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Abstract. Using non-abelian cohomology we introduce newobstructions to theHasse principle.
In particular, we generalize the classical descent formalism to principal homogeneous spaces
under noncommutative algebraic groups and give explicit examples of application.
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0. Introduction

This work grew out of our attempt to understand the ro“ le of non-abelian unrami¢ed
coverings in the second author’s counterexample to the Hasse principle which could
not be explained by the Manin obstruction [Sk]. Suppose X is a variety over a
number ¢eld k which has points in all the completions of k. It has become clear
that given a torsor Y ! X under a possibly non-abelian algebraic group G, one
can still apply the same descent procedure as in the classical case of elliptic curves.
It consists of ‘twisting’ Y ! X by a cocycle s 2 Z1ðk;GÞ, and determining the
set of cohomology classes ½s� 2 H1ðk;GÞ such that the twisted torsor Ys has points
everywhere locally. This set is a generalization of the Selmer group related to an
isogeny of elliptic curves. If X is proper and G linear, then this ‘Selmer set’ is
contained in an explicitly computable ¢nite subset of H1ðk;GÞ. If the Selmer set
is empty, then X has no k-rational point. We shall refer to this as the descent
obstruction given by the torsor Y ! X . One difference with the case of abelian
groups considered in the descent theory of Colliot-The¤ le' ne and Sansuc [CS] is that
Ys is a torsor under an inner form Gs of G, and not under G itself (Subsection 4.1).
The example mentioned above can be explained in this framework with a certain
¢nite nilpotent group G (Subsection 4.3).
The connection of this obstruction forG abelian with theManin obstruction to the

Hasse principle which uses the Brauer^Grothendieck group BrX ¼ H2
�eet
ðX ;GmÞ, was

also studied by Colliot-The¤ le' ne and Sansuc in [CS]. Generalizing one of the main
results of [CS], one proves that the abelian descent obstruction is equivalent to
the algebraic part of the Manin obstruction, that is, the obstruction given by the
subgroup of BrX consisting of elements killed over an algebraic closure of k
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(see [Sk], Theorem 3, and Theorem 4.9 below). It is known that elements which
survive can produce a nontrivial obstruction [Ha96]. We prove that even such a
‘transcendental’ Manin obstruction can be realized by non-abelian torsors (assuming
the standard conjecture that BrX coincides with the group of similarity classes of
Azumaya algebras on X , see Theorem 4.10). Thus the obstruction to the Hasse
principle on X related to all possible X -torsors should indeed be stronger than
the Manin obstruction.
The situation with weak approximation is similar. A smooth and proper k-variety

X with a k-point and non-abelian geometric fundamental group, under some
conditions (for example, if H1ðX ;OÞ ¼ H2ðX ;OÞ ¼ 0) always has adelic points
satisfying the Brauer^Manin conditions but which are not in the closure of
the set of k-points [Ha99]. Here again it is non-abelian torsors that provide ¢ner
conditions for an adelic point to be in the closure of X ðkÞ (Subsections 4.2 and 5.2).
So far we have discussed the obstructions to the Hasse principle and weak

approximation for a variety over a number ¢eld k related to an already given torsor.
In the literature one also ¢nds obstructions to the existence of rational points over
arbitrary ¢elds; they can be realized as classes in the second abelian or non-abelian
Galois cohomology sets, or as obstructions to descending an X -torsor, where
X ¼ X 	k

�kk, to an X -torsor. In [CS] one encounters the obstruction for the existence
of an abelian torsor of given ‘type’; in fact one can regard it as the obstruction for a
‘descent datum’ on an X -torsor to come from an X -torsor. (If H0ðX ;GmÞ ¼

