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1. I n t r o d u c t i o n  

Let k be a number field, and K an extension of degree n. We shall write N(xl,...,  Xn) for 

the norm form Ntc/k (w 1 x I +... + Wn Xn), where { w 1, ..., wn } is a basis of K as a vector space 

over k. Let P(t) be a polynomial with coefficients in k. In this paper  we are interested 

in the Hasse principle and the density of solutions in k of the following Diophantine 

equation: 

P(t) =N(xl ,  ...,Xn). (1) 

Let k be an algebraic closure of k. In the case when P(t) has at most one root in k, 

the open subset of the affine variety (1) given by P(t)y~O is a principal homogeneous 

space under an algebraic k-torus. In this case it is well known that  the Brauer Manin 

obstruction is the only obstruction to the Hasse principle and weak approximation on any 

smooth projective model of this variety (Colliot-Th~l~ne and Sansuc [CSanl]). In this 

paper  we prove the same result when P(t) has exactly two roots in k and no other roots 

in k, and k is the field of rational numbers Q. An immediate change of variables then 

reduces (1) to the equation 

ta~ (2) 

where a E k*, and a0 and al are positive integers. We can assume without loss of generality 

that  ai s a t i s f y  0 < a i < n .  

A remarkable feature of our work is that  it combines the method of descent with the 

Hardy-Li t t lewood circle method.  I t  appears that  this is the first t ime such an approach 

has been used.(1) One consequence of this is that  we are able to handle an equation 

(1) The second author learnt the idea tha t  the circle method can be used for proving the Hasse 
principle and weak approximation for varieties appearing after descent from Per Salberger (see the survey 
[C, p. 331]). 
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of degree n in as few as n +  1 variables. Normal applications of the circle method are 

restricted to equations in 2n variables, at the very least. 

The affine variety X given by (2) contains two obvious rational points given by xi=O 

for all i--1, ..., n, t = 0  or t = l .  The point corresponding to t = 0  (resp. t - - l )  is smooth 

if and only if ao=l (resp. a l = l ) .  So if one of these conditions is satisfied, the smooth 

Hasse problem is trivial, hut it is not clear how to find more rational points (see also the 

Remark in w When n = 2  the existence of a smooth k-point on the quadric X implies 

the rationality of X.  When n = 3  and a0 + a l  ~< 3, the existence of a smooth k-point on the 

cubic X implies the unirationality of X (see e.g. [CSal, Proposition 1.3]). However, for 

general n no method ensuring that  there are other k-rational points seems to be known.(2) 

Another phenomenon appearing in the cubic case is the existence of counterexamples 

to weak approximation. For example, when a 0 = a l = l ,  k = Q  and K---Q(O), where /? 

is a root of x3-7x2+14x-7=O,  the set X ( Q )  is not dense in X(Q7)  (D. Coray, see 

[CSal, (8.2)]). In the cubic case Colliot-Th~l~ne and Salberger proved that  the failure 

of weak approximation is always accounted for by the Brauer-Manin obstruction ([CSal, 

Theorem 6.2]. The non-trivial case here is when a 0 = a l - - 1 ,  because otherwise X is 

rational over k, see [CSal, Lemma 6.1]). 

Our main result is the following theorem. 

THEOREM 1.1. Let k be the field of rational numbers Q. If (ao,al ,n)=l,  then 

the Brauer-Manin obstruction is the only obstruction to the Hasse principle and weak 

approximation on any smooth and projective model of the variety X given by (2). If there 

is no Brauer-Manin obstruction to the Hasse principle on such a model, then the Q- 

rational points are Zariski dense in X.  

Note that  the projection to the coordinate t equips an appropriate  smooth and 

projective model of X with a inorphism to p1  such that  at most three fibres are not 

geometrically integral (the fibres at 0, 1 and co). The known methods (descent and 

fibration) apply well to the case of at most two "bad" fibres, but the general case of 

three bad fibres remains open (see, however, [CSal], [CSk, Theorem B] and the ensuing 

comments  for a discussion of known cases). Note also that  the smooth k-fibres of the 

projection of X to the coordinate t are principal homogeneous spaces under the norm 

torus, and in general satisfy neither the Hasse principle nor weak approximation.  (If each 

bad fibre were to contain an irreducible component  of multiplicity 1 which splits into two 

over an algebraic closure of the residue field, then we would be able to apply the results 

of [HS].) 

