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Low degree unramified cohomology of

generic diagonal hypersurfaces

J.-L. Colliot-Thélène and A. N. Skorobogatov

We prove that the i-th unramified cohomology group of the generic
diagonal hypersurface in the projective space of dimension n ≥
i+ 1 is trivial for i ≤ 3.

1. Introduction

Let k be a field with separable closure ks and absolute Galois group
Γ = Gal(ks/k). Let µ be a finite commutative group k-scheme of order not
divisible by char(k). The datum of such a group k-scheme µ is equivalent
to the datum of the finite Γ-module µ(ks) of order not divisible by char(k).
For an integer m ≥ 2 let µm be the group k-scheme of m-th roots of unity.
If N is a positive integer not divisible by char(k) such that Nµ = 0, then
µ(−1) denotes the commutative group k-scheme Homk−gps(µN , µ). The Ga-
lois module µ(−1)(ks) is HomZ(µN (ks), µ(ks)) with the natural Galois action.

Let X be a smooth integral variety over k. We denote by X(n) the set
of points of X of codimension n. In this paper, the unramified cohomology
group Hi

nr(X,µ), where i is a positive integer, is defined as the intersection
of kernels of the residue maps

∂x : H
i(k(X), µ) → Hi−1(k(x), µ(−1)),

for all x ∈ X(1). For equivalent definitions, see [CT95, Thm. 4.1.1]. Restric-
tion to the generic point of X gives rise to a natural map

Hi
ét(X,µ) → Hi

nr(X,µ).

Purity for étale cohomology implies that it is an isomorphism for i = 1 and
a surjection for i = 2, see [CT95, §3.4]. In the case i = 2 with µ = µm, where

1715

For the author's personal use only.

For the author's personal use only.



✐

✐

“6-Skorobogatov” — 2025/1/19 — 15:36 — page 1716 — #2
✐

✐

✐

✐

✐

✐

1716 J.-L. Colliot-Thélène and A. N. Skorobogatov

m is not divisible by char(k), this gives a canonical isomorphism

Br(X)[m]−̃→H2
nr(X,µm),

see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X is a smooth, proper, and
integral variety over k, then Hi

nr(X,µ) does not depend on the choice of X
in its birational equivalence class, see [CT95, Prop. 4.1.5] and [R96, Remark
(5.2), Cor. (12.10)].

Let n ≥ 2 and let K = k(a1, . . . , an) be the field of rational functions in
the variables a1, . . . , an. Let XK ⊂ Pn

K be the hypersurface with equation

xd0 + a1x
d
1 + . . .+ anx

d
n = 0,

where d is not divisible by char(k). In this paper, for i = 1, 2, 3 and n ≥ i+ 1,
we prove that the natural map

Hi(K,µ) → Hi
nr(XK , µ)

is an isomorphism, see Theorem 4.8. In the case when i = 2 and µ = µm with
m ≥ 2, this gives that the natural map of Brauer groups Br(K) → Br(XK)
induces an isomorphism of subgroups of elements of order not divisible by
char(k), see Corollary 4.9. In the case when k has characteristic zero, this
result was obtained in [GS, Thm. 1.5] by a completely different method,
using the topology of the Fermat surface as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which
applies inter alia to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do
not use the Gersten conjecture for étale cohomology [BO74].

Let us describe the structure of this note. In Section 2 we recall some
basic facts about unramified cohomology including a functoriality property
of the Bloch–Ogus complex with respect to faithfully flat morphisms with
integral fibres. In Section 3 we show that for smooth complete intersec-
tions X ⊂ Pn

k there are canonical isomorphisms Hi(k, µ)
∼

−→ Hi
nr(X,µ) for

i = 1, 2 when dim(X) ≥ i+ 1. Generic diagonal hypersurfaces are studied in
Section 4. The easy proof of the main theorem in the case i = 1 is given in
Section 4.1. This is used in the proof for i = 2, 3 in Section 4.3, after some
preparations in Section 4.2. Finally, in Section 5 we use a similar idea to give
a short proof of the triviality of the Brauer group of certain surfaces in P3

k(t)
defined by a pair of polynomials with coefficients in k. See Theorem 5.1,
which was proved in [GS] in the case when char(k) = 0.
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Our proof in this note develops a geometric idea suggested by Math-
ieu Florence during the second author’s talk at the seminar “Variétés ra-
tionnelles” in November 2022. The authors are very grateful to Mathieu
Florence for his suggestion.

