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Abstract
Let k be a field of characteristic zero, and let k be an algebraic closure of k. For
a geometrically integral variety X over k, we write k(X) for the function field of
X = X ×k k. If X has a smooth k-point, the natural embedding of multiplicative
groups k

∗
↪→ k(X)∗ admits a Galois-equivariant retraction.

In the first part of this article, equivalent conditions to the existence of such a
retraction are given over local and then over global fields. Those conditions are
expressed in terms of the Brauer group of X.

In the second part of the article, we restrict attention to varieties that are
homogeneous spaces of connected but otherwise arbitrary algebraic groups, with
connected geometric stabilizers. For k local or global, and for such a variety X,
in many situations but not all, the existence of a Galois-equivariant retraction to
k

∗
↪→ k(X)∗ ensures the existence of a k-rational point on X. For homogeneous

spaces of linear algebraic groups, the technique also handles the case where k is the
function field of a complex surface.

Résumé
Soient k un corps de caractéristique nulle et k une clôture algébrique de k. Pour
une k-variété X géométriquement intègre, on note k(X) le corps des fonctions de
X = X ×k k. Si X possède un k-point lisse, le plongement naturel de groupes
multiplicatifs k

∗
↪→ k(X)∗ admet une rétraction équivariante pour l’action du groupe

de Galois de k sur k.
Dans la première partie de l’article, sur les corps locaux puis sur les corps globaux,

on donne des conditions équivalentes à l’existence d’une telle rétraction équivariante.
Ces conditions s’expriment en terme du groupe de Brauer de la variété X.

Dans la seconde partie de l’article, on considère le cas des espaces homogènes de
groupes algébriques connexes, non nécessairement linéaires, avec groupes d’isotropie
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géométriques connexes. Pour k local ou global, pour un tel espace homogène X, dans
beaucoup de cas mais pas dans tous, l’existence d’une rétraction équivariante à
k

∗
↪→ k(X)∗ implique l’existence d’un point k-rationnel sur X. Pour les espaces

homogènes de groupes linéaires, la technique permet aussi de traiter le cas où k est
un corps de fonctions de deux variables sur les complexes.
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1. Introduction
Among the many obstructions to the existence of rational points, one is particularly
remarkable due to the simplicity of its construction.

Let k be a field of characteristic zero, let k be an algebraic closure of k, and let g

be the Galois group of k over k. For a geometrically integral variety X over k, we write
k(X) for the function field of X = X ×k k. The elementary obstruction, defined and
studied in [11], is the class ob(X) ∈ Ext1

g(k(X)∗/k
∗
, k

∗
) of the extension of Galois

modules

1 → k
∗ → k(X)∗ → k(X)∗/k

∗ → 1. (1)

If X and Y are geometrically integral k-varieties, and if there exists a dominant
rational map f from X to Y , then ob(X) = 0 implies that ob(Y ) = 0. In particular,
the vanishing of ob(X) is a birational invariant of X. As pointed out by Wittenberg
[49, Lem. 3.1.2], there is a more general result: if there exists a rational map from a
geometrically integral variety X to a smooth, geometrically integral k-variety Y , then
ob(X) = 0 implies that ob(Y ) = 0.

As a special case, if X has a smooth k-point, the extension (1) is split, so that
ob(X) = 0 (see [11, Prop. 2.2.2]).

Thus we are confronted with the following natural question: for which fields k

and k-varieties X is ob(X) the only obstruction to the existence of k-points on X?
In the first part of this article, we consider arbitrary smooth, geometrically integral

varieties. After recalling some general facts about the elementary obstruction, we turn
to local and global fields. For such fields, we relate the elementary obstruction to
obstructions coming from the Brauer group, as follows.
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(i) If k is local (e.g., a p-adic field or the field of real numbers), ob(X) = 0 if
and only if the natural map Br k → Br k(X) is injective (see Theorems 2.5 and 2.6
for more general statements).

(ii) If k is a number field, if ob(X) = 0, and if X has points in all completions
of k, then any adèle of X is orthogonal to the subgroup of the Brauer group of X

consisting of “algebraic” elements that are everywhere locally constant (Th. 2.13).
In the second part of this article, we explore the elementary obstruction ob(X),

when X is a homogeneous space of a connected algebraic group G, not necessarily
linear. Most results require the assumption that the stabilizers of k-points of X are
connected. Under this assumption, we prove the following results.

(iii) If k is a p-adic field, we show that ob(X) = 0 implies the existence of a
rational point (Th. 3.3). This actually holds as long as the Brauer group of k injects
into the Brauer group of the function field of X (Cor. 3.4). The case of homogeneous
spaces of abelian varieties was already known (see Lichtenbaum [26], van Hamel
[46]).

(iv) If k is a “good” field of cohomological dimension at most 2, and if the group
G is linear, then the hypothesis ob(X) = 0 implies the existence of a rational point
(Th. 3.8). This result covers the case of p-adic fields—already handled in (iii)—and
of totally imaginary number fields. Thanks to a theorem of de Jong [15], it also applies
to function fields in two variables over an algebraically closed field, provided that G

has no factor of type E8.
(v) If k is a number field, if the group G is linear, and if X has points in the real

completions of k and ob(X) = 0, then X has a rational point (Th. 3.10).
(vi) If k is a totally imaginary number field, and if G is an arbitrary connected

algebraic group, assuming finiteness of the Tate-Shafarevich group of the maximal
abelian variety quotient of G, we prove that ob(X) = 0 implies that X has a rational
point (Th. 3.14). A key ingredient is a recent result of Harari and Szamuely [25] on
principal homogeneous spaces of commutative algebraic groups. Their theorem also
holds when k has real completions.

(vii) In the general case of arbitrary connected groups, we found, somewhat to
our surprise, a principal homogeneous space X/Q of a noncommutative group G with
ob(X) = 0 and with points everywhere locally, but without Q-points (Prop. 3.16).
Using either Theorem 2.13 or an easy direct argument, one sees that the Brauer-Manin
obstruction attached to the subgroup B(X) ⊂ Br1X of everywhere locally constant
classes is trivial. Thus we obtain a negative answer to the following question raised
in [41, Ques. 1, p. 133]: is the Brauer-Manin obstruction attached to B(X) the only
obstruction to the Hasse principle for torsors of arbitrary connected algebraic groups?
This phenomenon is due to a combination of three factors: the formal reality of the
ground field, the noncommutativity of G, and its nonlinearity.
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The example in (vii) can be accounted for by the Brauer-Manin obstruction
attached to the group Br1X

c, where Xc denotes a smooth compactification of the
torsor X. This is a special instance of a result of Harari [24]. In the appendix, building
upon [24] and the techniques used in the present article, we extend Harari’s result to
homogeneous spaces of any connected algebraic group G, assuming that the geometric
stabilizers are connected. As in [24] and earlier work on the subject, the result here
is conditional on the finiteness of the Tate-Shafarevich group of the maximal abelian
variety quotient of G.

In the case of a linear algebraic group G, the recurring assumption that the
geometric stabilizers are connected can be somewhat relaxed (Ths. 3.5 and A.5), but
some condition must definitely be imposed, as shown by an example of Florence [17].

The starting point of our work was the following result of van Hamel: for a
principal homogeneous space X of a connected linear k-group G over a p-adic field
k, the elementary obstruction is the only obstruction to the existence of a k-rational
point on X.

2. Elementary obstruction

2.1. Preliminaries
Let k be a field of characteristic zero, let k be an algebraic closure of k, and let
g = Gal(k/k). If X is a k-variety, we let X = X ×k k. If X is integral, we denote by
k(X) the function field of X. If X is geometrically integral, we denote by k(X) the
function field of X. We let Div X denote the group of Cartier divisors on X, and we let
Pic X denote the Picard group H1

Zar(X, Gm) = H1
ét(X, Gm) of X. By Br X, we denote

the cohomological Brauer-Grothendieck group H2
ét(X, Gm), and by Br1X, we denote

the kernel of the natural map Br X → Br X. If M is a continuous discrete g-module,
we write Hi(k, M) for the Galois cohomology groups.

When k
∗ = k[X]∗, the Hochschild-Serre spectral sequence

E
pq

2 = Hp
(
k, Hq

ét(X, Gm)
) ⇒ Hp+q

ét (X, Gm)

gives rise to the well-known exact sequence

0 → Pic X → (Pic X)g → Br k → Br1X
r−→H1(k, Pic X), (2)

where the map Br1X → H1(k, Pic X) is onto if X has a k-point or if k is a local or
global field.

Recall that if A and B are continuous discrete g-modules, then Extng(A, B) is
defined as the derived functor of Homg(A, B) in the second variable. In particular,
there are long exact sequences in either variable, and the elements of Extng(A, B)
classify equivalence classes of n-extensions of continuous discrete Galois modules
(for further specifics on this, see [31, Chap. III, Sec. 1, Rem. 1.6]).
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Let X be a smooth, quasi-projective, and geometrically integral variety over
k. Then Cartier divisors coincide with Weil divisors, which implies that Div X is
a permutation g-module. We have the following natural 2-extension of continuous
discrete g-modules:

1 → k[X]∗ → k(X)∗ → Div X → Pic X → 0.

When k
∗ = k[X]∗, this reads

1 → k
∗ → k(X)∗ → Div X → Pic X → 0. (3)

Under the assumption that k
∗ = k[X]∗, write e(X) ∈ Ext2

g(Pic X, k
∗
) for the corre-

sponding class.† Much is known about the classes ob(X) and e(X) (see [11, Sec. 2],
[41, Chap. 2]). Clearly, e(X) is the cup product of

1 → k(X)∗/k
∗ → Div X → Pic X → 0

with the class ob(X). For further reference, we list here some of the known properties
of these classes.

LEMMA 2.1
(i) The class ob(X) lies in the kernel of the natural map

Ext1
g

(
k(X)∗/k

∗
, k

∗) → Ext1
g

(
k(X)∗/k

∗
, k(X)∗

)
.

(ii) If there exists a zero-cycle of degree 1 on X, then ob(X) = 0.
(iii) If ob(X) = 0, then for a k-group of multiplicative type S and i = 0, 1, 2,

the natural maps Hi(k, S) → Hi(k(X), S) are injective. In particular, the map
Br k → Br k(X) is injective, and so is the map Br k → Br X.

(iv) If X is k-birational to a homogeneous space of a k-torus, then ob(X) = 0 if
and only if X(k) �= ∅.

Proof
(i) This statement is obvious.
(ii) See [11, Prop. 2.2.2], [41, Th. 2.3.4].
(iii) See [11, Prop. 2.2.5].
(iv) We may assume that X is a k-torsor of a k-torus (see [3, proof of Prop. 3.3]).

If ob(X) = 0, then k
∗

is a direct summand in k(X)∗; hence it is also a direct
summand in k[X]∗. Now, it follows from [36, (6.7.3), (6.7.4)] that X is a trivial
torsor (i.e., X has a k-point). �

†This definition of e(X) differs from that in [41] by −1.
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LEMMA 2.2
Assume that k

∗ = k[X]∗.
(i) We have ob(X) = 0 if and only if e(X) = 0.
(ii) The class e(X) lies in the kernel of the natural map

Ext2
g(Pic X, k

∗
) → Ext2

g

(
Pic X, k(X)∗

)
.

(iii) The map (Pic X)g → Br k in (2) is the Yoneda product with e(X) (up to sign).
(iv) If Pic X is finitely generated and free as an abelian group, and if S denotes the

k-torus with character group Pic X, then ob(X) = 0 if and only if H2(k, S)
injects into H2(k(X), S).

(v) If Pic X = Z, then ob(X) = 0 if and only if the map Br k → Br k(X) is
injective.

(vi) If Pic X is finitely generated and is a direct factor of a permutation g-module,
then ob(X) = 0 if and only if, for any finite field extension K/k, the map
Br K → Br K(X) is injective.

(vii) If Pic X = 0, then ob(X) = 0.
(viii) If X is a principal homogeneous space of a semisimple simply connected

group, then ob(X) = 0.
(ix) If X ⊂ Pn

k is a smooth, projective hypersurface, and if n ≥ 4, then ob(X) = 0.