(2) When K is a cyclic extension of an arbitrary number field k, and P(t) is a separable polynomial 
of any degree, it is proved in [CSS, Theorem 1.1 and Example 1.6], that under Schinzel's hypothesis (H) 
the conclusions of our Theorem 1.1 still hold. 
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Our proof is a combination of descent and the circle method,  whence the restriction 

on the ground field. We need the validity of the Hasse principle and weak approximation 

on a certain variety obtained after descent. This is a smooth affine variety YC A~ n given 

by the equation 

roN(yl ,  ..., y n ) + r l N ( z l ,  ..., zn) = 1, (3) 

where ro,rlEk*. When k = Q  the Hasse principle for (3) follows from an asymptot ic  

lower bound for the number of solutions of the homogenized form of (3) in a large box, 

obtained by Birch, Davenport  and Lewis using the circle method [BDL]. In this paper  

the method of [BDL] is extended to prove that  Y satisfies weak approximation.  

It  is quite likely that  the theorem still holds when (a0, a l , n ) r  but the proof of 

this would be much more technical and is not discussed here.(3) 

2. U n i v e r s a l  t o r s o r s  

In this section k is any field of characteristic zero with algebraic closure/~, Fk = Gal(fc/k). 

When X is a k-variety we write -~=  X • k k. 

Let a0, al and n be positive integers such that  (a0, al ,  n)--1.  For (~ck* let X be the 

subvariety of A n+l given by (2). k 

LEMMA 2.1. There exists a positive integer at, coprime to ao, such that X is biratio- 

nally equivalent to the affine variety (2) with al replaced by a t. 

Proof. Let d = ( a l , n ) .  Then ( a 0 , d ) = l .  By the theorem on primes in an ari thmetic 

progression there exist a positive integer m and a prime number  p not dividing ao, such 

that  dp=al+mn.  Let atl=dp. The desired birational map is given by x~--(1- t ) - ' "x~,  

i= l, ..., n. [] 

Without  loss of generality now we assume that  (a0, a l ) = l .  

Remark. When ao, al or ao+al is coprime to n, it can be shown, using an appro- 

priate base change and the Lang-Nishimura lemma ([L], IN]), that  every proper model 

of X has a k-rational point. (Extracting a root of a local parameter  one finds a smooth 

k-point on the covering variety. When (ao,n)=l  choose b such that  aob=-I mod n, 

then write t= t  b. The resulting variety is birationally equivalent to the variety given by 

t l ( 1 - tb ) a~=(~N(z l  ..... z,~), and the point t l=Zl  . . . . .  z,~=O is smooth. When (al,  n)= 1 

one needs to extract a root of t -  1, and when ( ao+a l ,  n ) = l  one extracts a root from t -1, 

a local parameter  at c~. Now the Lang-Nishimura lemma says that  if X1--+X2 is a 

(3) See the forthcoming paper by J.-L. Colliot-Th61bne, D. Harari and the second author for the 
proof of this result. 



164 R. HEATH-BROWN AND A. SKOROBOGATOV 

rational map of integral varieties over any field k, X 1 has a smooth k-point, and X2 is 

proper, then X2 has a k-point.) This is not true when do=a1=2,  n=4 ,  and K is a totally 

imaginary number field: then the open subset t 2 ( t -  1)2=_ N(zl ,  z2, z3, z4)r 0 has no real 

points, hence there are no real points on any smooth and proper model. 

The main result of this section is the following theorem. 

THEOREM 2.2. Let X t = X s m o o t h  be the smooth locus of X .  Universal X'-torsors 

exist, and any such torsor is birationally equivalent to the affine variety (3) for some 

to, rlCk*. 

Proof. The k-variety .~ can be given by the equation 

t a ~  Un . 

A straightforward computation shows that  X ~ can be described as follows. The morphism 

X-+A~ given by projection to the coordinate t has exactly two geometrically reducible 

fibres, Xo over t = 0  and X1 over t = l .  Let iE{0,1}. If ai=l,  we let Zi be empty; 

otherwise let Zi be the closed subset of the fibre Xi consisting of points which belong to 

two or more irreducible components of Xi, that  is, such that uj = u / , = 0  for some jC j l .  