2. Functoriality of the Bloch–Ogus complex

For any smooth integral variety X over k and any i ≥ 2 there is a complex

0 −→ Hi(k(X), µ)
(∂x)
−→

⊕

x∈X(1)

Hi−1(k(x), µ(−1))
(∂y)
−→

⊕

y∈X(2)

Hi−2(k(y), µ(−2)),

which we call the Bloch–Ogus complex. The maps in this complex are defined
in [R96, (2.1.0)]. (The map ∂x is the residue defined for discrete valuation
rings by Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the re-
sulting sequence is a complex is given in [R96, Section 2]. If y ∈ X(2) is a
regular point of the closure of x ∈ X(1), then the map

∂y : H
i−1(k(x), µ(−1)) → Hi−2(k(y), µ(−2))

is the residue map for the local ring of y in the closure of x, which is a
discrete valuation ring.

The unramified cohomology group Hi
nr(X,µ) is the homology group of

this complex at the term Hi(k(X), µ), i.e., the intersection of Ker(∂x) for all
x ∈ X(1).

Let p : X → Y be a faithfully flat morphism of smooth integral k-
varieties with integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there
is a chain map of complexes

0 // Hi(k(X), µ) //
⊕

v∈X(1) Hi−1(k(x), µ(−1)) //
⊕

x∈X(2) Hi−2(k(x), µ(−2))

0 // Hi(k(Y ), µ) //

OO

⊕

y∈Y (1) Hi−1(k(y), µ(−1)) //

OO

⊕

y∈Y (2) Hi−2(k(y), µ(−2))

OO

The middle vertical map is the natural one if p(x) = y, otherwise it is zero,
and similarly for the right-hand vertical map.

The morphism X → Y is called an affine bundle if Zariski locally on Y ,
it is isomorphic to Y ×k A

n → Y with affine transition morphisms. In this
case the vertical maps in the above diagram induce isomorphisms on the
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left-hand and middle homology groups, see [R96, Prop. (8.6)]. In particular,
we have an isomorphism

(1) Hi
nr(X,µ) ∼= Hi

nr(Y, µ).

Combined with [R96, Cor. (12.10)], this implies that Hi
nr(X,µ) is a stable

birational invariant of smooth and proper integral k-varieties.

3. Low degree unramified cohomology of complete

intersections

For a variety X over a field k we write Xs = X ×k ks. By a k-group of mul-
tiplicative type we understand a group k-scheme M such that M s is a group
ks-subscheme of (Gm,ks

)n, for some n ≥ 0. Such a k-group M is smooth if
and only if char(k) does not divide the order of the torsion subgroup of
the finitely generated abelian group Homks−gps(M

s,Gm,ks
). A finite com-

mutative group k-scheme of order not divisible by char(k) is a k-group of
multiplicative type.

Proposition 3.1. Let X be a smooth, projective, geometrically integral va-
riety over a field k such that the natural map Pic(X) → Pic(Xs) is an iso-
morphism of finitely generated free abelian groups. Then for any smooth
k-group of multiplicative type M the natural map

H2(k,M) → H2(k(X),M)

is injective.

Proof. We have a commutative diagram with exact rows and natural
vertical maps

0 // k×s // ks(X)× // Div(Xs) // Pic(Xs) // 0

0 // k× //

OO

k(X)× //

OO

Div(X) //

OO

Pic(X) //

∼=

OO

0

(2)

The abelian group Pic(X) is free, so the homomorphism Div(X) → Pic(X)
has a section. Then our assumption implies that the map of Γ-modules
Div(Xs) → Pic(Xs) has a section. By definition, the elementary obstruction
e(X) ∈ Ext2k(Pic(X

s), k×s ) is the class of the 2-extension of Γ-modules given
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by the upper row of (2). Thus we have e(X) = 0. The result now follows
from [CTS87, Prop. 2.2.5]. □

For injectivity results for the map H2(k,M) → H2(k(X),M) in the case
of integral, smooth k-varieties with a k-point see [CT95, Lemma 2.1.5] and
[CT95, Thm. 3.8.1]. Note that the map H2(k,Gm,k) → H2(k(X),Gm,k) is
not injective when X is a conic without a k-point.