�kk



and PicX is of ¢nite type, then the ¢nest of these is the obstruction for the existence
of a universal torsor.) When X is a homogeneous space under a k-group G with
geometric stabilizer H � G, Springer [Sp] constructs a class in the second Galois
cohomology set with coef¢cients in an appropriate lien on Hð �kkÞ which is the
obstruction to lifting X to a k-torsor under G. Historically, the ¢rst obstruction
of this kind known to us is given by the exact sequence of the e¤ tale fundamental
group of X constructed by Grothendieck in [Gr]. This sequence splits if
X ðkÞ 6¼ ;, which can be interpreted as the neutrality of the corresponding 2-cocycle.
We formulate a uniform approach to such obstructions in terms of group extensions
of the Galois group of k (Section 2), and study their interrelations. The splitting of
the exact sequence of fundamental group implies that Springer’s obstruction
disappears ([Sp], Theorem 3.8). We prove that going over to an open subset of
X we have a similar implication for the abelian obstruction of Colliot-The¤ le' ne
and Sansuc (see Section 3).
The second Galois cohomology set can also be used to deal with the homogeneous

spaces constructed by Borovoi and Kunyavski|
 (Subsection 5.3).

1. Preliminaries

1.1. NOTATION AND CONVENTIONS

In this paper k is a ¢eld of characteristic zero with an algebraic closure k. Let
G :¼ Gal ðk=kÞ be the absolute Galois group of k. A k-variety is a separated k-scheme
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of ¢nite type. The group G is equipped with its pro¢nite group topology and the set of
�kk-points of a �kk-variety is equipped with the discrete topology.
An algebraic k-group is a k-group scheme which is a k-variety. An algebraic group

G over k is linear if it is af¢ne as a k-variety. It is of multiplicative type if the �kk-group
scheme G :¼ G	k

�kk is a subgroup of Gn
m for some n > 0, where Gm is the

multiplicative group.
For any connected scheme X equipped with a geometric base point �xx, we let

p1ðX ; �xxÞ be the associated e¤ tale fundamental group (up to inner automorphisms,
it is independent of �xx). Let pab1 ðX Þ be the abelianization of p1ðX ; �xxÞ in the category
of pro¢nite groups. It is independent of the base point. We write
�kk½X �
 :¼ H0ðX 	k

�kk;GmÞ for the group of invertible functions on X 	k
�kk. If Y is

an X -scheme (resp. an X -group scheme), we shall denote by Aut ðY=X Þ (resp.
Aut grðY=X Þ) the group of X -automorphisms of Y (resp. the group of
X -automorphisms of Y which are compatible with the group scheme structure).

CONVENTION. We write Y , Z, G; . . . for �kk-varieties which are not necessarily
obtained by extension of scalars from varieties over k, though this may be the case.

When k is a number ¢eld we denote by Ak the ring of ade' les of k, by kv the
completion of k at the place v, and by Ov the ring of integers of kv. Let O be
the set of all places of k. If X is a k-variety, we write X ðAkÞ for the set of adelic
points of X . If we further assume that X is proper, then X ðAkÞ is justQ

v2O X ðkvÞ equipped with the product of v-adic topologies.
LetG be an abstract group. An element g 2 G induces an inner automorphism of G

de¢ned by ðint gÞðhÞ ¼ ghg�1. We let OutG be the quotient of the group AutG of
automorphisms of G by the inner automorphisms.

1.2. SEMILINEAR AUTOMORPHISMS

DEFINITION 1.1. Let �ff :Y ! Spec �kk be a �kk-variety. We denote by
SAut ðY=kÞ � Aut ðY=kÞ the subgroup of semilinear k-automorphisms of Y . These
are the elements j of Aut ðY=kÞ such that �ff � j ¼ ðg
Þ�1 � �ff for some g 2 G (such
a g is then unique). We let q: SAut ðY=kÞ ! G denote the homomorphism which
sends j 2 SAut ðY=kÞ to the element g such that �ff � j ¼ ðg
Þ�1 � �ff .

Remark 1.2. When Y is connected and reduced, the integral closure of k in �kk½Y � is
�kk, so any k-automorphism of Y induces an automorphism of �kk over k, hence is
semilinear. In this case SAut ðY=kÞ ¼ Aut ðY=kÞ. This equality is not true in general,
e.g. for Y ¼ Spec ð �kk� �kkÞ.