Geometrically, Xi \Z i  is the smooth locus of Xi. Then we have X~=X\(ZoUZ1) .  In 

particular, X~=X when do=a1= 1. The morphism X~--+A~ is always surjective. Let D ~ 

i=1,  ...,n, be the divisor on XI given by t=ui=O. Similarly, let D1 i=1,  ...,n, be given 

by 1 - t = u i = 0 .  Note that  

- D O D 1 div(ui)=ao ~ i= l , . . . , n .  (4) d i v ( t ) -  E i,  d i v ( 1 - t ) =  i ,  ni 
i=1 i=l  

We now check that  k[Xq*=k*. Indeed, the generic fibre of X'--+A~ is ~'~-) Hence 
: ~ m , k ( t ) "  

- -  t n any invertible regular function ~ on X'  can be written as r  ) l--[i=1 uiT"'. Computing 

div(r we see that ~ must be a constant. 

Consider the open subset U c X  ~ given by t (1- t ) - r  We have 

"~ (A~- \{0, 1})• a "--1 

hence Pic U=O. The descent theory now tells us that universal X'-torsors exist if and 

only if the following exact sequence of Fk-modules is split: 

1 -+ k* --+ k[U]* -+ [r --+ 1 

([CSan2, Proposition 2.3.4], or [S, Corollary 2.3.10]). The group k[U]*/k* is generated 

by the classes of the functions t, 1 - t  and ui. Every relation satisfied by these classes is 
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a multiple of a0 [t] +a l  [1 -  t ] -  E i~, [ui] = 0. The displayed exact sequence of F k-modules 

is split if and only if there exists a Galois equivariant lifting of these classes to k[U]*. 

Every such lifting has the form 

[ t ]~00 t ,  [ l - t ] ~ 8 1 ( l - t ) ,  [ui]~{~u~, i=l , . . . ,n ,  

where 80, 81E k*, and the conjugate elements {1,..., {hE k* are the images of an element 

{EK* with respect to all n embeddings K-+k,  such that  ao al PO Pl =aNK/k({). In particular, 

the above sequence is split if and only if aCNK/k(K*)k*a~ TM. This is clearly true in 

our case since (a0, a l ) =  1. 

Let T + X '  be a universal torsor. We now describe the restriction Tu of T to U c  X' .  

The abelian group Div~, \#  X '  is freely generated by the D O and the D~; the Galois 

group Pk acts on these divisors by permutations of subscripts. We have an exact sequence 

of Pk-modules: 

1 = k[X]*/k* --+ k[U]*/k* --~ Div2 , \0  X ' - +  Pie X ' -+  Pie 0 = 0, (5) 

where the second arrow is f ~ d i v ( r  It is clear from (4) and (5) that  the condition 

(do, al)  = 1 implies that Pie X '  has no torsion. 

Consider the exact sequence of k-tori which is dual to (5): 

1 --+ S --+ RK/k(Gm, K) 2 -"+ T -+ 1. 

Recall that RK/~:(G,~,K) is a k-torus defined ms tile Weil descent of the multiplicative 

group G, , ,  K. This exact sequence equips RK/k(G,,,,K) 2 with the structure of a T-torsor 

under S. By the local description of torsors ([CSan2, Theorem 2.3.1, Proposition 2.3.4], or 

[S, Theorem 4.3.1]) there exists a homomorphism of rk-modules r ~=k[g]*/~*--+~[U]* 
which is a section of the obvious surjective map, such that  "Iv is the pullback of this 

torsor to U with respect to the natural morphisln U--+T defined by (the inverse of) 05. 