Proof
(i) See [11, Prop. 2.2.4], [41, Th. 2.3.4].
(ii) This assertion follows from Lemma 2.1(i).
(iii) See [11, Lem. 1.A.4], [42, Prop. 1.1].
(iv) The direct implication follows from Lemma 2.1(iii). For the converse, observe

that the natural map H2(k, S) → H2(k(X), S) factors through

H2
(
k, HomZ(Pic X, k

∗
)
) → H2

(
k, HomZ(Pic X, k(X)∗)

)
. (4)

Since the g-module Pic X is finitely generated, we have the spectral sequence

Hp
(
k, ExtqZ(Pic X, k(X)∗)

) ⇒ Extp+q
g

(
Pic X, k(X)∗

)
.

Since Pic X is finitely generated and torsion-free, for any q ≥ 1 we have
ExtqZ(Pic X,k(X)∗) = 0, so that the spectral sequence degenerates and gives
an isomorphism H2

(
k, HomZ(Pic X, k(X)∗)

) = Ext2
g(Pic X, k(X)∗). This and

a similar argument for H2(k, HomZ(Pic X, k
∗
)) identify (4) with the map in

(ii). Now, our statement follows from (i) and (ii).
(v) This is a special case of (iv).
(vi) Assume that ob(X) = 0. Let K/k be a finite field extension. Applying Lem-

ma 2.1(iii) to the k-torus S = RK/kGm and using Shapiro’s lemma, one
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finds that Br K → Br K(X) is injective. One can also directly argue that
ob(X) = 0 implies that ob(X ×k K) = 0. Assume now that Pic X is finitely
generated and is a direct factor of a permutation g-module ⊕iZ[g/gi], where
gi = Gal(k/Ki), with each Ki ⊂ k a finite field extension of k. Let S,
respectively, P , be the k-torus whose character group is Pic X, respectively,
⊕iZ[g/gi]. There exist a k-torus S1 and an isomorphism of k-tori S×k S1 
 P .
Let us assume that for each Ki/k, the natural map Br Ki → Br Ki(X) is
injective. By Shapiro’s lemma, this is equivalent to assuming the injectivity of
the natural map H2(k, P ) → H2(k(X), P ). This, in turn, implies the injectivity
of H2(k, S) → H2(k(X), S). From (iv), we conclude that ob(X) = 0.

(vii) Given (3), this is an application of (i) (cf. [11, Rem. 2.2.7]).
(viii) This is a direct application of (vii).
(ix) For such a hypersurface, the restriction map Z = Pic Pn

k → Pic X is an
isomorphism, and so it is over k (Max Noether’s theorem). Let U ⊂ X be the
complement of a smooth hyperplane section defined over k. Then k

∗ = k[U ]∗

and Pic U = 0. One may then apply (vii) to U . �

Remarks
(1) There exist higher Galois cohomological obstructions to the existence of ratio-

nal points and, more generally, to the existence of a zero-cycle of degree 1. Let
X be a smooth, geometrically integral k-variety, and let S be a k-group of multi-
plicative type, for instance, a finite g-module. If X has a zero-cycle of degree 1,
then for any positive integer n, the restriction map Hn(k, S) → Hn(k(X), S) is
injective: this is a consequence of the Bloch-Ogus theorem (see [5]).

(2) In [11, exem. 2.2.12], there is a sample of varieties over suitable fields satisfying
ob(X) = 0 but lacking k-rational points. Simple examples with ob(X) = 0 are
given by Lemma 2.2(viii) and (ix). Some of these examples can be explained
by means of the higher Galois obstructions in Remark (1), whereas some others
cannot (for more on this, see the remarks after Theorems 2.5 and 2.6).

(3) Let k = C((t)). Let X/k be the curve of genus 1 defined by the homogeneous
equation x3 + ty3 + t2z3 = 0. We obviously have X(k) = ∅. The Brauer group
of k and of any finite extension of k vanishes. A general result of Wittenberg
[49, Th. 3.4.1] then ensures that ob(X) = 0. Thus the absence of k-points on
X is not detected by any of the above Galois cohomology arguments.

Questions
Let X be a geometrically integral k-variety. Let K/k be an arbitrary field extension.
(1) Assume that ob(X) = 0. Does the K-variety XK satisfy ob(XK ) = 0? This is

clear if K ⊂ k.
(2) Assume that the K-variety XK satisfies ob(XK ) = 0. If the extension K/k has

a k-place, does the k-variety X satisfy ob(X) = 0?
We can answer the first question in a special case.
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PROPOSITION 2.3
Let X/k be a smooth, projective, geometrically integral variety. Assume that the
Picard variety of X is trivial. If ob(X) = 0, then for any field K containing k, we
have ob(XK ) = 0.

Proof
Let k ⊂ K be an inclusion of algebraic closures. Let G = Gal(K/K), and let
g = Gal(k/k). There is a natural map G → g. Because the Picard variety of X is
trivial, the abelian groups Pic Xk and Pic XK are abelian groups of finite type, and
the natural map Pic Xk → Pic XK is a Galois equivariant isomorphism. (The Néron-
Severi group does not change under extensions of algebraically closed ground fields.)
There is an equivariant commutative diagram of 2-extensions:

(5)

If ob(X) = 0, then the top 2-extension is trivial (see Lem. 2.2(i)). This implies that
the bottom 2-extension is trivial; that is, ob(XK ) = 0. �

Other cases where Question (1) can be answered positively are handled in Sec-
tions 2.2 and 2.3 (for further results, see [49]).†

Let X/k be a smooth, projective, geometrically integral variety. Let J/k be the
Picard variety of X. Let NS X be the Néron-Severi group of X. From the exact
sequence of g-modules

0 → J (k) → Pic X → NS X → 0, (6)

we deduce the following diagram, in which the vertical sequences are exact:

(7)

†Added in print: O. Wittenberg has just shown that the answer to Question (1), in general, is in the negative.
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This diagram is commutative, except for the upper square, which is anticommutative
(with the sign conventions of [27]). The middle and the lower squares are obvious, so
we just need to explain the upper square. The associativity of the Yoneda product (see
[27, Chap. III, Th. 5.3]) implies the commutativity of the upper square if the maps are
the products with the class of (6). By [27, Chap. III, Th. 9.1], such is the left-hand
vertical map, but the right-hand one differs from the Yoneda product by −1.

Let A denote the Albanese variety of X. The abelian varieties J and A are dual
to each other. A choice of a k-point on X defines the Albanese map X → A over k,
sending this point to zero. This map canonically descends to a morphism X → D,
where D is a k-torsor of A (cf. [41, Sec. 3.3]). Let δ(X) ∈ H1(k, A) be the class of D.
This class does not depend on any choice. In the particular case where X is a k-torsor
of an abelian variety, the map X → D is an isomorphism, so that X(k) �= ∅ if and
only if δ(X) = 0.

The Barsotti-Weil isomorphism A(k) = Ext1
k−gps(J, Gm) (see [38, Chap. VII,

Sec. 3]) gives rise to natural isomorphisms (see [32, Lem. 3.1, p. 50]):

Hn(k, A) = Extn+1
k−gps(J, Gm), (8)

where k − gps is the category of commutative algebraic groups over k, and n is a
nonnegative integer. Here the Extn-groups are defined by means of equivalence classes
of n-extensions.

Building upon these isomorphisms, one defines two Tate pairings.
The first Tate pairing,

H1(k, J ) × A(k) → Br k,

is defined by means of the composition of maps

A(k) = Ext1
k−gps(J, Gm) → Ext1

g

(
J (k), k

∗) → Hom
(
H1(k, J ), Br k

)
,

where the first map is the isomorphism (8) for n = 0, the second map is the forgetful
map, and the third map is the Yoneda pairing.

The second Tate pairing,

J (k) × H1(k, A) → Br k,

is defined by means of the composition of maps

H1(k, A) = Ext2
k−gps(J, Gm) → Ext2

g

(
J (k), k

∗) → Hom
(
J (k), Br k

)
,

where the first map is the isomorphism (8) for n = 1, the second map is the forgetful
map, and the third map is the Yoneda pairing.
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(A legitimate question, which we need not address, is whether these two pairings
coincide upon swapping A with J . As a referee pointed out, biextensions should help.)

The second Tate pairing fits into the commutative diagram

(9)

where the top square comes from the diagram (7) (the pairing in the middle being the
Yoneda pairing).

PROPOSITION 2.4 ([42, Prop. 2.1])
In this diagram, the image of e(X) ∈ Ext2

g(Pic X, k
∗
) in Ext2

g(J (k), k
∗
) is equal to the

image of δ(X) ∈ H1(k, A) in Ext2
g(J (k), k

∗
).

2.2. The Brauer group and the elementary obstruction over local fields
Let R be a Henselian, discrete, rank 1 valuation ring with finite residue field and field
of fractions k of characteristic zero. We refer to such a field as a Henselian local field
(for k of arbitrary characteristic, see [32, Chap. I.2, p. 43]). A Henselian local field is
a p-adic field if and only if it is complete.

THEOREM 2.5
Let X be a geometrically integral variety over a Henselian local field k. Then ob(X) =
0 if and only if the natural map Br k → Br k(X) is injective.

Proof
Over any field, the assumption ob(X) = 0 implies that Br k → Br k(X) is injective
(see Lemma 2.1(iii)).

Using resolution of singularities, we may assume that X is smooth and projective.
Assume that Br k → Br k(X) is injective. This implies that Br k → Br X is injective,
and hence the map (Pic X)g → Br k in sequence (2) is zero. This map is the cup
product with e(X) (see Lem. 2.2(iii)); thus e(X) is orthogonal to (Pic X)g with respect
to the Yoneda product.

Consider diagram (7). Now, (Pic X)g is orthogonal to e(X) ∈ Ext2
g(Pic X, k

∗
);

thus the image of e(X) in Ext2
g(J (k), k

∗
) is orthogonal to J (k). As recalled in Propo-

sition 2.4, this image is equal to the image of δ(X) under the bottom right-hand
vertical map in diagram (9). From that diagram, we conclude that δ(X) ∈ H1(k, A) is
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orthogonal to J (k) under the second Tate pairing. By Tate’s second duality theorem
(see [32, Chap. I.3, Th. 3.2 (statement for α2), Cor. 3.4 and Rem. 3.10, line 5 on
p. 59]), this implies that δ(X) = 0. Hence the image of e(X) ∈ Ext2

g(Pic X, k
∗
)

in Ext2
g(J (k), k

∗
) is zero. Thus e(X) is the image of some element g(X) ∈

Ext2
g(NS X, k

∗
). This element is orthogonal to the image of (Pic X)g in (NS X)g.

Let M ⊂ H1(k, J ) be the image of (NS X)g. Since the abelian group NS X is finitely
generated, and H1(k, J ) is torsion, the abelian group M is finite. The cup product with
g(X) defines a map

(NS X)g → Br k = Q/Z,

which induces a map ν : M → Q/Z. Since Q/Z is an injective abelian group, the
following natural homomorphism is surjective:

HomZ
(
H1(k, J ), Q/Z

) → HomZ(M, Q/Z). (10)

As explained above, the Barsotti-Weil isomorphism (8) A(k) = Ext1
k−gps(J, Gm)

and the forgetful map Ext1
k−gps(J, Gm) → Ext1

g(J (k), k
∗
) give rise to the diagram

(11)

which is the definition of the upper-row pairing (see [32, Prop. 0.16, p. 14; Chap. I.3]):
this is the first Tate pairing as defined at the end of Section 2.1. By Tate’s first duality
theorem over a Henselian local field (see [32, Chap. I.3, Th. 3.2 (statement for α1),
Cor. 3.4 and Rem. 3.10, line 5 on p. 59]), this pairing induces a perfect duality between
the discrete group H1(k, J ) and the completion A(k)̂ of A(k) with respect to the natural
topology on k. In particular, A(k) is a dense subgroup of HomZ(H1(k, J ), Q/Z). By
the surjectivity of (10), its image in HomZ(M, Q/Z) is also dense. Thus the image
of A(k) is the whole finite set HomZ(M, Q/Z). Hence there exists an element of
A(k) which induces ν on M via the first Tate pairing. Let ρ ∈ Ext1

g(J (k), k
∗
) be

its image. If one modifies g(X) ∈ Ext2
g(NS X, k

∗
) by the image of ρ under the map

Ext1
g(J (k), k

∗
) → Ext2

g(NS X, k
∗
), one obtains an element g1(X) ∈ Ext2

g(NS X, k
∗
)

whose image in Ext2
g(Pic X, k

∗
) is still e(X) but which is now orthogonal to (NS X)g

with respect to the cup-product pairing

(NS X)g × Ext2
g(NS X, k

∗
) → Br k.