Lemma 3.2. Let X ⊂ Pn
k be a complete intersection. Let µ be a finite com-

mutative group k-scheme of order not divisible by char(k).
(a) If dim(X) ≥ 2, then the natural map H1(k, µ) → H1

ét(X,µ) is an iso-
morphism.

(b) If dim(X) ≥ 3, then the natural map H2
ét(P

n
k , µ) → H2

ét(X,µ) is an
isomorphism.

Proof. A combination of the weak Lefschetz theorem with Poincaré
duality gives that the map Hi

ét(P
n
ks
, µ) → Hi

ét(X
s, µ) is an isomorphism

for i < dim(X), see [K04, Cor. B.6]. In particular, if dim(X) ≥ 2, then
H1

ét(X
s, µ) = 0. Then the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(X
s, µ)) ⇒ Hp+q

ét (X,µ)

implies the first claim.
If dim(X) ≥ 3, then H2

ét(P
n
ks
, µ) → H2

ét(X
s, µ) is an isomorphism of Γ-

modules. The above spectral sequence gives rise to the following commuta-
tive diagram with exact rows

0 // H2(k, µ) // H2
ét(X,µ) // H2

ét(X
s, µ)Γ // H3(k, µ)

0 // H2(k, µ) //

id

OO

H2
ét(P

n
k , µ)

//

OO

H2
ét(P

n
ks
, µ)Γ //

∼=

OO

H3(k, µ)

id

OO

By the 5-lemma we deduce that H2
ét(P

n
k , µ) → H2

ét(X,µ) is an isomorphism.
□

Proposition 3.3. Let X ⊂ Pn
k be a smooth complete intersection of dimen-

sion dim(X) ≥ 3. Let µ be a finite commutative group k-scheme of order not
divisible by char(k). Then the natural map

H2(k, µ) → H2
nr(X,µ)

is an isomorphism.
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Proof. The map Z ∼= Pic(Pn
ks
) → Pic(Xs) is an isomorphism by [H70,

Ch. IV, Cor. 3.2], hence Pic(X) → Pic(Xs) is an isomorphism. By Propo-
sition 3.1 it is thus enough to prove that the map H2(k, µ) → H2

nr(X,µ) is
surjective.

Choose an affine subspace An
k ⊂ Pn

k such that X ∩ An
k ̸= ∅. Our map is

the composition of maps in the top row of the following natural commutative
diagram:

H2(k, µ) //

id
��

H2
ét(P

n
k , µ)

∼= //

��

H2
ét(X,µ) //

��

H2
nr(X,µ)

� _

��
H2(k, µ)

∼= // H2
ét(A

n
k , µ)

// H2
ét(X ∩ An

k , µ)
// H2(k(X), µ)

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and
the right-hand map is surjective, as was recalled in the introduction. Thus
any a ∈ H2

nr(X,µ) can be lifted to an element b ∈ H2
ét(P

n
k , µ). The image of b

in H2
ét(A

n
k , µ) comes from a unique element c ∈ H2(k, µ). The commutativity

of the diagram gives that the image of c in H2(k(X), µ) is equal to the image
of a. But the right-hand vertical map is injective, hence c is a desired lifting
of a to H2(k, µ). □

4. Generic diagonal hypersurfaces

Let Π1 (respectively, Π2) be the projective space with homogeneous co-
ordinates x0, . . . , xn (respectively, t0, . . . , tn). Write K = k(Π2). Let X ⊂
Π1 ×Π2 be the smooth hypersurface

(3) t0x
d
0 + . . .+ tnx

d
n = 0,

where d is coprime to the characteristic exponent of k. Let p be the projection
X → Π1, and let f be the projection X → Π2. The generic fibre XK of
f is a smooth diagonal hypersurface of degree d in the projective space
(Π1)K ∼= Pn

K .

Lemma 4.1. With notation as above, the following statements hold.
(i) The fibres of f above the codimension 1 points of Π2 are integral if

n ≥ 2 and geometrically integral if n ≥ 3.
(ii) The fibres of f above the codimension 2 points of Π2 are integral if

n ≥ 3 and geometrically integral if n ≥ 4.
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Proof. One only needs to check this for the singular fibres, which are the
fibres above the generic points of the projective subspaces given by ti = 0
or by ti = tj = 0. □

4.1. Unramified cohomology in degree 1

Lemma 4.2. Let f : X → Y be a proper and flat morphism of smooth and
geometrically integral varieties over a field k. Write K = k(Y ) and let XK

be the generic fibre of f . Assume that the fibres of f above the points of Y
of codimension 1 are integral and XK is geometrically integral. Let m ≥ 2
be an integer. Then the map f∗ : Pic(Y )/m → Pic(X)/m is injective if and
only if Pic(X)[m] → Pic(XK)[m] is surjective.