Let y and z be the K-coordinates on RK/k(G,,,,K) 2. The torus T is naturally a subtorus 
2 N: a n  a l _ _  , of Gin, k RK/k(Gm,K) given by t o t 1 - -N(x) ,  and the composed map RK/k(Gm K)2--+ 

T--+G2~,k is given by ( N ( y ) , N ( z ) ) .  From the explicit form of r displayed above, it 

is clear that  a point ( t ,x)  of U goes to (8olt, O-[l(1-t),~-lx). Thus the image of 

U in T is given by the equation 8 0 to +8 , t ,=1 .  Hence "IuCRK/k(G,,,.,K) 2 is given by 

P0 N(y)  + 81N(z) = 1. [] 

When a 0 + a l - 0  mod n the k-variety X is birationally equivalent to a principal 

homogeneous space of a k-torus. (By a change of variables as in the proof of Lemma 2.1 

the equation of X is reduced to Ta~ where T=t/ (1- t ) . )  In this case Theo- 

rem 1.1 is a particular case of a general result [CSanl]. 
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3. W e a k  a p p r o x i m a t i o n  o n  u n i v e r s a l  t o r s o r s  

Our approach to proving weak approximation on the universal torsor will use the H a r d y -  

Littlewood circle method. Good general descriptions of the method are given by Daven- 

port [D] and Vaughan [V], to which we refer the reader unfamiliar with these techniques. 

In fact the present problem is not difficult by today 's  standards,  and requires only a mild 

adaptat ion of an existing argument  due to Birch, Davenport  and Lewis [BDL]. However, 

we shall give reasonably full details. 

We wish to prove a weak approximation result for the homogeneous equation 

a N ( x )  + b N ( y )  = z n, (6) 

where a and b are non-zero integers, and N(*)  is a norm form defined for a number  

field K of degree n over Q. Suppose that  the equation (6) has a solution x (R), y(R), z(R) 

over R and a solution x (M), y(M), z(M) to some modulus M. Then for a given ~/>0, we 

will want our solution of (6) to satisfy 

maxIx,-PxlR)l<~?P, maxlyi-Py~R)[<~IP, Iz--Pz(R)l<~P, (7) 

for some positive real P,  and also 

_ _ ( M )  --~ (M) z ( M )  x ~ = x  i , y~-y~  , z =  m o d M .  (8) 

For a weak approximation result it is clearly sufficient to assume that  each of x (R), 

y(R), z(R) is non-zero. In particular, we shall suppose tha t  z (R) >0. Moreover it also 

suffices to assume that  7/is sufficiently small. Thus we may suppose that  none of x = 0 ,  

y = 0  and z=O satisfy the constraints (7), so that  

z (a). (9) 

Henceforth we shall regard x (R), y(R), z(R), x(M), y(M), z(M), M, r /and the norm form N 

as fixed, and allow the constants implied by the notations <<, >> and O(.  ) to depend on 

them. 

We now define 

Sl(Ol)=Ze(otag(x)), aeR ,  
X 

where x runs over integer vectors satisfying the constraints (7) and (8), and e(x) is 

defined as exp(2~rix). Similarly we write 

S2(a) = Z e(abN(y)) 
Y 
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and 
S3(Ot ) = ~ e(olzn), 

Z 

where again the variables are restricted by (7) and (8). 

The number of solutions of (6), subject to (7) and (8), is then 

01Sl (O/) S 2 (OL) S3 (--O~) : M(P),  dc~ 

say, and we aim to show that  
M(P) >> pn+l 

as P tends to infinity. This is clearly sufficient. 

For integers h, q satisfying 

(h,q)= l, l <~ q<~ P a, 

we shall define intervals Ih,q by the inequalities 

c~_hl < p-~+a.  

Here 6E(0, 1) is a parameter to be chosen in due course, see (21). We begin by considering 

the values of ~ which fall in none of the intervals Ih,q. Here our starting point is Weyl's 

inequality in the form given by Vaughan ([V, Lemma 2.4]), for example. 

LEMMA 3.1. Let f(x)=/3xn +... be a polynomial of degree n>>.2 with real coefficients, 

and suppose that /3 has a rational approximation a/q such that 

q 1 (10) /3- ~q-~, 

where q>~l and (a,q)=l. Let 

N 
S( f )  = ~ e(f(m)). 

m=l 

Let K - 2  n-1 and e>0.  Then 

IS(f)l << Nl+e(N- l  +q- l  + N-nq) 1/K, (11) 

where the implied constant depends on n and ~. 