The Néron-Severi group NS X is a discrete Galois module of finite type. Over the
Henselian local field k, the latter pairing defines an isomorphism between the groups
Ext2

g(NS X, k
∗
) and HomZ((NS X)g, Q/Z) (see [32, Chap. I.2, Ths. 2.1, 2.14]). Thus

e(X) = 0. �
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Remarks
(1) Let X be a smooth, projective, geometrically integral k-variety. Recall that the
existence of a zero-cycle of degree 1 on X implies that ob(X) = 0 (see Lem. 2.1(ii)).
If X is a curve over a p-adic field, the converse is also true by a theorem of Roquette
and Lichtenbaum [26]. For X of arbitrary dimension over a p-adic field, and under
the assumption that X has a regular model X proper over the ring of integers of k, it
is possible to conjecture the equivalence of the two statements:
(a) there exists a zero-cycle of degree 1 on X;
(b) the map Br k → Br X/Br X is injective.
It is known (see [10, Th. 3.1]) that (a) implies (b) and that (b) implies the existence
of a zero-cycle of degree a power of p. The proof of this last result given in [10] was
conditional upon the conjectured absolute purity for the prime-to-p part of the Brauer
group of X; that property is now known, thanks to results of Gabber (see [18]).

(2) Over a p-adic field k, for any integer n ≤ 8, there exist smooth cubic
hypersurfaces X ⊂ Pn

k which have no rational point and, hence, by a theorem of Coray
[14], have no zero-cycles of degree 1. If the dimension of the hypersurface is at least 3,
Lemma 2.2(ix) gives ob(X) = 0.

(3) Theorem 2.5 as it stands does not extend to arbitrary fields k of cohomological
dimension 2. Let k = C(u, v) be the rational function field in two variables. The
quadric Q ⊂ P3

k given by

X2 + uY 2 + vZ2 + (1 + u)uvT 2 = 0

has no k-points, as one sees by going over to C((u))((v)), but it satisfies Br k ↪→
Br k(Q). For K = k(

√
1 + u), the group Br K does not inject into Br K(Q) (for more

on this example, see Sec. 3.4).
Recall that a field R is real closed if −1 is not a sum of squares in R but is a sum

of squares in any finite extension of R. By the Artin-Schreier theorem, [R : R] = 2.

THEOREM 2.6
Let X be a geometrically integral variety over a real closed field R. Then ob(X) = 0
if and only if the natural map Br R → Br R(X) is injective.

Proof
The proof is the same as the proof of Theorem 2.5, once one takes into account the
following two results.

Let A and B be dual abelian varieties over the field R. Let C be the algebraic
closure of R. The natural pairing

A(R) × H1(R, B) → Br R = Z/2 ⊂ Q/Z
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induces a perfect pairing of finite 2-torsion groups

A(R)/NC/RA(C) × H1(R, B) → Q/Z

(over R = R, see [32, Chap. I.3, Rem. 3.7]; in the general case, see [20]).
Let g = Gal (C/R). Let M be a finitely generated g-module. Then the natural

pairing

Mg × Ext2
g(M, C∗) → Br R = Z/2

induces an isomorphism

Ext2
g(M, C∗) 
 HomZ(Mg/NC/RM, Z/2)

(see [32, Chap. I.2, Th. 2.13]; the proof is given for R = R, but it holds for an arbitrary
real closed field). �

Remark. It is easy to give examples of varieties X over an arbitrary real closed field
R such that ob(X) = 0 but X(R) = ∅ (e.g., anisotropic quadrics in Pn for n ≥ 4).
However, it is known that a smooth, geometrically integral R-variety X has an R-point
if and only if, for all i, the maps Hi(R, Z/2) → Hi(R(X), Z/2) are injective. That
the first statement implies the second is a general fact for smooth varieties over a field,
with a rational point, which may be seen in a number of ways. If X/R is geometrically
integral of dimension d and has no R-point, then the cohomological dimension of
the field R(X) is equal to d . This is a consequence of a theorem of Serre (see
[9, Prop. 1.2.1]); for modern developments of this classical topic, see [37]).

We give a short, new proof of the following theorems of van Hamel (see [45,
Sec. 5] for k the field of real numbers; see [46] for k a p-adic field). This theorem
generalizes previous results of Roquette and of Lichtenbaum [26].

THEOREM 2.7 (van Hamel)
Let X be a smooth, projective, geometrically integral variety over a Henselian local
field k or over a real closed field. Then ob(X) = 0 implies that δ(X) = 0. In particular,
a k-torsor X of an abelian variety is trivial if and only if ob(X) = 0.

Proof
Consider diagram (9). As recalled in Proposition 2.4, the image of e(X) ∈
Ext2

g(Pic X, k
∗
) in Ext2

g(J (k), k
∗
) is equal to the image of δ(X) ∈ H1(k, A) in

Ext2
g(J (k), k

∗
). The hypothesis ob(X) = 0 implies that e(X) = 0 (see Lem. 2.2(i)).

Hence J (k) is orthogonal to δ(X) with respect to the bottom pairing of (9). Since k

is either a Henselian local field or a real closed field, Tate’s second duality theorem
implies that δ(X) = 0. �
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Let k be a Henselian local field, and let k̂ be its completion. The following lemma is
well known.

LEMMA 2.8
Let the fields k and k̂ be as above. The natural map Br k → Br k̂ is an isomorphism.

The following result is due to Greenberg.

PROPOSITION 2.9 (see [21]])
Let the fields k and k̂ be as above. If a k-algebra of finite type admits a k-algebra
homomorphism to k̂, then it admits a k-algebra homomorphism to k. In particular, the
field k̂ is the union of its k-subalgebras of finite type A admitting a retraction A → k.

This implies that for any contravariant functor F from k-schemes to sets which
commutes with filtering limits with affine transition morphisms, the natural map
F (X) → F (X×k k̂) is injective. In particular, this applies to the functor F (X) = Br X.
This also implies that for any k-variety X, the conditions X(k) �= ∅ and X(k̂) �= ∅ are
equivalent.

PROPOSITION 2.10
Let the fields k and k̂ be as above. Let X be a smooth, geometrically integral variety
over k. Then ob(X) = 0 if and only if ob(X ×k k̂) = 0.

Proof
The previous comment implies that the map Br X → Br (X×k k̂) is injective. Together
with Lemma 2.8, this shows that the map Br k → Br X is injective if and only if the
map Br k̂ → Br (X ×k k̂) is injective. In turn, this implies that Br k → Br k(X)
is injective if and only if Br k̂ → Br k̂(X) is injective. A double application of
Theorem 2.5 completes the proof. �

Now, let k ⊂ R be an inclusion of real closed fields. The analogue of Greenberg’s
result is a classical theorem going back to E. Artin: if a k-algebra of finite type admits
a k-homomorphism to R, then it admits a k-homomorphism to k. The natural map
Br k → Br R = Z/2 is a bijection. Theorem 2.6 and the same argument as above
now give the following.

PROPOSITION 2.11
Let k ⊂ R be an inclusion of real closed fields. Let X be a smooth, geometrically
integral variety over k. Then ob(X) = 0 if and only if ob(X ×k R) = 0.
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2.3. The Brauer group and the elementary obstruction over number fields
PROPOSITION 2.12
Let X be a smooth, geometrically integral variety over a number field k, and let kv be
the completion of k at a place v. Then ob(X) = 0 implies that ob(X ×k kv) = 0.

Proof
Let k̃ be the integral closure of k in kv . For v finite, this is the fraction field of the
Henselization of the ring of integers of k at v. For v real, this is a real closed field. Since
k̃ ⊂ k, the condition ob(X) = 0 implies that ob(X ×k k̃) = 0. Now, the statement
follows from Propositions 2.10 and 2.11. �

Recall that, by definition,

B(X) = Ker
[
Br1X →

∏
v

Br1Xv/Br0Xv

]
,

where Br0Xv is the image of Br kv in Br1Xv . This group does not change under
restriction of X to a nonempty open set (see [36, Lem. 6.1]).

Recall that X(Ak)B is the subset of X(Ak) consisting of the adelic points orthog-
onal to B(X) with respect to the Brauer-Manin pairing (see [41, Sec. 5.2] for more
details). Obviously, this set either is empty or coincides with X(Ak).

THEOREM 2.13
Let X be a smooth, geometrically integral variety over a number field k. Assume that
X(Ak) �= ∅ and that ob(X) = 0. Then X(Ak) = X(Ak)B. In particular, X(Ak)B �= ∅.

Proof
Let us fix a Galois-equivariant section σ of the map k

∗ → k(X)∗. For each place v of
k, fix a decomposition group gv ⊂ g = Gal(k/k). Let k̃v ⊂ k be the fixed field of gv .
If v is finite, this is a Henselian local field. If v is a real place of k, then this is a real
closure of k. Let α ∈ B(X). For each place v of k, the image of α in Br Xv comes
from a well-defined element of Br kv . Using the same arguments as at the end of Sec-
tion 2.2, we see that the restriction of α to Br (X ×k k̃v) comes from a well-defined
element ξv of Br k̃v . This last element may be computed by composing the maps

Br1(X ×k k̃v) → H2
(
gv, k(X)∗

) → H2(gv, k
∗
),

where the last map is given by σ . We also have the element ξ ∈ Br k, which is the
image of α under the composite map Br1X → H2(g, k(X)∗) → H2(g, k

∗
), where

the last map is induced by σ . Now, ξv is clearly the restriction of ξ ∈ Br k to Br k̃v .
Thus the sum of the local invariants associated to the family ξv is the sum of the local
invariants of ξ ; it is therefore zero. �
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Remark. We keep the assumption that X(Ak) �= ∅. In the particular case when Pic X

is a free abelian group, a delicate theorem asserts that the conditions ob(X) = 0 and
X(Ak)B = X(Ak) are equivalent (see [11, Prop. 3.3.2]). It would be interesting to see
if the same is true in general.†

We conclude this section with the following observation, which does not seem to be
documented in the literature (but see [29, Cor. 1, p. 40] for a similar result).

PROPOSITION 2.14
Let X be a smooth, proper, geometrically integral variety over a number field k, and
let A = Pic0X be its Picard variety. Assume that for any finite extension K/k, the
Tate-Shafarevich group of AK is finite. Then the quotient of B(X) by the image of
Br k is finite.

Proof
We have the exact sequence of Galois modules

0 → Pic0X → Pic X → NS X → 0.

Let K/k be a finite Galois extension such that X(K) �= ∅ and the composite map

Pic XK → Pic X → NS X

is onto. Let h be the Galois group of k over K . The h-module NS X is the direct sum
of a free abelian group Zr and a finite abelian group F , both with trivial action of h.
Galois cohomology yields the exact sequence

0 → H1(K, Pic0X) → H1(K, Pic X) → H1(K, F ).

We have analogous exact sequences over each Henselization K̃w of K:

0 → H1(K̃w, Pic0X) → H1(K̃w, Pic X) → H1(K̃w, F ).

By Chebotarev’s theorem, the kernel of the diagonal map H1(K, F ) →∏
w H1(K̃w, F ), where w runs through all places of K , vanishes. By our assumption

on Tate-Shafarevich groups, the kernel of H1(K, Pic0X) → ∏
w H1(K̃w, Pic0X) is

finite. Thus the kernel of H1(K, Pic X) → ∏
w H1(K̃w, Pic X) is finite.