Proof. In our situation we have an exact sequence

(4) 0 → Pic(Y )
f∗

−→ Pic(X) → Pic(XK) → 0.

Exactness at Pic(XK): since f is proper and flat, and X is smooth, the
Zariski closure in X of a codimension 1 point of XK has codimension 1 in
X. On a regular variety, any Weil divisor is a Cartier divisor. Exactness at
Pic(X): if D ∈ Div(X) restricts to a principal divisor on XK , then D is the
sum of a principal divisor in X and a divisor D′ supported on a finite union
of irreducible codimension 1 subvarieties of X whose generic points are not
in XK . Since f is flat and proper, hence surjective, and the fibres f−1(y),
for y ∈ Y (1), are integral, f induces a bijection between the points x ∈ X(1)

which are not in XK and the points y ∈ Y (1). For such a pair (x, y) with
y = f(x), the inverse image of the divisor on Y defined by y is the divisor on
X defined by x, with multiplicity one. Thus D′ ∈ f∗Div(Y ). Exactness at
Pic(Y ): if D ∈ Div(Y ) is such that f∗D = divX(φ), where φ ∈ k(X)×, then
the restriction of φ to XK is a regular function. Since XK is proper over K
and integral, φ is contained in the algebraic closure of K in K(X), which
is K itself because XK is geometrically integral, see [P17, Prop. 2.2.22].
Thus we have φ ∈ K×. Then D − divY (φ) ∈ Div(Y ) goes to zero in Div(X).
Since the map f is proper and flat, it is surjective, hence D = divY (φ) is a
principal divisor in Y .

For the author's personal use only.

For the author's personal use only.



✐

✐

“6-Skorobogatov” — 2025/1/19 — 15:36 — page 1722 — #8
✐

✐

✐

✐

✐

✐

1722 J.-L. Colliot-Thélène and A. N. Skorobogatov

From (4) we get a commutative diagram

0 // Pic(Y )
f∗

// Pic(X) // Pic(XK) // 0

0 // Pic(Y )
f∗

//

[m]

OO

Pic(X) //

[m]

OO

Pic(XK) //

[m]

OO

0

Applying the snake lemma to this diagram, we prove the lemma. □

Proposition 4.3. Let m ≥ 2 be an integer. Let k be a field of characteristic
exponent coprime to m. Let f : X → Y be a proper and flat morphism of
smooth and geometrically integral varieties over k such that

(i) the fibres of f above the codimension 1 points of Y are integral and
the generic fibre XK , where K = k(Y ), is geometrically integral;

(ii) Pic(X)[m] = 0;
(iii) f∗ : Pic(Y )/m → Pic(X)/m is injective.

Then H1(K,µm) → H1
ét(XK , µm) is an isomorphism.

Proof. The Kummer sequence gives rise to an exact sequence

0 → K×/K×m → H1
ét(XK , µm) → Pic(XK)[m] → 0.

By Lemma 4.2 we have Pic(XK)[m] = 0. □

Theorem 4.4. Let µ be a finite commutative group k-scheme of order not
divisible by char(k). Let n ≥ 2. Let Π1, Π2, X, K = k(Π2) be as above. Then
the map H1(K,µ) → H1

ét(XK , µ) is an isomorphism.

Proof. Let us first prove the statement for µ = µm with m not divisible
by char(k). We check the assumptions of Proposition 4.3 for f : X → Π2.
Since all fibres of f have the same dimension, f is flat by miracle flatness.
By Lemma 4.1, assumption (i) is satisfied. The projection p : X → Π1 is a
projective bundle over Π1. Therefore we have a commutative diagram with
exact rows

0 // Pic(Π1) // Pic(X) // Pic(Pn−1
k(Π1)

) // 0

0 // Pic(Π1) //

id

OO

Pic(Π1 ×Π2) //

OO

Pic((Π2)k(Π1))
//

∼=

OO

0
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The right-hand vertical map is induced by the inclusion of a projective hy-
perplane in a projective space, so it is an isomorphism. Hence (ii) holds and
the restriction map Pic(Π1 ×Π2) → Pic(X) is an isomorphism. It follows
that Pic(Π2) → Pic(X) is split injective, hence (iii) holds.