DEFINITION 1.3. LetX be a k-variety, andY a �kk-variety with a morphismY ! X .
We de¢ne SAut ðY=X Þ :¼ Aut ðY=X Þ \ SAut ðY=kÞ. If Y is an X -group scheme, we
denote by SAut grðY=X Þ the subgroup of SAut ðY=X Þ consisting of the elements
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which are compatible with the group scheme structure. All those groups are equipped
with the weak topology associated to the discrete topology on Y ð �kkÞ, that is the
coarsest topology for which the map j7!jð �mmÞ is continuous for any �mm 2 Y ð �kkÞ.
We write Aut ðY Þ instead of Aut ðY= �kkÞ, and SAut ðY Þ instead of SAut ðY=kÞ, if no
confusion is possible (and similarly for Aut gr and SAut gr). Note that in general
the map q: SAut ðY Þ ! G is not continuous.

LEMMA 1.4. Let Y be a quasi-projective �kk-variety (resp. an algebraic �kk-group).
Then the k-forms of Y are in natural bijection with the continuous homomorphic
sections of the map q: SAut ðY Þ ! G (resp. q: SAut grðY Þ ! G).

Proof. Let j be a continuous homomorphic section of q. Then j induces an action?

of G on Y ð �kkÞ such that the stabilizer of any point is open. Now apply [BS], 2.12
and [Se59], V.20. We obtain a k-form Y of Y as the quotient of Y by the action
of G.
Conversely, if Y is a k-form of Y , the Galois group G acts on Y ¼ Y 	k

�kk via the
second factor and this action de¢nes a section j of q. Note that the constructions
of the form Y and of the section j are inverse to each other. &

1.3. TORSORS

Let X be a scheme, and GX a smooth X -group scheme.

DEFINITION 1.5. An X -torsor under GX (or GX -torsor over X , or principal homo-
geneous space of GX over X ) is a faithfully £at X -scheme Y equipped with a right
action of GX such that the associated map ðm; sÞ7!ðm;m:sÞ:Y 	X GX ! Y 	X Y
is an isomorphism.
We denote by H1ðX ;GX Þ the pointed set of isomorphism classes of right torsors

over X under GX . The distinguished point of H1ðX ;GX Þ is the class of the trivial
torsor GX . For any X -torsor Y under GX we let ½Y � be the class of Y in H1ðX ;GX Þ.

Remark 1.6. IfGX is an af¢neX -group scheme, then we can computeH1ðX ;GX Þ as
the �CCech cohomology set �HH

1
ðX ;GX Þ ([Mi80], III.4.3 and III.4.7). If, moreover, GX is

abelian, H1ðX ;GX Þ is identi¢ed with the e¤ tale cohomology group of the sheaf of
abelian groups represented by GX . If G is an algebraic k-group, then H1ðk;GÞ is
just the usual ¢rst Galois cohomology set H1ðk;Gð �kkÞÞ, which is a quotient of the
set Z1ðk;Gð �kkÞÞ of 1-cocycles ([Se94], I.5.1 and I.5.2).

DEFINITION 1.7. Let G be an algebraic k-group, G ¼ G	k
�kk. The Galois group G

acts on AutgrðGÞ. The twist of the group G by s 2 Z1ðk; AutgrðGÞÞ is the quotient
Gs of G by the twisted action of G, which is: ðg; sÞ7!sgðgðsÞÞ, g 2 G, �ss 2 GðkÞ ([Se94],

?In this paper, an action of a Galois group on a scheme always means its left action.
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III.1.3). The homomorphism int:GðkÞ ! AutgrðGÞ induces a map Z1ðk;Gð �kkÞÞ !
Z1ðk; AutgrðGÞÞ. If s is in the image of this map, Gs is called an inner form of G.

If an algebraic �kk-group G admits a k-form G, then any k-form G0 of G is obtained
by twisting G with an element of Z1ðk; Autgrð �GGÞÞ ([Se94], III.1.3).