†Wittenberg [49, Th. 3.3.1], building on work of Harari and Szamuely [25], has now proved that if one grants
the finiteness of Tate-Shafarevich groups of abelian varieties over number fields, then the answer to this question
is positive.
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Let G be the finite group Gal(K/k). We have the standard restriction-inflation
exact sequence

0 → H1
(
G, (Pic X)h

) → H1(k, Pic X) → H1(K, Pic X).

The Mordell-Weil theorem and the Néron-Severi theorem imply that the abelian group
Pic XK = (Pic X)h is of finite type. Thus H1(G, (Pic X)h) is finite. It is then clear that
the kernel of H1(k, Pic X) → ∏

v H1(k̃v, Pic X) is finite.
The argument given in the proof of Theorem 2.13 shows that the group B(X) may

also be defined as

B(X) = Ker
[
Br1X →

∏
v

Br1Xk̃v
/Br0Xk̃v

]
,

where Br0Xk̃v
is the image of Br k̃v in Br1Xk̃v

.
From the Hochschild-Serre spectral sequence for the multiplicative group and the

projection map X → Spec k, we have the standard exact sequences

0 → Br0X → Br1X → H1(k, Pic X)

and for each place v of k,

0 → Br0Xk̃v
→ Br1Xk̃v

→ H1(k̃v, Pic X).

The group B(X)/Br0X is thus a subgroup of the kernel of the diagonal map
H1(k, Pic X) → ∏

v H1(k̃v, Pic X). It is thus finite. �

3. Homogeneous spaces
By convention, all homogeneous spaces that we consider are right homogeneous
spaces.

3.1. Structure of algebraic groups
Let k be a field of characteristic zero.

The following theorem is constantly used in this article. If H ↪→ G is a ho-
momorphism of (not necessarily affine) algebraic groups over k which is an immer-
sion, then the quotient G/H exists in the category of k-varieties (see Grothendieck
[23, Th. 7.2, Cor. 7.4], Gabriel [19, Th. 3.2, p. 302]).

We also use the following fact: if H ⊂ G is a normal subgroup of an algebraic
group over k, and if X is a k-variety that is a right homogeneous space of G, then
the quotient variety Y = X/H exists in the category of k-varieties, it is a (right)
G/H -homogeneous space, and the morphism X → Y is faithfully flat and smooth.
When G is affine, a proof of this fact is given in [3, Lem. 3.1]. By the result of
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Grothendieck and Gabriel mentioned above, that proof works for arbitrary algebraic
groups.

If L is a connected linear group, we denote by Lu its unipotent radical, a normal,
connected subgroup of L. We let Lred be the quotient of L by its unipotent radical Lu.
This is a connected reductive group. We let Lss ⊂ Lred be the derived group of Lred.
This is a connected semisimple group. We denote by Ltor the biggest toric quotient of
L. The kernel of L → Ltor is a normal, connected subgroup of L denoted by Lssu.
The group Lssu is an extension of Lss by Lu.

Any connected algebraic group G over k is an extension

1 → L → G → A → 1 (12)

of an abelian variety A/k by a normal, connected linear k-group L (Chevalley’s
theorem; see [35], [13]). We write L = Glin. This is a characteristic subgroup of G;
it is stable under all automorphisms of the group G. We denote by Z(G) the centre
of G and by Gsab the biggest group quotient of G, which is a semiabelian variety. We
write Gder for the derived subgroup [G, G]. The group Gder is clearly contained in L,
and thus it is a connected linear algebraic group.

If L is reductive, then Lder = Gder; in particular, Gder is a semisimple group.
Indeed, the connected semisimple group Lder is normal in G; the quotient G′ of G by
Lder is an extension of A by the group L/Lder, which is Ltor. Any group extension
of an abelian variety by a torus is central. Since there are no nonconstant morphisms
from an abelian variety to a torus, any such group extension is commutative. Thus G′

is a semiabelian variety. Since the kernel Lder of G → G′ is semisimple, we have
G′ = Gsab and Lder = Gder.

By [50, Prop. 4], the connected group G/Z(G) is linear. According to [50, Th. 1],
we have the following commutative diagram:

(13)

Let H be a linear k-group (not necessarily connected). We write Ĥ for the group
of characters of H (this is a finitely generated discrete Galois module), and we write
H mult for the biggest quotient of H which is a k-group of multiplicative type. By
construction, the k-groups H and H mult have the same groups of characters. We set

H1 = ker[H → H mult].

In Theorems 3.5, 3.11, and A.5, we make the hypothesis that H1 is connected and
that Ĥ1 = 0. This hypothesis is satisfied if H is connected. Indeed, in this case, the
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group H1 coincides with the connected group H ssu, and clearly H
ssu

has no nontrivial
characters. For general H , the hypothesis need not be satisfied: consider the example
where H is a finite, noncommutative, solvable group or the case of a noncommutative
extension of a finite abelian group by a torus.

PROPOSITION 3.1
Let X be a homogeneous space of a connected k-group whose maximal connected
linear subgroup has trivial unipotent radical. Assume that the stabilizers of the
geometric points of X are connected. Then X can be given the structure of a ho-
mogeneous space of an algebraic group G satisfying the following conditions:
(i) Glin has trivial unipotent radical;
(ii) Gder is semisimple simply connected;
(iii) the stabilizers of the geometric points of X in G are linear and connected.

Proof
Let G be a connected group whose maximal connected linear subgroup L has trivial
unipotent radical. Assume that G acts transitively on X with connected geometric
stabilizers. The group G is an extension (12). According to (13), we have L/Z(L) =
G/Z(G). Since L is reductive, the latter group is semisimple. This also implies that
Gder = Lder, as explained above.

We write Stx,G for the stabilizer of x ∈ X(k) in G. These subgroups of G form
one conjugacy class.

First reduction
The subgroup Z(G)∩Stx,G is central in G and does not depend on x. Hence it is stable
under the action of the absolute Galois group g, and so Z(G)∩Stx,G = C for a central
subgroup C ⊂ G. Then X is a homogeneous space of G/C such that Stx,G/C =
Stx,G/C. The group G/Z(G) is linear; hence Stx,G/C is also linear. Replacing G

by G/C, we may thus assume without loss of generality that the stabilizers of the
geometric points are linear and connected.

Second reduction
It is well known (see [33, Prop. 3.1]) that given the connected reductive group L/Z(L),
there exist exact sequences of connected reductive algebraic groups

1 → S → H → L/Z(L) → 1

with S a k-torus central in H , and H der simply connected. (Such extensions are called
z-extensions.) Define G′ as the fibred product of G and H over L/Z(L), so that there
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is a commutative diagram of exact sequences of algebraic groups

Note that Z(G) is in the centre of G′. We then have the commutative diagram of exact
sequences of connected linear algebraic groups

where L′ is the kernel of the composite map G′ → G → A. Clearly, L′ is linear, so it
is the maximal linear subgroup of G′. Thus the natural map L′/Z(L′) → G′/Z(G′)
is an isomorphism of semisimple groups. Since Z(G) is a central subgroup of G′, the
map G′ → G′/Z(G′) factors as G′ → H → G′/Z(G′). The maps L′ → G′ →
H → G′/Z(G′) give rise to a series of maps

(L′)der → (G′)der → H der → (
G′/Z(G′)

)der = L′/Z(L′), (14)

where the composite map is induced by the natural map L′ → L′/Z(L′). Since L′

is reductive, the first map in (14) is an isomorphism, as explained above. The maps
G′ → H → G′/Z(G′) are surjective; hence so are the second and the third maps in
(14). Since L′ is a reductive group, the natural map (L′)der → L′/Z(L′) is an isogeny;
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hence (L′)der → H der is also an isogeny. But H der is simply connected since H is
a z-extension. This forces (L′)der 
 H der, so that (L′)der = (G′)der is a semisimple
simply connected group. Replacing G by G′, we keep the property that the stabilizers
of the geometric points are connected linear groups. �

3.2. Local fields: Semiabelian varieties
THEOREM 3.2
Let k be a Henselian local field or a real closed field. A k-torsor X of a semiabelian
variety is trivial if and only if ob(X) = 0.

Proof
Let X be a torsor of a semiabelian variety G, an extension of an abelian variety A by
a torus T :

1 → T → G → A → 0.

Let D be the quotient of X by the action of T ; this is a k-torsor of A, which can also
be defined as the pushforward of X with respect to the map G → A. By functoriality,
ob(D) = 0, so that D 
 A by Theorem 2.7. Thus X is an A-torsor of T . We write ξ

for the class of this torsor in H1
ét(A, T ), and we write ξm ∈ H1(k, T ) for the class of

the fibre Xm at a k-point m of A. Our goal is to find m with ξm = 0.
From the bilinear pairing of k-group schemes

T̂ × T → Gm,k,

we deduce a cup-product pairing

H1(k, T̂ ) × H1
ét(A, T ) → H2

ét(A, Gm) = Br A,

the image of which lies in Br 1A.
Let B ⊂ Br1A be the subgroup consisting of the elements α ∪ ξ , where α ∈

H1(k, T̂ ). The group H1(k, T̂ ) is finite; hence so is B.
The k-point 0 ∈ A(k) defines a splitting of (2) applied to X = A, so that Br1A

decomposes as the direct sum of Br k and the subgroup consisting of the elements
A ∈ Br1A such that A(0) = 0, naturally identified with H1(k, Pic A). The canonical
map r : Br1A → H1(k, Pic A) can be written as A �→ A − A(0). Let J be the
Picard variety of A, which is also the dual abelian variety of A.

We now prove the following statements, the last of which proves the theorem.
(1) The restriction of the canonical map r : Br1A → H1(k, Pic A) to B factors

through H1(k, J ).
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(2) We have B ∩ Br k = 0.
(3) There exists a point m ∈ A(k) orthogonal to the group B with respect to the

pairing A(k) × Br A → Br k given by the evaluation.
(4) For any point m satisfying (3), we have ξm = 0; that is, the fibre of X → A

over m contains a k-point.

Proof of (1). Let λ : T̂ → Pic A be the type of the torsor X → A (see [11,
(2.0.2)], [41]). It is well known (see [38, Chap. VII, no. 16, Th. 6 and the comment
thereafter]) that X can be given the structure of a group extension of A by T if and
only if λ factors through the natural injection J (k) ↪→ Pic A. Now, (1) follows from
[41, Th. 4.1.1], which says that the following diagram commutes:

(15)

Proof of (2). The image of ξ under the base change map H1(A, T ) → H1(X, T ) is
zero since X ×A X is a trivial X-torsor (the diagonal is a section). Thus B goes to
zero under the pullback map Br A → Br X. The assumption ob(X) = 0 implies that
the natural map Br k → Br X is injective, and this implies that B ∩ Br k = 0.

Proof of (3). We now define a pairing

A(k) × H1(k, T̂ ) → Br k (16)

in the following manner. A couple (m, α) ∈ A(k) × H1(k, T̂ ) is sent to

(α ∪ ξ )(m) − (α ∪ ξ )(0) = α ∪ (ξm − ξ0).

We claim that this pairing is bilinear. To prove this, consider the diagram of pairings

(17)

where the top row is the Tate pairing and the bottom row is the pairing given by
evaluating elements of H1(k, Pic A), understood as the subgroup of Br1A consisting
of the elements with trivial value at zero. This diagram commutes by [28, Prop. 8(c)].
From (15), we see that the map H1(k, T̂ ) → H1(k, Pic A) sending α to r(α ∪ ξ ) =
α ∪ ξ − (α ∪ ξ )(0) factors through H1(k, J ), and so the pairing (16) is bilinear since
such is the top pairing of (17).
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We now use the hypothesis on the field k. There is a natural embedding Br k ↪→
Q/Z. The pairing (16) induces a homomorphism σ : A(k) → B∗ = Hom(B, Q/Z).
Let us show that σ is surjective. If it is not, there exists b ∈ B, b �= 0, such that
σ (m) applied to b = ξ ∪ α ∈ Br1A is zero for any m; that is, b(m) − b(0) = 0 for
all m ∈ A(k). Thus b − b(0) comes from an element of H1(k, J ) orthogonal to A(k)
with respect to the Tate pairing. However, over a Henselian local field or a real closed
field, the right kernel of the Tate pairing A(k) × H1(k, J ) → Br k is zero; hence
b = b(0) ∈ B ⊂ Br1A is a nonzero constant element in B. This contradicts (2).