Let E/k be a finite Galois extension, with Galois group G, such that
µE = µ×k E is isomorphic to a finite product of groups µm,E where m
is coprime to char(k). Let L be the compositum of the linearly disjoint
field extensions K/k and E/k. We have µ(E) = µ(L) = H0

ét(XL, µ). The
Hochschild–Serre spectral sequence gives rise to the following commutative
diagram with exact rows

0 // H1(G,µ(L)) // H1
ét(XK , µ) // H1

ét(XL, µ)
G // H2(G,µ(L))

0 // H1(G,µ(L)) //

id

OO

H1(K,µ) //

OO

H1(L, µ)G //

∼=

OO

H2(G,µ(L))

id

OO

Since the result is already proved for µm, all vertical maps, except possibly
the map H1(K,µ) → H1

ét(XK , µ), are isomorphisms. Hence so is this map.
□

Remark 4.5. The geometric argument based on the projective bundle
structure of X ⊂ Π1 ×Π2 over Π1 in the proof of Theorem 4.4 is needed
only in the case n = 2, that is, when the hypersurface XK ⊂ P2

K is a smooth
curve of degree d. When n ≥ 3 and X ⊂ Pn

K is an arbitrary smooth hyper-
surface, we have H1(K,µ) ∼= H1(XK , µ) by Lemma 3.2 (a).

4.2. Basic diagram

We now assume that n ≥ 3 and i ≥ 2, keeping the assumption that µ is a
finite commutative group k-scheme of order not divisible by char(k). Recall
the Bloch–Ogus complex from Section 2:

Hi(k(X), µ)
(∂x)
−→

⊕

x∈X(1)

Hi−1(k(x), µ(−1)) →
⊕

x∈X(2)

Hi−2(k(x), µ(−2)).

Since the fibres Xy = f−1(y) above y ∈ Π
(1)
2 are integral (which holds for

n ≥ 2, see Lemma 4.1) we obtain a complex

Hi
nr(XK , µ)

(∂y)
−→

⊕

y∈Π
(1)
2

Hi−1(k(Xy), µ(−1)) →
⊕

x∈X(2)

Hi−2(k(x), µ(−2)).
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To simplify notation, in what follows we do not write the coefficients of
cohomology groups. One should bear in mind that there is a change of twist
when the codimension of points increases.

Since this is a complex, the image of ∂y is unramified over the smooth
locus of Xy. If Xy is smooth we write X ′

y = Xy. In the opposite case, Xy is
the projective cone over the hyperplane section of X given by some ti = 0,
and then we denote by X ′

y this hyperplane section, which is geometrically
integral and smooth since n ≥ 3. In this case, the smooth locus Xy,sm ⊂ Xy

is an affine bundle over X ′

y, so we have Hi−1
nr (Xy,sm) ∼= Hi−1

nr (X ′

y) by (1).

Thus Im(∂y) is contained in Hi−1
nr (X ′

y). Since the fibres Xy above y ∈ Π
(2)
2

are integral (note that they need not be geometrically integral if n = 3), from
the diagram in Section 2 we obtain a commutative diagram of complexes

0 // Hi
nr(XK)/Hi(k) //

⊕

y∈Π
(1)
2

Hi−1
nr (X ′

y) //
⊕

y∈Π
(2)
2

Hi−2(k(Xy))

0 // Hi(K)/Hi(k) //

OO

⊕

y∈Π
(1)
2

Hi−1(k(y)) //

OO

⊕

y∈Π
(2)
2

Hi−2(k(y))

OO

where the vertical maps are induced by f . Note that since X is a projective
bundle over the projective space Π1, the map Hi(k) → Hi(k(X)) is injective.
So is the map Hi(k) → Hi(K) = Hi(k(Π2)).

Let Y = An
k ⊂ Π2 be the affine space given by t0 ̸= 0. From the previous

diagram we then get a commutative diagram of complexes

0 // Hi
nr(XK)/Hi(k) //

⊕

y∈Y (1) Hi−1
nr (X ′

y) //
⊕

y∈Y (2) Hi−2(k(Xy))

0 // Hi(K)/Hi(k) //

OO

⊕

y∈Y (1) Hi−1(k(y)) //

OO

⊕

y∈Y (2) Hi−2(k(y))

OO

(5)

Since Y ∼= An
k , the bottom complex is exact by [R96, Prop. 8.6].