DEFINITION 1.8. Let X be a k-variety, f :Y ! X a right torsor under G which is a
quasi-projective k-variety, and s 2 Z1ðk;GÞ. The twist of Y by s is de¢ned as the
quotient Y s of Y by the twisted action of G, which is ðg; yÞ7!ðgðyÞÞ � s�1g .

The twist Y s is equipped with a map f s:Y s! X which makes it a right torsor
under the inner form Gs. For example if G is abelian, then Gs ¼ G and
½Ys� ¼ ½Y � � ½s�. If s and s0 are cohomologous cocycles, then Ys and Ys0 are
isomorphic but in general not canonically.

1.4. LIENS

We recall some known facts about liens and non-abelian H2. A convenient
down-to-earth introduction is ([FSS], Section 1). De¢nitions of liens and non-abelian
H2 in a very general context can be found in [Gi], IV. The non-abelian H2 naturally
appears in the classi¢cation of group extensions [Mc].
Let G be an algebraic �kk-group with unit element �ee. We have an exact sequence of

topological groups?

1! Aut grðGÞ ! SAut grðGÞ ! G ð1Þ

Let InnG be the group of inner automorphisms of the algebraic �kk-group G. We set
OutG ¼ Aut grðGÞ=InnG (resp. SOut ðGÞ ¼ SAut grðGÞ=InnG).
The natural action of SAut grðGÞ on Gð �kkÞ induces a canonical map

SOut ðGÞ ! Out ðGð �kkÞÞ. By Lemma 1.4, the k-forms of G are in natural bijection
with the continuous splittings G! SAut grðGÞ of (1).
The sequence (1) modulo Inn ðGÞ gives rise to

1! Out ðGÞ ! SOut ðGÞ ! G ð2Þ

DEFINITION 1 ([FSS]). A k-lien?? on G is a splitting k:G! SOut ðGÞ of (2), which
lifts to a continuous map (not necessarily a homomorphism) G! SAut grðGÞ. The
lien k is called trivialz if k lifts to a continuous homomorphic map G! SAut grðGÞ.
A k-form G of G de¢nes a trivial k-lien which we denote by lienðGÞ. If G and G0 are

k-forms of G, then lienðGÞ ¼ lienðG0Þ if and only if G0 is an inner form of G.
The second Galois cohomology set H2ðk;G; kÞ is de¢ned in terms of cocycles; it

contains a distinguished subset of neutral elements ([FSS], (1.17) and (1.25)).

?In this paper the homomorphismsbetween topological groups are not necessarily continuous.
??Or k-band, or k-kernel.
zRepresentable in the terminology of [Gi].

NON-ABELIAN COHOMOLOGYAND RATIONAL POINTS 245



EXAMPLE 1.10. When k is either a non-Archimedean local ¢eld or a totally
imaginary number ¢eld, and G is semi-simple, Douai [D] proved that all elements
ofH2ðk;G; kÞ are neutral. If G is a k-form of G, we setH2ðk;GÞ :¼ H2ðk;G; lienðGÞÞ.

DEFINITION 1.11. An extension of topological groups

1! GðkÞ ��!
i

E��!
q

G! 1 ð3Þ

is called compatible with a lien k if the maps are open onto their images (i.e. i is
continuous and q is open), and the induced homomorphism G! Out ðGð �kkÞÞ is
k:G! SOut ðGÞ followed by the canonical map SOut ðGÞ ! Out ðGð �kkÞÞ.

DEFINITION 1.12. We shall say that an exact sequence of topological groups (3) is
locally split (being understood as locally in the e¤ tale topology) if there exists a ¢nite
¢eld extension K=k such that the induced map qK :EK ! GK admits a continuous
homomorphic section, where GK :¼ Gal ð �kk=KÞ and EK :¼ E \ q�1ðGK Þ.
The condition ‘locally split’ is usually quite easy to check, and will be satis¢ed in

the examples we are going to consider. See Appendix A for more details about
extensions of topological groups.