By the surjectivity of σ , there exists m ∈ A(k) such that σ (m) is the element of
B∗ given by b �→ −b(0) for any b ∈ B. This says that b(m) − b(0) = −b(0), so that
b(m) = 0 for any b ∈ B. This finishes the proof of (3).

Proof of (4). By (3) we have (α ∪ ξ )(m) = α ∪ ξm = 0 for any α ∈ H1(k, T̂ ). Hence
ξm is orthogonal to H1(k, T̂ ) with respect to the pairing

H1(k, T̂ ) × H1(k, T ) → Br k.

For k a Henselian local field or a real closed field, this pairing is nondegenerate (see
[32, Chap. I.2, Ths. 2.14(c), 2.13], in which the proof of Th. 2.13 works over a real
closed field); thus ξm = 0. This finishes the proof of the theorem. �

3.3. p-adic fields: Main theorem
THEOREM 3.3
Let X/k be a homogeneous space of a connected k-group (not necessarily linear) such
that the stabilizer H of a geometric point x ∈ X(k) is connected. If k is a Henselian
local field, then X has a k-point if and only if ob(X) = 0.

In conjunction with Theorem 2.5, this gives the following corollary.

COROLLARY 3.4
Let X/k be a homogeneous space of a connected k-group (not necessarily linear) such
that the stabilizer H of a geometric point x ∈ X(k) is connected. If k is a Henselian
local field, then X has a k-point if and only if Br k injects into Br k(X).

Proof of Theorem 3.3
First reduction
Suppose that X is a right homogeneous space of a connected group G represented
as an extension (12). The unipotent radical Lu ⊂ L is a normal subgroup of G. Let
G′ = G/Lu. This group satisfies (L′)u = 0. The following properties, proved in [3,
Lem. 3.1], hold over any perfect field k. The quotient X′ = X/Lu exists, and there is a
natural projection map X → X′. This map is surjective on k-points, and its geometric
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fibres are orbits of Lu. The variety X′ is a homogeneous space of G′ with connected
geometric stabilizers.

The hypothesis ob(X) = 0 implies that ob(X′) = 0. Suppose that we have found
a k-point y ∈ X′(k). Then the fibre Xy is a k-variety that is a homogeneous space of
the unipotent k-group Lu. According to [3, Lem. 3.2(i)], over any perfect field k this
implies that Xy(k) �= ∅. Thus X(k) �= ∅.

Thus without loss of generality, we may assume that the unipotent radical Lu of
L is trivial, so that L is reductive.

Second reduction
By Proposition 3.1, we can further assume that Gder is semisimple simply connected
and that the stabilizers of the geometric points of X in G are linear and connected.
This reduction has nothing to do with the nature of the field k. It does not change X;
hence we keep the assumption that ob(X) = 0.

Relaxing the assumptions
To prove Theorem 3.3, it is enough to prove the following result (whose proof is
similar to that of [3, Th. 2.2]). We write Gss for Lss, and we write Gu for Lu, where
L = Glin. (The notation H 1 was defined in Sec. 3.1.)

THEOREM 3.5
Let k be a Henselian local field, let G be a connected k-group, and let X/k be a
homogeneous space of G with geometric stabilizer H . Assume that
(i) Gu = {1};
(ii) H ⊂ G

lin
;

(iii) Gss is simply connected;
(iv) H 1 is connected and has no nontrivial characters (e.g., H is connected).
Then ob(X) = 0 if and only if X(k) �= ∅.

The homogeneous space X defines a k-form of H
mult

which we denote by M (see
[3, Sec. 4.1]). We have a canonical homomorphism M → Gsab (for this, see the
computation at the end of [4, Sec. 1.2]). In [4], G = L is linear, and the calculation uses
the commutativity of Ltor. It generalizes to the present context with the commutative
group Gsab in place of Ltor.

Here is another way to construct the homomorphism M → Gsab. One extends the
base field from k to the function field k(X) of X. Consideration of the stabilizer H ′

of the generic point of X yields a map H ′ → G ×k k(X) over k(X) which induces a
map H ′ → Gsab ×k k(X). Since H (and hence H ′) is linear, this map factors through
T ×k k(X), where T = (Gsab)lin is the maximal torus inside the semiabelian variety
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Gsab. There is then an induced k(X)-morphism M ×k k(X) → T ×k k(X). Such a
map comes from a unique morphism M → T ⊂ Gsab.

We first prove a special case of Theorem 3.5.

PROPOSITION 3.6
With the hypotheses of Theorem 3.5, assume that M injects into Gsab (in other words,
H ∩ G

ss = H 1). Then X has a k-point.

Proof
Set Y = X/Gss. Then Y is a homogeneous space of the semiabelian variety Gsab;
hence it is a torsor of some semiabelian variety. We have a canonical map X → Y .
From ob(X) = 0, we deduce that ob(Y ) = 0 (see the beginning of the introduction).
By Theorem 3.2, Y has a k-point y. Let Xy denote the fibre of X over y. It is a
homogeneous space of Gss with geometric stabilizer H ∩G

ss = H 1. The group Gss is
semisimple simply connected by (iii). The group H 1 is connected and has no nontrivial
characters by (iv). By [2, Th. 7.2] (that theorem is stated over a p-adic field, but it also
holds over a Henselian local field; see the proof of Th. 3.8 hereafter), the k-variety Xy

has a k-point. Hence X has a k-point. �

For the general case, we need an easy lemma.

LEMMA 3.7
Let M be a k-group of multiplicative type, and let η ∈ H2(k, M) be a cohomology
class. Then there exists an embedding j : M ↪→ P into a quasi-trivial k-torus P such
that j∗(η) = 0.

Proof
We can embed M into a quasi-trivial torus, and so we assume without loss of generality
that M = RK/kGm for some finite extension K/k. We have a canonical isomorphism

sK : H2(k, RK/kGm)
∼→ H2(K, Gm). Let L/K be a finite extension such that the

image of sK (η) in H2(L, Gm) is zero. Consider the natural injection of quasi-trivial
tori cK/L : RK/kGm ↪→ RL/kGm. Then (cK/L)∗(η) = 0. �

Let us resume the proof of Theorem 3.5. Let x ∈ X(k) be a point with stabilizer H . Let
ηX ∈ H2(k, H, κ) be the cohomology class (Springer’s class) defined by X (see [2,
Sec. 7.7] or [43, Sec. 1.20]), where κ is the k-kernel defined by X (see [2, Sec. 7.1]).

Recall that H 1 = ker[H → H
mult

]. Clearly, the subgroup H 1 is invariant under all

semialgebraic automorphisms of H ; hence κ induces a k-kernel κmult in H
mult

, and
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we obtain a map

µ∗ : H2(k, H, κ) → H2(k, H
mult

, κmult)

induced by the canonical map µ : H → H
mult

(see [2, Sec. 1.7]). Since H
mult

is an

abelian group, κmult defines a k-form of H
mult

, which is the k-form M mentioned

above. We obtain an element µ∗(ηX) ∈ H2(k, M) = H2(k, H
mult

, κmult). Note that
in [2, Sec. 7], G is assumed to be semisimple and simply connected, but the general
constructions we refer to hold for an arbitrary k-group G; the key point is that the
subgroup H is linear.

By Lemma 3.7, we can construct an embedding j : M ↪→ P into a quasi-trivial
k-torus P such that j∗(µ∗(ηX)) = 0. Consider the k-group F = G × P , and consider
the embedding

H ↪→ F = F ×k k given by h �→ (
h, j (µ(h))

)
.

Set Z = H\F . We have a right action a : Z × F → Z and an F -equivariant map

π : Z → X, H · (g, p) �→ H · g, where g ∈ G, p ∈ P .

Then Z is a homogeneous space of F with respect to the action a, and the map
π : Z → X is a torsor under P . The homomorphism M → F sab is injective.

In [3, Sec. 4.7], it is proved that AutF,X(Z) = P (k). By [3, Lem. 4.8], the element
j∗(µ∗(ηX)) ∈ H2(k, P ) is the only obstruction to the existence of a k-form (Z, a, π)
of the triple (Z, a, π): there exists such a k-form if and only if j∗(µ∗(ηX)) = 0.
In our case, by construction we have j∗(µ∗(ηX)) = 0; hence there exists a k-form
(Z, a, π) of (Z, a, π). Since π : Z → X is a torsor under the quasi-trivial torus P ,
from Hilbert’s theorem 90 and Shapiro’s lemma, we conclude that Z is k-birationally
isomorphic to X × P . From ob(X) = 0, we deduce ob(Z) = 0 (see the beginning of
the introduction).

We obtain a homogeneous space Z of a connected k-group F such that F ss is
simply connected, with geometric stabilizer H . The group M injects into the group
F sab = Gsab × P , and ob(Z) = 0. By Proposition 3.6, Z has a k-point. Thus X has a
k-point. �

Remark. In [17, Th. 3.9], Florence constructs a homogeneous space X of the group
G = PGL(D) for a quaternion algebra D over a p-adic field such that the geometric
stabilizer H 
 Z/2 × Z/2 and X has a zero-cycle of degree 1 but no rational points.
The space X can also be viewed as a homogeneous space of SL(D), the geometric
stabilizer now being the quaternion group. Since X has a zero-cycle of degree 1, the
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map Br k → Br k(X) is injective. Thus ob(X) = 0. This shows that in Theorem 3.5,
neither condition (iii) nor condition (iv) may be omitted.

3.4. Good fields of cohomological dimension at most 2
A field of characteristic zero is called a good field of cohomological dimension at
most 2 if it satisfies the following properties.
(i) Its cohomological dimension cd(k) is at most 2.
(ii) For any central simple algebra A over a finite field extension K of the field k,

the index of A (as a K-algebra) and the exponent of the class of A in Br K

coincide.
(iii) For any semisimple simply connected group G/k, we have H1(k, G) = 0.

According to Serre’s conjecture II, (i) should imply (iii). This is known for groups
of classical type. The combination of (i) and (ii) implies (iii) for all groups without
factors of type E8 (see the references in [6]).

Properties (i) to (iii) are satisfied for Henselian local fields and for totally imagi-
nary number fields.

For the fraction field of a 2-dimensional strictly Henselian local domain with
residue field of characteristic zero, these three properties also hold (see [8], [6]).

For the function field of an algebraic surface over an algebraically closed field of
characteristic zero, properties (i) and (ii) hold. For (ii), this is de Jong’s theorem [15].
Hence, in this case, (iii) is known when G has no factors of type E8.

THEOREM 3.8
Let k be a good field of cohomological dimension at most 2 and characteristic zero.
Let X/k be a homogeneous space of a connected linear group G. Assume that the
geometric stabilizers are connected. Then X(k) �= ∅ if and only if ob(X) = 0.

Proof
We follow the proof of Theorem 3.3. The first and second reduction have nothing to do
with the nature of the field k. It remains to prove the analogue of Theorem 3.5. Since
G here is linear, the semiabelian variety Gsab is a k-torus. With notation as in the proof
of Proposition 3.6, the k-variety Y is a homogeneous space of a k-torus. It satisfies
ob(Y ) = 0. Over any field, this implies that Y (k) �= ∅ (see Lem. 2.1(iv)). Keeping
the notation of Proposition 3.6, one finds a point y ∈ Y (k), and then the k-variety Xy

is a homogeneous space of Gss with geometric stabilizer H ∩ G
ss = H 1. The group

Gss is semisimple simply connected. The group H 1 is connected and has no nontrivial
characters. Over a good field of cohomological dimension 2, the analogue of [2, Th.
7.2] is [6, Props. 5.3, 5.4], which build upon the key theorem [6, Th. 2.1] and use
the formalism of [2]. This shows that the k-variety Xy has a k-point. Hence X has a
k-point. This completes the proof of the analogue of Proposition 3.6.
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Lemma 3.7 holds over any field. The rest of the proof of Theorem 3.5 is a reduction
to Proposition 3.6, which works equally well over any ground field. �

COROLLARY 3.9
Let k be a good field of cohomological dimension at most 2 and characteristic zero.
Let X/k be a homogeneous space of a connected linear group G. Assume that the
geometric stabilizers are connected.
(i) Then X(k) �= ∅ if and only if, for any flasque k-torus S, the restriction map

H2(k, S) → H2(k(X), S) is injective.
(ii) If X is projective, then X(k) �= ∅ if and only if, for any finite field extension

K/k, the map Br K → Br K(X) is an injection.
(iii) If X is projective and the abelian group Pic (X) is free of rank 1, then X(k) �= ∅

if and only if the natural map Br k → Br k(X) is an injection.

