a compactly supported smooth function. Then
the Wey! functions\/; corresponding to the potentid._ P,V > P,
converge uniformly ta\/ whenk? belongs to any compact subskt of

the upper half plane and therefore the sequence of meagyEmverges
weakly to the spectral measugieconstructed for the potentidl.

Proof. Let us denotd; = 3. P,V 3" P; letTy(z) and letT(z) be
the resolvent operators 6f defined in (8.5) and, + V; respectively. As
in Proposition 7.1 the expressidi(z)d;, Im z # 0, is understood as the
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exponentially decaying solution of the equation (8.6). According to our
assumptions

l
ViTo(2)8 =Y PVTo(2)8; — VTo(2)d}

j=0
in L2(R%). Thus in order to prove that the Weyl functions

82

Mi(k) = 75-Gnz (1 8)lan = (Ti(2)d7, 07)

= (Fo(2)d1,01) — (Vil'o(2)03, Tu(2) 1)

converge, it is sufficient to show thBt(z)d; converges t¢Sy +V —z) 16}
in L2(R%) uniformly on compact subsets of the complex plane. The latter
follows from the identity

I‘Z(E)(Si =(So+V — 3)_151 —E)WVi=V)(So+V — z)_léi =

l
=(So+V =20+ TET - D _ P)V(So+V —2) "5+

J=0

l

+01(2) Y PV =) P)(S+V =2)7'5;

i=0 §=0

and from the bound

O

Finally according to inequality (7.11) and Propositions 8.1 and 8.2 we
observe that there exists a sequence of meagykesakly convergent tq,
such that for any fixed > 0

“log(1/p4(t)) dt
/0 (1+t3l/2)\/z_€ <Cc(V), W,

whereC(V') is independent of. Therefore due to the statement on the
upper semi-continuity of an entropy (see [13]) we obtain

/0@ log(1/p/ (1)) dt __
o (L+12)4

The proof of Theorem 2.2 is complete.
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9. PROOF OFTHEOREM2.1

The proof is reduced to the references on [5], [2] and Theorem 2.2. Let
—A be the Laplace operator it¥ (R?). According to [5], ifV satisfies the
conditions of Theorem 2.2, then

(—A+V —2)""—(H+V —2)" €6

for somez and sufficiently largex > 0. The latter relation implies that
—A + V andH + V have the same a.c. spectrum. Now by Theorem 2.11
and Corollary 2.13 of [2], the a.c. spectrum does not change if we add to
any realL>°-function V; with a finite support. Indeed, in this case

(—A+V —2) "= (“A+V+Vj—2) " €&
for somez and sufficiently large: > 0. This proves Theorem 2.1.

10. APPENDIX

Here we show thai. (k) appearing in (7.1) is a meromorphic function in a
neighborhood of zero and. (k)| = 1 + O(1/|k|?), ask — £oo which, in
particular, means thabg |a. (k)| € L*(R).

1. LetP = 37" (P, V = PVP. Introduce matrices\(k) and B(k)
defined in the spacBL?(S?1), such that the solution of the equation (for
the matrix valued functio®)

e (. 9

(10.1) = (—Aecb + adq>> L VD = k2D
satisfies the following conditions

¢ = exp(ikr)P, for r > ¢y,
and

exp(ikr)A(k) + exp(—ikr)B(k) for r < .

We shall see thati(k) and B(k) both have at most a simple pole at zero
and therefore by (10.2).(k) could also have a pole at zero.
Proposition 10.1. The following relation holds true:

B
a. (k)

Proof. Let G(r, s, k) be the kernel of the operat6f. + V — z) 'x.,,
wherey,, is the operator of multiplication by the characteristic function of
(1,¢1). Then

G(r,s, k) = {

1

(10.2) Py = Py(A(k) + (I — Ry)e **B(k)) " P.