From now on all the constants implied by the notations <<, >> and O(.)  will be 

allowed to depend on c. 
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To apply Lemma 3.1 we write z=Mw+z  (M), so tha t  the interval (7) for z be- 

comes A<w<A+2rIP/M , say. If we now set w=k+[A] we find that  k runs over a 

range l<~k<~N, say, with N<<P. The sum S3(a) now takes the form S(f)  required for 

Lemma 3.1, with ~=Mno~. According to Dirichlet's approximation theorem, for any 

Q~>I we can find coprime integers a and q, with l<~q<~Q, such tha t  

Mnol - a 1 
q qQ 

Thus (10) is automatical ly satisfied. If  we take Q=pn-~ then 

a _ ~  ~ _ _ 1  1 = p - n + ~  
< MnqQ <~ ~ 

We may write the fraction a/(Mnq) in lowest terms with denominator  
Mnq 

(a, Mnq) " 

If  we assume that  a belongs to none of the intervals I~,v we deduce that  
Mnq 

> P~, 
(a, M~q) 

whence q>>P~. In view of the bounds p~<<q<~Q=pn-~ we now conclude from (11) that  

iS3(a) I << pl-~/K+e. (12) 

Lemma 1 of Birch, Davenport  and Lewis [BDL] still holds, since it hinges on an upper 

bound for the number of solutions of the equation N ( x ) = N ( x ' )  in the box described 

by (7). In our situation there is an additional congruence restriction on x and x' ,  but 

this does not affect the validity of the upper bound. Thus we have 

fo ' IS' (a)12 << (13) d~ pn+~ 

and 

fo 11S1(a)S2(~)I << P"+L da 

for any c>O. We may combine this with the bound (12) to deduce that 

~, l $1 (a) S2 (a) S3 ( - a ) l  a s  << pn+,-,VK+2e 

where m denotes the complement in the unit interval of the union of the intervals Ih,q. 
Since a positive 5 is to be specified, see (21), and r is arbitrary, we may conclude that  

M ( P ) =  q~p,SE l<h<qE j~/h (14) qS1 (Ol) S2 (ol) $3 (-ol) da + o( P TM ), 
(h,q)=l 

on noting that  the intervals Ih,q are necessarily disjoint. 

We now have to approximate  Sl(a)S2(a)S3(-a) on the interval Ih,q. I t  will be 

convenient to establish a general result. 
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LEMMA 3.2. Let F be an integer polynomial in r variables, of total degree n. Let 
N1, ...,N~ be positive integers with Ni<<P. For any a E Z  and qEN with q<~P~, write 

and for any real # write 

Then if 

S(a,q)---- E e(qF(kl,...,kr)), 
l~ki~q 

I(lt) = f e(#F(tl,..., t~)) dtl ... dtr. 
JO~ti~Ni 

and I#I<.P -~+~, we have 

S(o~) = E e(o~F(k,,...,k,.)) 

S(a/q+#) = q-rS(a, q)I(#) + O(pr-l+25).  (15) 

Proof. We split the sum S(a/q+#) according to the residue class of k modulo q, 

writing k = m + q s ,  to give 

S(a/q+p)= E E e((a/q§ 
m (mod q) sE,S 

-- m (m~od q)e(aF(m)~ ~ / 

(16) 

where s runs over the range S given by 

1 - - m  i ~ - - m i  
- - ~ s i ~ - - ,  l ~ i ~ r .  

q q 

Now if 0~vi~<l for l<.i<.r, then 

F ( m + q s )  = F ( m + q ( s + v ) )  + O(qpn-1), 

the implied constant in the error term depending on F. Thus 

# F ( m + q s )  = # F ( m + q ( s + v ) )  + O(qP-l+~), 

so that 

e(pF(m+qs) ) = e(#F(m+q(s+ v) ) ) + O(qP-l+~ ). 
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If we average this over v we find that  

e(#F(m+qs) ) = ~ e(pF(m+q(s+ v) ) ) dvl ... dvr + O(qP -1+~) 

= q - ~ t  e ( p F ( t ) )  dtl ... dt~ + O(qP-l+5), 

where t runs over the box 

mi-q-qsi ~ ti ~ miq-q(siq-1). 