Proof
(i) This follows from [7, th. A] and from Theorem 3.8 and Lemma 2.2(iv).
(ii) The Bruhat decomposition implies that the geometric Picard group of a projec-

tive homogeneous space of a connected linear group is a permutation g-module
(cf. [6, proof of Lem. 5.6, p. 337]). Now (ii) follows from Theorem 3.8 and
Lemma 2.2(vi).

(iii) This follows from Theorem 3.8 and Lemma 2.2(v). �

Remark (3) after Theorem 2.5 shows that in (ii) above, one cannot simply assume the
injectivity of Br k → Br k(X).

Remarks
(1) For any even integer n = 2m ≥ 6, Merkurjev [30] constructs a (big) field

kn of cohomological dimension 2 and an anisotropic quadratic form of rank n

over kn. The associated quadric is a homogeneous space of a spinor group with
connected geometric stabilizers. There are elements of order 2 in the Brauer
group of kn which are not of index 2. Thus the mere hypothesis cd(k) ≤ 2 is
not enough for the above theorem to hold; condition (ii) (in the definition of a
good field of cohomological dimension at most 2) is required.

(2) The above corollary should be compared with the recent work of de Jong, He,
and Starr [16] on projective homogeneous varieties over function fields in two
variables.

(3) Let k = C(u, v) be the rational function field in two variables over the com-
plex field. Let X ⊂ P8

k be the smooth cubic hypersurface defined by the
diagonal cubic form with coefficients 1, u, u2, v, vu, vu2, v2, v2u, v2u2. One
easily checks that X(k) = ∅. In fact, X has no points in C((u))((v)). On
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the other hand, Lemma 2.2(ix) ensures that ob(X) = 0. The same comment
applies to smooth cubic hypersurfaces in Pn

k with 4 ≤ n ≤ 7 defined by taking
subforms of the above form.

3.5. Number fields
Let k be a number field. We write �r for the set of all real places of k. We set
kr = ∏

v∈�r
kv . Then, for a k-variety X, we have X(kr ) = ∏

v∈�r
X(kv). When k is

totally imaginary, the following result is a special case of Theorem 3.8.

THEOREM 3.10
Let k be a number field, and let X/k be a homogeneous space of a connected linear
algebraic k-group G with connected geometric stabilizer. Assume that X has a kv-point
for every real place v of k. If ob(X) = 0, then X has a k-point.

Proceeding as in Section 3.3, we see that this is a consequence of the following result,
the proof of which is similar to that of [3, Th. 2.2].

THEOREM 3.11
Let k be a number field, and let X/k be a homogeneous space of a connected linear
algebraic k-group G with geometric stabilizer H . Assume that
(i) Gu = {1};
(ii) Gss is simply connected;
(iii) H 1 is connected and has no nontrivial characters;
(iv) X has a kv-point for every v ∈ �r .
If ob(X) = 0, then X has a k-point.

The homogeneous space X defines a k-form of H
mult

, which we denote by M . We
have a canonical homomorphism M → Gtor. We first prove a special case of Theo-
rem 3.11.

PROPOSITION 3.12
In Theorem 3.11, assume that M injects into Gtor (i.e., H ∩ G

ss = H 1). Then X has
a k-point.

Proof
Set Y = X/Gss. Then Y is a homogeneous space of the k-torus Gtor; hence it is a
torsor of some k-torus T . We have a canonical map α : X → Y . Since ob(X) = 0,
we see that ob(Y ) = 0. Hence Y has a k-point y by Lemma 2.1(iv).

The map α : X → Y is smooth; hence, for v ∈ �r , the image Yv := α(X(kv)) is
open in Y (kv) and nonempty (because X has a kv-point). Set Yr = ∏

v∈�r
Yv; then

Yr is a nonempty open subset in Y (kr ). By the real approximation theorem for tori,
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which is due to Serre (see [36, cor. 3.5], [47, Th. 11.5]), the set Y (k) is dense in Y (kr ).
Hence there exists a k-point y ′ ∈ Y (k) ∩ Yr .

Consider the fibre Xy ′ of X over y ′. It is a homogeneous space of Gss with
geometric stabilizer H ∩ G

ss = H 1. The group Gss is semisimple simply connected
by assumption (ii) of Theorem 3.11. The group H 1 is connected and has no nontrivial
characters by assumption (iii) of Theorem 3.11. Since y ′ ∈ Yr , the variety Xy ′ has a
kv-point for every v ∈ �r . By [2, Th. 7.3(vi), Cor. 7.4], Xy ′ has a k-point. Hence X

has a k-point. �

We resume the proof of Theorem 3.11. Let G and X be as in that theorem. Let x ∈ X(k)
be a point with stabilizer H . We have a canonical map µ∗ : H2(k, H, κ) → H2(k, M),
where κ is the k-kernel defined by X. Let ηX ∈ H2(k, H, κ) be the cohomology class
defined by X. Consider µ∗(ηX) ∈ H2(k, M). By Lemma 3.7, we can construct an
embedding j : M ↪→ P into a quasi-trivial k-torus P such that j∗(µ∗(ηX)) = 0.

As in the proof of Theorem 3.5, we construct the k-group F = G × P and a
triple (Z, a, π), where (Z, a) is a homogeneous space of F and (Z, π) is a torsor of
P over X. Since (Z, π) is a torsor of the quasi-trivial torus P over X, and since X has
a kv-point for any v ∈ �r , we see that Z has a kv-point for such v. Also, since (Z, π)
is a torsor of the quasi-trivial torus P , we see that Z is k-birationally isomorphic to
X × P . Since ob(X) = 0, we see that ob(Z) = 0.

We obtain a homogeneous space Z of a connected reductive k-group F such
that F ss is simply connected with geometric stabilizer H . The group M injects into
F tor = Gtor × P , and ob(Z) = 0. The homogeneous space Z has a kv-point for any
v ∈ �r . By Proposition 3.12, Z has a k-point. Thus X has a k-point. �

Remark. To prove Theorem 3.10, one could also argue as follows. According to
Proposition 2.12, the hypothesis ob(X) = 0 implies that ob(X ×k kv) = 0 for
each nonarchimedean place v of k. Theorem 3.3 then implies that X(kv) �= ∅ for
each nonarchimedean place v. Thus X(Ak) �= ∅. Theorem 2.13 then implies that
Xc(Ak)B = Xc(Ak) �= ∅. From [3, Th. 2.2], we conclude that X(k) �= ∅. This proof
looks more elegant than the one above, but it relies on [3, Th. 2.2], whose proof
occupies most of that article. In the proof given above, one sees precisely where the
linearity of G is used: it is to ensure weak approximation at the real places for Y ,
which is a principal homogeneous space of a torus (a similar argument occurs in [3]).
Had we not assumed G to be linear, Y would have been a principal homogeneous
space of a semiabelian variety. For an abelian variety A over a number field k, weak
approximation at the real places may fail badly: over some real completion kv , there
may be no k-point in a connected component of A(kv) = A(R). This is the basis of
the example given in Section 3.6.

The question as to whether the Brauer-Manin obstruction attached to B(X) is the
only obstruction to the Hasse principle on k-torsors of arbitrary connected algebraic
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groups was raised in [41, Ques. 1, p. 133]. Harari and Szamuely recently gave a
positive solution to this problem for torsors of semiabelian varieties.

THEOREM 3.13 (see Harari-Szamuely [25])
Let k be a number field, and let X be a k-torsor of a semiabelian variety G. Assume
that the Tate-Shafarevich group of the biggest quotient of G which is an abelian variety
is finite. If X has a family of local points Pv ∈ X(kv) (v running through the places
of k) which is orthogonal to B(X) with respect to the Brauer-Manin pairing, then X

has a k-point.

This implies the following global analogue of Theorem 3.3.

THEOREM 3.14
Let X be a homogeneous space of a (not necessarily linear) connected group G

such that the stabilizers of the geometric points of X are connected. Assume that the
Tate-Shafarevich group of the biggest quotient of G which is an abelian variety is
finite. If k is a totally imaginary number field, then X has a k-point if and only if
ob(X) = 0.

Proof
We follow the proof of Theorem 3.3 up to the place where Theorem 3.2 is used, and
we apply Theorems 2.13 and 3.13 instead. Then [2, Th. 7.2] (local) and [2, Cor. 7.4]
(global) allow us to finish the proof in the same way as before. �

3.6. Number fields: An example
We now proceed to construct a Q-torsor X of a noncommutative connected algebraic
group over Q such that ob(X) = 0, X has points over all completions of Q, and further,
Xc(AQ)B = Xc(AQ) �= ∅, but X has no Q-points. Thus, in general, the answer to the
aforementioned question is negative.

Let E/Q be the elliptic curve with affine equation

y2 = (x2 − 3)(x − 2).

We note that the set E(R) has two connected components: the connected component
of the origin of the group law, given by x ≥ 2, and the component given by x2 ≤ 3.

The quaternion algebra (x − 2, −1) over Q(E) comes from a (unique) Azumaya
algebra over E, which is denoted by A. If M is a p-adic or a real point of E, then the
value of A at M is either zero or the unique element of Br Qv of order 2.

An application of Magma (from the School of Mathematics and Statistics at the
University of Sydney, Australia) shows that E(Q) = {0, (2, 0)}, but in what follows
we need only the following statement.
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LEMMA 3.15
For any prime p, and for any point Mp ∈ E(Qp), the value A(Mp) is zero. The sum∑

v A(Mv), taken over all places v of Q, is zero if and only if MR is in the connected
component of 0 ∈ E(R). In particular, E(Q) is contained in the connected component
of 0 ∈ E(R).

Proof
We first prove that A takes only trivial values on Qp-points of E for any prime p. It is
enough to compute the values of A at the points Mp = (x, y) such that xy �= 0. Indeed,
since A is an Azumaya algebra over E, for each place v of Q the map E(Qv) → Z/2
given by evaluation of A is continuous, and for any nonempty Zariski open set U of
E, U (Qv) is dense in E(Qv). Let K = Q(

√−1).
Let p be an odd prime. If p splits in K (i.e., if p ≡ 1 mod 4), then −1 is a square in

Qp and the assertion is trivial. If p is inert in K (i.e., if p ≡ 3 mod 4), then α ∈ Q∗
p is

a norm from Kp, which is equivalent to (α, −1) = 0 ∈ Br Qp, if and only if vp(α) is
even. If vp(x) < 0, then 2vp(y) = vp((x2 − 3)(x − 2)) = 3vp(x). Hence vp(x)
is even, and then vp(x − 2) is even, and so (x − 2, −1) = 0 ∈ Br Qp. Assume that
vp(x − 2) ≥ 0. If vp(x − 2) > 0, then vp(x2 − 3) = 0. Hence 2vp(y) = vp(x − 2),
so that vp(x − 2) is even, and we conclude as before.