U(r,k)Zi(s, k), as r<s<c
—®(r, k) Za(s, k), as s<cp,s<T.
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Here U (r, k) = e * Py + k~tsin(k(r — 1))(P — P,) for r < ¢, and
®(r, k) = e** P for r > c,. The matricesZ, (s, k) and Z,(s, k) are chosen
such thatG(r, s, k) is continuous at the diagonal and

ngrio Gl(r, s, k) = rgg}ro G, (r,s, k) + P.
The two latter equations are equivalent to
[e™ ™ Py + k' sin(k(r — 1))(P — Py)]Z1+
[e=* " B(k) + e A(k)] Zy = 0;
[—ike™™*" Py + cos(k(r — 1))(P — Py)]Z1+
[—ike™*" B(k) + ike™* A(k)]|Z, = P

(10.3)

and are uniquely solvable if and only#f is not an eigenvalue off. + V.
The first equation of the system (10.3) gives

Zy = —[e"" Py + (P — Py)] [e7™ B(k) + e* A(k)] Zo.

k.
sin(k(r — 1))
Therefore we obtain from the second equation of (10.3) that

(10.4) [ikPy — kctg (k(r — 1))(P — I?o)} [5“““3(@ + ™ A(k)] 2
+[—ike ™ B(k) + ike™ A(k)|Zy = P,

or equivalently
(P=Po) | (~kctg(k(r—1)=ik)e ™ B(k)+(~k ctg(k(r—1))+ik)e™ A(k) | 2,

+2ik Pye™ A(k)Zy = P.

Obviously
k€$ik(r71)

—kectg(k(r —1)) £ ik = Ty E—

This implies
—k

(P—Po)[m

Multiplying both sides of this identity by

—sink(r—1) _, etk
JE— 1 P _ P
PR T

(e*ikB(k) +e““A(’f>)] Zy+2ik Pye™ A(k) Z, = P.

By
we derive
PoZo(r, k)Py = (2ik) ™™ Py (A(k) + e (P — Py) B(k)) ' P,

Finally, since '
PoZs(r, k) Py = (2ikac) e Py
we obtain (10.2)J
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2. In this subsection we adapt the argument from [18]. The solutionk)
of (10.1) satisfies the integral equation

(10.5) O(r,k) = e P — /OO E~tsink(r — s)Vi(s)®(s, k) ds,

whereV, =V —r=2(. P A,. Denote
X(r k) =e*®(r,k) - P.
Then

(10.6) X(r k) = /00 K(r,s,k)ds + /OO K(r, s, k)X (s, k) ds,

where

10.7 Kirsh) = =1,
(10.7) (7”787 >_T*(S)’
Note that

(10.8) [ K (r,s, k)| < Ci(Vi,n) /(1 + [k])

for all k£ with Im & > 0 and allk with 1 < r» < s. Here and below - ||
denotes the norm of an operatoriti?(S4-1).

Solving the Volterra equation (10.6) we obtain the following convergent
series

X(r,k)zz // HK(Tl_l,rl,k;)drl---drm.
1 =1

m= r<r1<-<rm "

From (10.8) we see thalX (r, k)| < Cy(Vi) for all 1 < r. Obviously
X(r, k) is an entire function irk. Inserting this estimate back into (10.6),
we conclude that the inequality

(10.9) IX(r, o)l < Cs(Va,n)(1 + [k~

holds for allr with 1 < r and allk with Im &£ > 0.
If we rewrite (10.5) as follows

(10.10)
1 o0 o0

. 1
_ ikr . _
O(r k) =e [P 2% ). Vi(s) ds 2k /. Vi(8)X (s, k) ds]

—ikr

+€2'/<; [ / 23V () ds + / e2ik3\/;<(s)X(s,k)d:c],
? T

r
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then the expressions in the brackets in the r.h.s. do not depend@an
r < 1. From (10.10) it follows that

(10.11)
1 +00 1 +oo
A(k’)zp—ﬂ . ‘/*(S)dS—ﬂ . V;(S)X(S,k’)ds,
(10.12)
1 +o0o ik 1 +o00o it
B(k):ﬂ/oo e Vi(s) ds + o e Vi(s)X (s, k) ds.

Recall that supp” C (1, o). Thus for sufficiently largék| the smooth-
ness ofl” and (10.9) imply

(10.13)
+oo
HA(k)—PJri Vi(s)ds|| < Co(Vom) k2, Im k>0,
? —0o0
(10.14) e **B(k)|| < C5(Vi,n)[k| 7>, Imk=>0.

Note that from (10.2), (10.13) and (10.14) we now obtain thét) is a
meromorphic function in a neighborhood of zero dad k)| tends to 1 as
O(1/|k|?) whenk — Foc.
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