The homology group of the top complex at the first term is
Hi

nr(XY )/H
i(k), where XY = f−1(Y ) ⊂ X. Let us show that this group is

zero. The fibres of p : X → Π1 are hyperplanes in Π2. The map p : XY → U
is an affine bundle, and p(XY ) = U , where U = Pn

k \ {(1 : 0 : . . . : 0)}. By
(1) the map p∗ : Hi

nr(U) → Hi
nr(XY ) is an isomorphism. Since U is the com-

plement to a k-point in Π1
∼= Pn

k , and n ≥ 2, we have

Hi(k, µ) ∼= Hi
nr(Π1, µ) ∼= Hi

nr(U, µ).
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The following lemma is proved by a straightforward diagram chase.

Lemma 4.6. Suppose that we have a commutative diagram of abelian
groups

A � � i // B
j // C

0 // D //

a

OO

E //

b ∼=

OO

F
� ?

c

OO

where i is injective, b is an isomorphism, c is injective, the top row is a
complex, and the bottom row is exact. Then a is an isomorphism.

From Lemma 4.6 we conclude:

Proposition 4.7. With notation as above, if the middle vertical map in
diagram (5) is an isomorphism and the right-hand vertical map is injective,
then

f∗ : Hi(K,µ) → Hi
nr(XK , µ)

is an isomorphism.

4.3. Unramified cohomology in degrees 2 and 3

The main result of this paper is the following

Theorem 4.8. Let Π1 (respectively, Π2) be the projective space with homo-
geneous coordinates x0, . . . , xn (respectively, t0, . . . , tn). Write K = k(Π2).
Let X ⊂ Π1 ×Π2 be the hypersurface

(6) t0x
d
0 + . . .+ tnx

d
n = 0.

where d is coprime to the characteristic exponent of k. Let f : X → Π2 be
the natural projection, and let XK be the generic fibre of f . Let µ be a finite
commutative group k-scheme of order not divisible by char(k).

(i) If n ≥ 3, then f∗ : H2(K,µ) → H2
nr(XK , µ) is an isomorphism.

(ii) If n ≥ 4, then f∗ : H3(K,µ) → H3
nr(XK , µ) is an isomorphism.

Proof. (i) Consider diagram (5) for i = 2. Then the middle vertical map
of the diagram is an isomorphism. This follows from Theorem 4.4 when Xy

is singular, which happens exactly when the codimension 1 point y is given
by ti = 0 for some i = 1, . . . , n. (Note that if n = 3 we need Theorem 4.4 in
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the case n = 2.) If Xy is smooth, the isomorphism follows from Lemma 3.2
(a). By Lemma 4.1, each fibre Xy above a codimension 2 point y is integral,
hence the right hand vertical map is injective. By Proposition 4.7, this proves
(i).

(ii) Consider diagram (5) for i = 3. For y ∈ Y (1) such that Xy is singu-
lar, the vertical map H2(k(y)), µ(−1)) → H2

nr(X
′

y, µ(−1)) is an isomorphism

by (i). For y ∈ Y (1) such that Xy is smooth, the map H2(k(y), µ(−1)) →

H2
nr(Xy, µ(−1)) is an isomorphism by Proposition 3.3. For y ∈ Π

(2)
2 the fi-

bre Xy is geometrically integral over k(y) by Lemma 4.1, hence k(y) is
separably closed in k(Xy). Thus the restriction map H1(k(y), µ(−2)) →
H1(k(Xy), µ(−2)) is injective, so the right-hand vertical map in the diagram
is injective. By Proposition 4.7, this proves (ii). □

Corollary 4.9. For n ≥ 3, the map Br(K) → Br(XK) induces an isomor-
phism of subgroups of elements of order not divisible by char(k).

Proof. This follows from Theorem 4.8 (i) by taking µ = µm for each
integer m not divisible by char(k). □

Remark 4.10. Only the case n = 3 of this corollary requires the above
proof. For n ≥ 4 and any smooth hypersurface in Pn, we have the general
Proposition 3.3.

5. Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the
surface given by the equation (7) below over the field of rational functions
K = k(τ), where τ = λ/µ, is naturally isomorphic to Br(K) away from p-
primary torsion if char(k) = p. The motivation for this comes from the recent
paper [GS], where the same result was proved in the case when char(k) = 0
(combine [GS, Thm. 1.1 (i)] and [GS, Thm. 1.4]).