It  follows that  

Z e(#F(mq-qs)) = q-r[cTe(pE(t))r dQ ... dtr q- O(qp-i+~#S),  
s 

in which T is a box Ai~ti<~Bi with Ai=O(q) and Bi=Ni+O(q). Thus T differs from 

1-[ [0, Ni] by a set of measure O(qpr-1), so that  

e(#F(mq-qs)) = q-rI(#) q- O(q 1-~P~- 1) q_ O(qP-1+5 ~8) .  
s 

Moreover # S < <  (P/q+ 1) r <<P~q-r, whence 

e(#F(mq-qs)) = q-~I(#)q- O(q 1-rpr-i+~). 
8 

We may now insert this into (16) to deduce (15). [] 

We shall apply Lemma 3.2 to the product S1 (c~)$2 (c~)$3(-(~) taking r = 2 n +  1. If we 
_ ( M )  

write xi--x i +Mui, then the interval Ix i -PxlR) l<yP can be interpreted as a range 

Ai<ui<~Bi for certain integers A i, Bi such that  Bi=Ai+2~PM-I+O(1) .  We then set 

ki = u i - A i ,  ci =xlM)+MA~, Ni =Bi-A~.  

We follow an analogous procedure for the variables yi and z, to put $1(~)$2((~)$3(-a) 
into the shape required for Lemma 3.2 with 

F( kl , ..., k2~+1) = aN ( Cl q- Mkl , ..., ck + Mk~) 
(1T) 

+bN(en+l +Mkn+l, ..., e2n + Mk2n) - (e2n+l + Mk2n+l )n. 

We conclude that  

$1(~) $2 (a) $3 ( -~)  = q-2~- 1S(h, q) I ( ~ -  h/q) + O(P 2n+25 ) 
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on the interval Ih,q. Since 

we deduce from (14) that  

where 

E E meas(Ih,q) <<P-n+3a, 
q<~P~ l<~h<~q 

M(P) = E Z +  O(P  n+5a) + o(pn+l), 

171 

(is) 

J(7) = / w  e('y{aN(Wl, ..., Wn)"~- bN (wn+l, ..., W2n) --W2nn+l }) dwl ... dw2n+l, 

where 

Y]= E E q-2n- lS(h 'q)  (19) 
q<~p5 l<h<~q 

(h,q)=l 

and p-n+5 r 
z = J-e-o+  10 . )  d.. (20) 

In view of (18) we shall take 

= 1. (21) 

We deal first with Z. If we write ci+Mti=vi in the definition of I(#),  we see that  

v runs over a box V, say, defined by constraints 

-Vi(-) <. v i -PxlR)  <. Vi (+), l <. i <~ n, 

and similarly for n+l<~i<.2n+l, with II/(-), Vi(+)=rlP+O(1). We then have 

I(#) = M -2n-1 [ e(#{aN(Vl,..., v~)+ bN(v,~+l, ..., v2n)-  v~n+l }) dvl ... dv2n+l. 
dV 

Since l,' differs from the original region (7) by a set of measure O(p2n), it follows that  

I(#) = M -2n-1 ~t e(#{aN(tl, ..., t~) + bN(tn+l, ..., t2n) -- t~n+ 1 }) dtl.., dt2n+l + O(P2~), 

the integral being over the region (7). If we now set t = P w  we find that  

I(#) = M-2n- l  p2n+l g(pn#)+O(p2n), 
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the integral being over the set 

max Iw~ -x~rt) I <~ 7, 

max Iwi -  y~n) I ~< ~/, 

IW2n+I -z(r t)  I ~< r/. 

l <~ i <~ n, 

n+l  ~ i ~ 2 n ,  (22) 

Thus (20) becomes 
p5 

~ = M - 2 n - 2 p n + l / _  J(~/)+o(pn+5). 
p,~ 

Since N(x) is homogeneous, the partial derivatives 

0 
- - N ( W l ,  ...,wn) Owj 

can only vanish simultaneously at a point for which N(Wl,..., Wn)=0. Thus, if we take 

our original r / to be sufficiently small, we can ensure that  there is some index j for which 

o~jN(wl , . . . ,wn)  >>1 

on the range (22). Without loss of generality we may take j= l .  We now substitute 