Let p = 2. Write x = u/v with u ∈ Z2 and v ∈ Z2, not both divisible by 2. In
Z2, we have a relation

z2 = (u2 − 3v2)(uv − 2v2) �= 0. (18)

If (u, v) ≡ (0, 1) or (1, 0) mod 2, then u2 − 3v2 ≡ 1 mod 4. In both cases, we find
(u2 − 3v2, −1) = 0 ∈ Br Q2. From (18), we conclude that (x − 2, −1) = 0 ∈ Br Q2.
It remains to consider the case where (u, v) ≡ (1, 1) mod 2. Write x = 1 + 2n

with n ∈ Z2. Then x − 2 = −1 + 2n and x2 − 3 = −2 + 4n + 4n2. Thus
(x − 2)(x2 − 3) = 2 + 4m for some m ∈ Z2, and this cannot be a square. So there are
no such points (x, y).

Finally, if (x, y) ∈ E(R), y �= 0, then (x − 2, −1)R = 0 is equivalent to x > 2.
Using reciprocity, we obtain the statement about E(Q). �

Let f : E′ → E be the unramified double covering given by u2 = x − 2. The curve
E′ has a Q-point above zero; choosing it for the origin of the group law on E′ turns
f into an isogeny of degree 2. We note that f (E′(R)) is the connected component of
zero of E(R), so that E(R)/f (E′(R)) = Z/2.

Let D be the Hamilton quaternions. The group L = SL1(D) is a Q(
√−1)/Q-

form of SL2; in particular, it is semisimple simply connected with centre {±1}.
Define G = (SL1(D) × E′)/(Z/2), where Z/2 is generated by (−1, P ), P ∈ E′(Q),
f (P ) = 0, P �= 0. We obtain a commutative diagram of extensions of algebraic
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groups

(19)

This gives rise to the following commutative diagram of pointed sets

(20)

and the compatible diagrams with Qp or R in place of Q.
We have the canonical isomorphisms

H1(Q, Z/2) = Q∗/Q∗2, H1(R, Z/2) = R∗/R>0,

H1
(
Qp, SL1(D)

) = Q∗
p/Nrd

(
(D ⊗Q Qp)∗

) = 1,

H1
(
Q, SL1(D)

) = H1
(
R, SL1(D)

) = R∗/R>0.

The map Z/2 → SL1(D) induces a surjection Q∗/Q∗2 → H1(Q, SL1(D)), which
itself induces a bijection {±1} = H1(Q, SL1(D)).

In the above diagrams, the map E(Q) → Q∗/Q∗2 on the affine open set of E

defined by x − 2 �= 0 is given by evaluation of the function x − 2. As one easily
checks, the value on the point at infinity is 1, and the value on the point x = 2 is the
value taken by x2 − 3, namely, 1. The same statement holds over any field extension
of Q.

PROPOSITION 3.16
Let G/Q be the algebraic group defined above. Let X be a torsor of G whose class
ξ ∈ H1(Q, G) is the image of −1 ∈ H1(Q, Z/2) under the map

H1(Q, Z/2) → H1(Q, G).

Then ob(X) = 0, X(AQ)B = X(AQ) �= ∅, but X(Q) = ∅.
Let Xc be a smooth compactification of X. One has Xc(AQ)B = Xc(AQ) �= ∅

and Xc(AQ)Br1X
c = ∅.

Proof
We use the commutativity and functoriality of the above diagrams. From
H1(Qp, SL1(D)) = 1, we deduce that the class of ξ ∈ H1(Q, G) has trivial image in
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H1(Qp, G). From the fact that E(R) → H1(R, Z/2) is onto, we deduce that the class
of ξ ∈ H1(Q, G) has trivial image in H1(R, G). Thus X(AQ) �= ∅.

Next, assume that the image of the class of −1 ∈ H1(Q, SL1(D)) in H1(Q, G) is
trivial. Then the image of that class in H1(Q, SL1(D)) comes from E(Q). Restricting
to the cohomology over R, we see that the class of −1 in H1(R, SL1(D)), which is
nontrivial, comes from the image of E(Q) in E(R). But E(Q) ⊂ f (E′(R)) (see Lem.
3.15), so this is not possible. Thus X is a nontrivial torsor of G, so that X(Q) = ∅.

Given the torsor X over Q under the group G, we may consider the quotient
Y = X/SL1(D) of X under the action of SL1(D) ⊂ G. This is a torsor over Q under
E, whose class in H1(Q, E) is the image of ξ under H1(Q, G) → H1(Q, E). The
projection map X → Y makes X into a torsor under SL1(D). Since ξ comes from
H1(Q, Z/2), the above diagram shows that the class of Y in H1(Q, E) is trivial. We
may thus identify Y = E. All in all, we see that X is a torsor over E under SL1(D).

This argument shows that an open set of X is isomorphic to the affine variety
given by the system of equations

y2 = (x2 − 3)(x − 2) �= 0, 2 − x = u2 + v2 + w2 + t2.

Let g = Gal (Q/Q). The projection map X → E induces a Galois equivariant
map from the 2-extension of continuous discrete g-modules

1 → Q[E]∗ → Q(E)∗ → Div E → Pic E → 0

to the 2-extension

1 → Q[X]∗ → Q(X)∗ → Div X → Pic X → 0.

Over Q, the projection X → E makes X into an SL2-torsor over E. Any such torsor is
locally trivial for the Zariski topology. Any invertible function on SL2 is constant, and
the Picard group of the simply connected group SL2 is trivial. From this, we deduce
that the maps Q

∗ → Q[E]∗ → Q[X]∗ and Pic E → Pic X are isomorphisms.
Pullback from E to X thus maps the 2-extension

1 → Q
∗ → Q(E)∗ → Div E → Pic E → 0

to the 2-extension

1 → Q
∗ → Q(X)∗ → Div X → Pic X → 0,

the map Pic E → Pic X being an isomorphism. We have E(Q) �= ∅; hence ob(E) =
0. Thus the class of the first extension is trivial; hence so is the class of the second
extension. This shows that ob(X) = 0.
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We now have ob(Xc) = ob(X) = 0. Theorem 2.13 then implies that X(AQ)B =
X(AQ) �= ∅. It also implies that Xc(AQ)B = Xc(AQ) �= ∅. This finishes the proof of
the proposition. �

Remark. The computation in Lemma 3.15 shows that the counterexample to the Hasse
principle on X is due to the Brauer-Manin obstruction given by π∗A ∈ Br X. The class
A ∈ Br X comes from Br E = Br1E; hence it lies in Br1X

c. Hence Xc(AQ)Br1X
c = ∅.

This is in accordance with a result of Harari [24], which we extend in the appendix.

Appendix. The Brauer-Manin obstruction for homogeneous spaces
Let k be a number field. We denote by � the set of all places of k, and we denote by
�r the set of all real places of k. If S ⊂ �, we set kS = ∏

v∈S kv . If X is a k-variety,
we have X(kS) = ∏

v∈S X(kv). In particular, X(k�) = ∏
v∈� X(kv).

For a connected k-group G, we write Gab := G/Glin; it is the biggest quotient of
G which is an abelian variety.

THEOREM A.1
Let G be a connected algebraic group over a number field k. Let X be a homogeneous
space of G such that the stabilizers of the geometric points of X are connected. Let
Xc be a smooth compactification of X. Assume that a point x� = (xv)v∈� ∈ X(k�)
is orthogonal to Br1X

c with respect to the Brauer-Manin pairing. Assume that the
Tate-Shafarevich group of the maximal abelian variety quotient Gab of G is finite.
Then, for any finite set S of nonarchimedean places of k and any open neighbourhood
US of xS = (xv)v∈S in X(kS), there exists a rational point x0 ∈ X(k) whose diagonal
image in

∏
v∈S X(kv) lies in US . Moreover, we can ensure that, for each archimedean

place v, the points x0 and xv lie in the same connected component of X(kv).

This theorem generalizes a recent result of Harari [24, Th. 1.1]), who considers torsors
under a connected algebraic group G. In the extreme case when G is an abelian variety,
our result is due to Manin [28] and Wang [48]. In the other extreme case when G

is a linear group, this result (including approximation at archimedean places) was
obtained in [3, Cor. 2.5]. In the general case, a proof by simple dévissage in order to
reduce the assertion to these two extreme cases does not work. Our method of proof
uses the reductions and constructions of Sections 3.1 and 3.3 in order to reduce the
assertion to the case when X is a k-torsor under a semiabelian variety (treated in
[24]) and to the Hasse principle and weak approximation for a homogeneous space
of a simply connected semisimple group with connected, character-free geometric
stabilizers (results obtained in [2], [1]; see also [12]).

The proof of Theorem A.1 occupies the rest of the appendix.
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Proof
Let X be a smooth, geometrically integral k-variety over a number field k. The Brauer-
Manin pairing

X(k�) × Br1X
c → Q/Z

defines a map

mX : X(k�) → (Br1X
c)D,

where (Br1X
c)D = Hom(Br1X

c, Q/Z). By the birational invariance of the Brauer
group (see [22]), this map does not depend on the choice of the smooth compactifica-
tion Xc. If ϕ : X → Y is a morphism of smooth, geometrically integral k-varieties,
then by Hironaka’s theorem one can construct smooth compactifications Y c of Y and
Xc of X such that ϕ extends to a morphism ϕc : Xc → Y c. The following diagram
then commutes:

In particular, if x� ∈ X(k�) is a point such that mX(x�) = 0, and if we define the
point y� = ϕ(x�) ∈ Y (k�), then mY (y�) = 0.

Let x� ∈ X(k�) be a point, let S be a finite set of nonarchimedean places of
k, and let UX,S be an open neighbourhood of the S-part xS of x�. For v ∈ �r , we
denote by UX,v the connected component of xv . We set UX,r = ∏

v∈�r
UX,v . We set

� = S ∪ �r and

UX,� = UX,S × UX,r ⊂ X(k�).

Then UX,� is an open neighbourhood of x� . We say that UX,� is the special neigh-
bourhood of x� defined by UX,S .

For the sake of the argument, it is convenient to introduce property (P):
(P) For any point x� ∈ X(k�) such that mX(x�) = 0, for any finite set S of

nonarchimedean places of k, and for any open neighbourhood UX,S of xS , there
exists a k-point x0 ∈ X(k) ∩ UX,� , where UX,� is the special neighbourhood
of x� defined by UX,S .

Theorem A.1 precisely says that property (P) holds for any X as in the theorem.
We need the following lemmas.
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LEMMA A.2
Let ψ : G → G′ be a surjective homomorphism of R-groups. Let X be a homoge-
neous G-variety, and let X′ be a homogeneous G′-variety. Let ϕ : X → X′ be a
ψ-equivariant morphism. Let x ∈ X(R), and set x ′ = ϕ(x) ∈ X′(R). Then ϕ takes
the connected component of x in X(R) onto the connected component of x ′ in X′(R).

Proof
Consider the morphism λx : G → X defined by g �→ xg for g ∈ G. The morphism
λx is smooth; hence the map λx : G(R) → X(R) is open. We see that the orbit xG(R)0

is open, where G(R)0 is the connected component of 1 in G(R). Clearly, xG(R)0 is
connected. Since all the other orbits of G(R)0 are also open, we see that our orbit
xG(R)0 is closed; hence it is the connected component of x in X(R). Thus we have
proved that the connected components in X(R) are orbits of G(R)0. Similarly, the
connected components in X′(R) are orbits of G′(R)0. Consider the action of G on G′

by g′ · g = g′ψ(g), where g′ ∈ G′, g ∈ G. By what has been proved, the connected
component G′(R)0 of 1 in G′(R) is the G(R)0-orbit of 1. Thus G′(R)0 = ψ(G(R)0).
Together with the formula x ′ψ(g) = ϕ(xg), this shows that ϕ maps a G(R)0-orbit
in X(R) onto a G′(R)0-orbit in X′(R). Thus ϕ maps the connected component of
x ∈ X(R) onto the connected component of ϕ(x) ∈ X′(R). �

The following lemma goes back to Cassels and Tate.

LEMMA A.3
Let ψ : A → A′ be a surjective homomorphism of abelian varieties over a number
field k. If X(A) is finite, then X(A′) is also finite.

Proof
By Poincaré’s complete reducibility theorem (cf. [34, Chap. IV, Sec. 19, Th. 1,
p. 173]), there exists an abelian variety A′′ over k such that A is isogenous to A′ ×A′′.
By [32, Chap. I, proof of Lem. 7.1], it follows that X(A′ × A′′) is finite. Thus X(A′)
is finite. �

For the sake of completeness, let us give a proof of the following well-known result.