Theorem 5.1. Let k be a field. Let d be a positive integer. Let f(x, y)
and g(z, t) be products of d pairwise non-proportional linear forms. Let X ⊂
P1
k ×k P

3
k be the hypersurface given by

(7) λf(x, y) = µg(z, t),

where (λ : µ) are homogeneous coordinates in P1
k and (x : y : z : t) are homo-

geneous coordinates in P3
k. Let K = k(P1

k) and let XK be the generic fibre of
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the projection f : X → P1
k. Then the natural map Br(K) → Br(XK) induces

an isomorphism of subgroups of elements of order not divisible by char(k).

Proof. The singular locus Xsing is contained in the union of fibres of f
above λ = 0 and µ = 0. The fibre above µ = 0 is given by f(x, y) = 0. It
is a union of d planes in P3

k through the line x = y = 0. The intersection
of Xsing with the fibre above µ = 0 is the zero-dimensional scheme given
by x = y = g(z, t) = 0. The situation above λ = 0 is entirely similar. Let
Y = X \Xsing be the smooth locus of X/k. The projection p : X → P3

k is
a birational morphism which restricts to an isomorphism YV −̃→V on the
complement V to the curve in P3

k given by f(x, y) = g(z, t) = 0. We have

Br(k) ∼= Br(P3
k)

∼= Br(V ) ∼= Br(YV ),

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one
is by purity for the Brauer group [CTS21, Thm. 3.7.6]. Since Y (k) ̸= ∅,
we have Br(k) ⊂ Br(Y ) ⊂ Br(YV ) where the second inclusion is by [CTS21,
Thm. 3.5.5]. We conclude that Br(Y ) ∼= Br(k).

Let m ≥ 2 be an integer not divisible by char(k). If a closed fibre XM =
f−1(M) is smooth, then XM is a smooth surface in P3

k(M), thus we have

(8) H1
ét(XM ,Z/m) ∼= H1(k(M),Z/m)

by Lemma 3.2 (a). The smooth locus of the fibre of f above µ = 0 is a
disjoint union of d affine planes A2

k. We have

(9) H1
ét(A

2
k,Z/m) ∼= H1(k,Z/m)

since char(k) does not divide m.
Without loss of generality we can write

f(x, y) = c

d
∏

i=1

(x− ξiy), g(z, t) = c′
d
∏

j=1

(z − ρjt),

where c, c′ ∈ k× and ξi, ρj ∈ k for i, j = 1, . . . , d. We note that for each pair
(i, j) the map sij : (λ : µ) →

(

(λ : µ), (ξi : 1 : ρj : 1)
)

is a section of the mor-
phism f : X → P1

k.
Each section sij gives a K-point of XK . Thus the natural map Br(K) →

Br(XK) is injective.
Let α ∈ Br(XK)[m]. Evaluating α at the K-point of XK given by s1,1

gives an element β ∈ Br(K)[m]. We replace α by α− β.
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Note that each section sij(P
1
k) meets every closed fibre of f at a smooth

point. The new element α ∈ Br(XK)[m] has trivial residue on the irreducible
component of the smooth locus of every fibre of f that s1,1(P

1
k) intersects.

Indeed, by (8) and (9) this residue is constant, but specialises to zero at the
intersection point with s1,1(P

1
k). In particular, α has trivial residues at the

smooth fibres of f , as well as at the affine plane given by x− ξ1y = 0 in the
fibre µ = 0 and the affine plane given by z − ρ1t = 0 in the fibre λ = 0.

We now evaluate α at the K-point of XK given by s1,j , where j =
2, . . . , d. The result is an element of Br(K) which is unramified everywhere
except possibly at the k-point of P1

k given by λ = 0. By Faddeev reciprocity
[GS17, Thm. 6.9.1], the residue at that point must be zero, too. This implies
that α is unramified at the smooth locus of the fibre at λ = 0. A similar
argument using sections si,1 for i = 2, . . . , d shows that α is unramified at
the smooth locus of the fibre at µ = 0.

We see that the residue of α at every codimension 1 point of Y is zero. By
the purity for the Brauer group, α belongs to Br(Y ). We have proved earlier
that the natural map Br(k) → Br(Y ) is an isomorphism, hence α ∈ Br(k).
It follows that Br(K)[m] → Br(XK)[m] is an isomorphism. □
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