, W n t=a N (w l  ...,wn)+bN(wn+l,..., 2n)--W2n+l (23) 

for Wl, giving 

with 

F J('y) = ~b(t) e(3,t) dt 

with wl being given implicitly by (23). In this final integral, the range is restricted by 

the constraints (22). The function r is a continuous function of bounded variation, 

whence the Fourier inversion theorem shows that  

f lim J(7) d~ = r 
T--~oo T 

Moreover the integrand of ~(t) is positive, and the region of integration contains a non- 

empty open set. It follows that  r is positive. This enables us to conclude that  

I ,,, M-2n-2pn+lr P ~ oc. 
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It remains to consider the sum E given by (19). We first show, 

Davenport and Lewis ([BDL, Section 6]), that  the sum 

G-~ s E q-2n- lS(h 'q)  
q=l l~h<~q 

(h,q)=l 

is absolutely convergent. We shall write 

S l ( h '  q) ~-~ E e (h  F1 (]'gl' ""' kn)) ' 
l <~ kl,...,k,~ <~ q 

where 

F1 (kl, ..., kn) = aN(cl + Mka, ..., cn -'}-Mkn). 

We define S2(h, q) analogously, and set 

S3( h' q) --l <~n<~qe( @ (C2n+l + Mn)n ) ' 

whence 

S(h, q) -- Sl (h, q)S2(h, q)Sa(h, q). 

We now repeat our analysis of the major arcs, but working with 

~ f ISl(C~)12da 
q<<p~ l<~h<~q a,q 

(h,q)----1 

in place of 

E EfI Sl(a)S2(a)S3(-a)da. 
q~P6 l<~h~q h,q 

(h,q)=l 

In this way we find that 

E E ~I [Sl(~176 
q~p6 l<~h<~q h,q 

(h,q)----1 

where 

and 

~1= E E q-2nlSl(h'q)12 
q~p,5 l~h~q 

(h,q)=l 

~-'1 '~ C P  n , 

following Birch, 
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for a certain positive constant C. However, 

by (13), whence 

~01 ~ f /  ISl(c~)12dc~< ISl(a)12dc~<<P ~+~, 
q~p5 l~h~q h,q 

(h,q)=l 

(24) 

El= ~ ~ q-2nlSl(h,q)12~<P~. 
q~Pa l~h~q 

(h,q)=l 

Recall here that 5=1,  by (21). 

The above estimate holds for any P ) 1 ,  and for any e>0. Moreover the sum Sl(h, q) 
depends on neither P nor e. It therefore follows from (24), on choosing P=R 6 and c=  ~w, 

that 
~ q-2nlS,(h,q)12 <<R w, (25) 

q<~R l~h~q 
(h,q)=l 

for any R ) I ,  and any w>0.  An entirely analogous argument shows that 

We now examine the sum 

E E q-2nlS2(h'q)12<<RW" 
q~R l~h~q 

(h,q)=l 

(26) 

~R= E E q-2n-'S(h'q)= E E q-2n-'Sl(h'q)S2(h'q)S3(h'q)" 
R/2<q~R l~h~q R/2<q~R l~h~q 

(h,q)=l (h,q)=l 

The bounds (25) and (26) show that 

E E q-2nlSj(h'q)12<(RW' 
R/2<q~R l~h~q 

(h,q)----1 

whence Cauchy's inequality yields 

j = 1 , 2 ,  

E E q-2nlSl(h'q)S2(h'q)l<<RW" 
R/2<q~R l~h~q 

(h,q)=l 

To bound S3(h, q) we may apply Lemma 3.1, taking N=q, and reducing the fraction 

Mnh/q to lowest terms to produce a new denominator qr, say, with q<<qr<<q. This 

shows that 
S3(h, q) << ql-1/K+~, 
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so that  
~R << Rw-1/K+e << R-1/(2K), 

on choosing c v = : = l / ( 4 K ) .  It follows that  the sum for | is absolutely convergent. 