LEMMA A.4
Let ϕ : Z → X be a torsor under a quasi-trivial torus P , where Z and X are smooth k-
varieties over a field k of characteristic zero. Then there is an induced homomorphism
ϕ∗ : Br1(Xc) → Br1(Zc), and that homomorphism is an isomorphism.

Proof
Let Y be a dense open set of a smooth, proper, geometrically integral variety Y c.
Let k(Y ) be the function field of Y . By well-known results of Grothendieck [22], the
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morphisms Spec k(Y ) → Y → Y c induce injections Br Y c ⊂ Br Y ⊂ Br k(Y ). Let
Z, Zc, X, Xc be as above. By properness of Xc and smoothness of Zc, the projection
morphism ϕ : Z → X extends to a morphism ϕ : W → Xc, where W ⊂ Zc is
an open set that contains all points of codimension 1 of Zc. We thus have a natural
map ϕ∗ : Br Xc → Br Z. By the purity theorem for the Brauer group (see [22], [5,
Sec. 3.4]), the restriction map Br Zc → Br W is an isomorphism. We thus have a
homomorphism ϕ∗ : Br Xc → Br Zc. The map ϕ∗ : Br Xc → Br Zc is induced
by the map Br k(X) → Br k(Z). It is none other than the natural map of unrami-
fied cohomology groups Brnr(k(X)/k) → Brnr(k(Z)/k) (see [5, Secs. 2.2.1, 2.2.2;
Prop. 4.2.3(a)]).

Since P is a quasi-trivial torus over any field F containing k, Shapiro’s lemma
and Hilbert’s theorem 90 yield H1

ét(k(X), P ) = 0. The generic fibre of Z → X is
thus k(X)-isomorphic to P ×k k(X). Since the quasi-trivial torus P as a k-variety is
an open set of affine space over k, we see that the field extension k(Z)/k(X) is purely
transcendental. From [5, Th. 4.1.5], we get that the map ϕ∗ : Brnrk(X) → Brnrk(Z)
is an isomorphism. Thus ϕ∗ : Br Xc → Br Zc is an isomorphism (use [5, Prop.
4.2.3(a)]). Similarly, ϕ∗ : Br X

c → Br Z
c

is an isomorphism. By the very definition
of Br1, we conclude that there is an induced map ϕ∗ : Br1X

c → Br1Z
c and that this

map is an isomorphism. �

We now start proving Theorem A.1. The proof is similar to that of Theorem 3.3.

First reduction
Let X and G be as in the theorem. We write Gu for Lu, where L = Glin. Set
G′ = G/Gu, Y = X/Gu. We have a canonical smooth morphism ϕ : X → Y . Then
Y is a homogeneous space of G′ with connected geometrical stabilizers. We have
(G′)lin = Glin/Gu; hence (G′)u = 1. We have (G′)ab = Gab; hence X((G′)ab) is
finite.

Assume that Y has property (P). We prove that X has this property. Let x� ∈ X(k�)
be a point such that mX(x�) = 0. Set y� = ϕ(x�) ∈ Y (k�). Since mX(x�) = 0, we
see that mY (y�) = 0. Let S and UX,S be as in (P). Set UY,S = ϕ(UX,S) ⊂ Y (kS). Since
the morphism ϕ : X → Y is smooth, the map ϕ : X(kS) → Y (kS) is open; hence UY,S

is open in Y (kS). Set � = S ∪ �r . Let UY,� denote the special open neighbourhood
of y� defined by UY,S . For each v ∈ �r , let UX,v denote the connected component
of xv in X(kv). By Lemma A.2, for each v ∈ �r the set ϕ(UX,v) is the connected
component of yv in Y (kv). Thus UY,� = ϕ(UX,�). Since Y has property (P), there
exists a k-point y0 ∈ Y (k) ∩ UY,� .

Let Xy0 denote the fibre of X over y0. It is a homogeneous space of the unipotent
group Gu. By [3, Lem. 3.1], the k-variety Xy0 has a k-point and has the weak approx-
imation property. Consider the set V� := Xy0 (k�) ∩ UX,� ; it is open in Xy0 (k�).
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Since y0 ∈ ϕ(UX,�), the set V� is nonempty. Since Xy0 has the weak approximation
property, there is a point x0 ∈ Xy0 (k) ∩ V� . Clearly, x0 ∈ X(k) ∩ UX,� . Thus X has
property (P). Thus, in the proof of Theorem A.1, we may assume that Gu = 1.

Second reduction
By Proposition 3.1, we may regard X as a homogeneous space of another connected
group G′ such that (G′)der is semisimple simply connected, and the stabilizers of the
geometric points of X in G′ are linear and connected. It follows from the construction
in the proof of Proposition 3.1 that there is a surjective homomorphism Gab → (G′)ab.
Since, by assumption, X(Gab) is finite, we obtain from Lemma A.3 that X((G′)ab)
is finite. Thus if Theorem A.1 holds for the pair (G′, X), then it holds for (G, X). We
see that in the proof of Theorem A.1 we may assume that Glin is reductive, that Gder

is semisimple simply connected, and that the stabilizers of the geometric points of X

in G are linear and connected.

Relaxing the assumptions
To prove Theorem A.1, it is enough to prove the following result. We write Gss for
Lss, where L = Glin. The notation H 1 was defined in Section 3.1.

THEOREM A.5
Let k be a number field, let G be a connected k-group, and let X be a homogeneous
space of G with geometric stabilizer H . Assume that
(i) Gu = {1};
(ii) H ⊂ G

lin
;

(iii) Gss is simply connected;
(iv) H 1 is connected and has no nontrivial characters (e.g., H is connected);
(v) X(Gab) is finite.
Then X has property (P).

Proof

Recall that the homogeneous space X defines a k-form of H
mult

which we denote by
M (see [3, Sec. 4.1]), and recall that there is a natural homomorphism M → Gsab.
We first prove a special case of Theorem A.5.

PROPOSITION A.6
With the hypotheses of Theorem A.5, assume that M injects into Gsab (i.e., assume
that H ∩ G

ss = H 1). Then X has property (P).
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Proof
Set Y = X/Gss. Then Y is a homogeneous space of the semiabelian variety Gsab;
hence it is a torsor of some semiabelian variety G′. We have (G′)ab = Gab; hence
X((G′)ab) is finite. We have a canonical smooth morphism ϕ : X → Y .

Let x� ∈ X(k�) be a point such that mX(x�) = 0. Let S, UX,S , and UX,� be
as in (P). Set y� = ϕ(x�) ∈ Y (k�). Since mX(x�) = 0, we see that mY (y�) = 0.
As in the first reduction, we define UY,S := ϕ(UX,S), we construct the corresponding
special open neighbourhood UY,� of y� , and we prove that UY,� = ϕ(UX,�). Now,
since Y is a torsor under the semiabelian variety G′ whose associated abelian variety
(G′)ab has finite Tate-Shafarevich group, by the theorem of Harari [24], the variety Y

has property (P). It follows that there exists a k-point y0 ∈ Y (k) ∩ UY,� .
Let Xy0 denote the fibre of X over y0. Consider the set V� := Xy0 (k�) ∩ UX,� ,

which is open in Xy0 (k�). Since y0 ∈ ϕ(UX,�), the set V� is nonempty. In particular,
Xy0 (kv) �= ∅ for any v ∈ �r . The variety Xy0 is a homogeneous space of Gss with
geometric stabilizer H ∩ G

ss = H 1. The group Gss is semisimple simply connected
by assumption (iii) of Theorem A.5. The group H 1 is connected and has no nontrivial
characters by assumption (iv) of Theorem A.5. By [2, Cor. 7.4], the fact that Xy0 has
points in all real completions of k is enough to ensure that Xy0 has a k-point. By [1,
Ths. 1.1, 1.4], [12], the variety Xy0 has the weak approximation property, and therefore
there is a point x0 ∈ Xy0 (k) ∩ V� . Clearly, x0 ∈ X(k) ∩ UX,� , which shows that X

has property (P). �

Let us resume the proof of Theorem A.5. We construct a quasi-trivial k-torus P , the
k-group F := G × P , a homogeneous space Z of F , and a morphism π : Z → X as
in the proof of Theorem 3.5. Since (Z, π) is a torsor under the quasi-trivial torus P ,
by Lemma A.4 the canonical map

π∗ : Br1(Zc)D → Br1(Xc)D

is an isomorphism. We have F ab = Gab; hence X(F ab) is finite.
Let x� ∈ X(k�) be a point, and assume that mX(x�) = 0. Since π : Z → X

is a torsor under a quasi-trivial torus, we can lift x� to some z� ∈ Z(k�). We have
mX(x�) = π∗(mZ(z�)). Since π∗ is an isomorphism, from mX(x�) = 0 we conclude
that mZ(z�) = 0.

Let S be as above, and let UX,S ⊂ X(kS) be an open neighbourhood of xS . Let
UX,� ⊂ X(k�) be the corresponding special neighbourhood of x� . Set

UZ,S = π−1(UX,S) ⊂ Z(kS).

For v ∈ �r , let UZ,v be the connected component of zv in Z(kv). By Lemma A.2,
π(UZ,v) = UX,v . Set UZ,r = ∏

v∈�r
UZ,v , and set UZ,� = UZ,S × UZ,r . Then UZ,�

is a special open neighbourhood of z� , and π(UZ,�) = UX,� .
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The homogeneous space Z of F satisfies the hypotheses of Proposition A.6,
so by this proposition there is a point z0 ∈ Z(k) ∩ UZ,� . Set x0 = π(z0); then
x0 ∈ X(k) ∩ UX,� . Thus X has property (P). This completes the proof of Theorem
A.5. �

This also completes the proof of Theorem A.1. �
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Brauer des compactifications lisses d’espaces homogènes, J. Algebraic Geom. 15
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algébrique, III: Préschémas quotients” in Séminaire Bourbaki, Vol. 6 (1960/1961),
no. 212, Soc. Math. France, Montrouge, 1995, 99 – 118. MR 1611786 337

[24] D. HARARI, The Manin obstruction for torsors under connected algebraic groups, Int.
Math. Res. Not. 2006, no. 68632. MR 2211158 324, 355, 360

[25] D. HARARI and T. SZAMUELY, Local-global principles for 1-motives, to appear in
Duke Math. J., preprint, arXiv:math/0703845v2 [math.NT] 323, 336, 351

[26] S. LICHTENBAUM, Duality theorems for curves over p-adic fields, Invent. Math. 7
(1969), 120 – 136. MR 0242831 323, 332, 333

http://www.ams.org/mathscinet-getitem?mr=1385140
http://www.ams.org/mathscinet-getitem?mr=0899402
http://www.arXiv.org/abs/0712.1957v1 [math.NT]
http://www.ams.org/mathscinet-getitem?mr=1906417
http://www.ams.org/mathscinet-getitem?mr=0429731
http://www.ams.org/mathscinet-getitem?mr=2060023
http://www.ams.org/mathscinet-getitem?mr=2097288
http://www.ams.org/mathscinet-getitem?mr=1971516
http://www.ams.org/mathscinet-getitem?mr=0225784
http://www.ams.org/mathscinet-getitem?mr=0444678
http://www.ams.org/mathscinet-getitem?mr=0207700
http://www.ams.org/mathscinet-getitem?mr=0241437
http://www.ams.org/mathscinet-getitem?mr=1611786
http://www.ams.org/mathscinet-getitem?mr=2211158
http://www.arXiv.org/abs/math/0703845v2 [math.NT]
http://www.ams.org/mathscinet-getitem?mr=0242831


ELEMENTARY OBSTRUCTION AND HOMOGENEOUS SPACES 363

[27] S. MAC LANE, Homology, Grundlehren Math. Wiss. 114, Springer, Berlin, 1963.
MR 0156879 329

[28] Y. I. MANIN, “Le groupe de Brauer-Grothendieck en géométrie diophantienne” in
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