We can now conclude that  

M(P) = |  + o(P n+l ) 

as P tends to infinity, and it remains to show that  the constant | is positive. An 

elementary argument reveals that  the function 

f ( q ) :  ~ q-2n-lS(h,q) 
l ~ h ~ q  
(h,q)=: 

is multiplicative. In view of the absolute convergence it therefore suffices to show that  

oo 

f(p~ 
e ~ 0  

is positive for each prime p. However, standard arguments show that  

E 

f(pe) =p-2nE #{(k:, ..., k2n+:) (mod pE) : F(kl,..., k2n+:) - 0 (mod pE) }, 
emO 

with F being the polynomial (17). Thus it suffices to show that the number on the right 

above is bounded below. Using Hansel's lemma we then see that  it is enough for F ( k ) = 0  

to have a p-adic integer solution k in which some partial derivative 

OF 
Oki (k) 

is non-zero. This yields the following conclusion. 

THEOREM 3.3. Suppose that, for every prime p, there is a non-singular p-adic 
integral solution of (6) satisfying (8). Then the equation (6) has an integer solution 
satisfying (7) and (8), for every sufficiently large real P. 

4. P r o o f  o f  t h e  m a i n  t h e o r e m  

Let X be a variety of a field k. Recall that  BroX=Im[Brk-+BrX] and B r l X =  

Ker[Br X--+BrX].  Now let k=Q, and AQ be the addle ring of Q. Recall that  X(AQ) m 

(rasp. X(AQ) Br: x )  is the set of adelic points orthogonal to Br X (rasp. to Brl X)  with 

respect to the pairing defined by evaluation and taking the sum of all local invariants. 

By definition, there is no Brauer Manin obstruction to the Hasse principle on X if and 

only if X ( A Q ) m r  



176 R. H E A T H - B R O W N  AND A. S K O R O B O G A T O V  

Pwof of Theorem 1.1. Using Lemma 2.1 we arrange that  (ao, a i ) = l .  Let Z be 

a smooth compactifieation of X ~ (it exists by Hironaka's theorem). The condition 

(a0, al)  = 1 implies that  Pic X' has no torsion, hence B r l X ' / B r 0  X ~=H I(FQ, Pie X ' )  

is finite. By Proposition 1.1 of [CSk] (based on D. Harari 's "formal lemma") the set 

X ' (AQ)  nr~x' is dense in the closed subset Z ( A @  m of Z(AQ).  (Note that Z is a 

smooth, proper, rational variety, hence B r Z = 0 . )  We want to approximate an adelic 

point in Z(AQ) B~ by a Q-rational point R, but we first approximate it by an adelic 

point {R,,,}EX'(AQ) B~`x'. Since Z is proper, the topological space Z ( A o )  is Hv Z(Qv),  

and so we just need to ensure that  R is close to R,,, for v in a given finite set S of places 

of Q. We can assume that  S contains the infinite place. By the main theorem of the 

descent theory ([S, Theorem 6.1.2]) {Rv} lifts to an adelie point {Qv} oil some universal 

X~-torsor Y~. By Theorem 2.2 this torsor Y~ is a dense open subset of Y given by (3) 

for some ro, r lEQ*.  We need to find ~ is QEY (Q) which arbitrarily close to Q~, for vES. 
The points Q~, give rise to integral p-adic points on the homogeneous affine variety (6), 

and to a real point (x (R), y (R)z(R))  with z (R)=l .  By the Chinese remainder theorem 

approximating p-adic integers for p ES amounts to solving congruences of the form (8), 

where M is the product of sufficiently high powers of primes in S. Let (x ,y ,  z) be an 

integral solution of (6) provided by Theorem 3.3 for sonic snmll ~/>0, when P is suffi- 

ciently large. In particular, z>0.  Then Q=(x/z,y/z)  is a Q-rational point on Y' which 

is as close as we wish to Q,, for yES.  Now R=f(Q) is the desired Q-rational point on X. 

By the p-adic imt)lMt function theorem we can choose the local points R,, away 

fronl rely given ch)sed subset of X. Thus the resulting Q-ratioxml t)oints are Zariski 

dense in X. This conq)letes the proof. [] 

Note that, this t)roof does not work when a0 and al are not coprime. In this case 

X ~ is "too snmll" in the sense that Pie X t contains torsion, whereas Pic Z contains none, 

thns Br X~/Br Z is infinite. 
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