PROPOSITION 1.13 ([FSS], (1.19)). The set H2ðk;G; kÞ is in natural bijection with
the equivalence classes of extensions of topological groups which are compatible with
the lien k. The neutral elements correspond to the extensions which admit a continuous
homomorphic section G! E. The set H2ðk;G; kÞ contains neutral elements precisely
when k is trivial.

Remark 1.14. Let k be a k-lien onG and E be an extension which is compatible with
k. In the language of [Gi], the ¢bred category G such that for any ¢nite extension K=k
the ¢bre of G at SpecK consists of the sections of qK :EK ! GK , is a k-gerb. By [Gi],
VIII.6.2.5 and VIII.7.2.5, the cohomology class of such an extension in the sense
of Proposition 1.13 is the cohomology class of the gerb of sections G of this extension
in the sense of [Gi].

Remark 1.15. LetZ be the center ofG. Then a lien k de¢nes a k-formZ ofZ. Either
H2ðk;G; kÞ is empty or H2ðk;ZÞ acts simply transitively on it ([Sp], 1.17). If G is
abelian and k ¼ lienðGÞ is a k-lien on G, then it is easy to check that H2ðk;G; kÞ
is just the usual Galois cohomology group H2ðk;GÞ which has zero for a unique
neutral element (see also [Gi], IV.3.4).

It is actually possible to use locally split sequences to de¢neH2ðk;G; kÞ in terms of
extensions of groups (see Appendix A).
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2. Obstruction Given by a Class in H2

Until the end of this section, we ¢x a triple ðX ;Y ;GÞ, where G is an algebraic
�kk-group, X is a reduced and geometrically connected k-variety, and Y is a
quasi-projective �kk-variety equipped with a map �ff :Y ! X which makes Y a right
torsor under G.

2.1. DESCENT DATUM

The following sequence of topological groups is exact:

1! Aut ðY=X Þ ! SAut ðY=X Þ ��!
q

G ð4Þ

Note that Gð �kkÞ is a subgroup of Aut ðY=X Þ via its right action on Y . The weak
topology on Aut ðY=X Þ induces the discrete topology on Gð �kkÞ because the stabilizer
in Gð �kkÞ of an arbitrary �kk-point of Y is just f�eeg.

DEFINITION 2.1. Let E be a topological subgroup of SAut ðY=X Þ. We shall
say that E satis¢es the condition (*) (with respect to ðX ;Y ;GÞ) if there exists a
commutative diagram:

1 ��! Gð �kkÞ ��! E ��!
q

G ��! 1???y ???y ����
1 ��! Aut ðY=X Þ ��! SAut ðY=X Þ ��!

q
G

ð
Þ

where the top row is an exact and locally split sequence of topological groups, and
the map Gð �kkÞ ! Aut ðY=X Þ is the natural inclusion.
In Section 3, we shall review three situations where condition (
) holds for a well

chosen E, namely, the case of a connected torsor Y under a ¢nite �kk-group scheme
G, the case when X is a homogeneous space of a connected k-group, and the case
of an abelian group G.
We are now ready to de¢ne a k-lien attached to E satisfying (
).

PROPOSITION 2.2. Assume that E � SAut ðY=X Þ satis¢es ð
Þ.

(1) If g 7!jg is a set-theoretic section of q:E ! G, then there exists a unique map
y:G! SAut grðGÞ such that

jgð �mm:�ssÞ ¼ jgð �mmÞ:ygð�ssÞ; �mm 2 Y ð �kkÞ; �ss 2 Gð �kkÞ; g 2 G: ð5Þ
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(2) The map kE :G! SOut ðGÞ induced by y is independent on the set-theoretic section
j. It is a k-lien on G, such that the exact sequence

1! Gð �kkÞ ! E ��!
q

G! 1 ð6Þ

is compatible with it.
(3) If the class ClðEÞ of the sequence (6) in H2ðk;G; kEÞ is neutral, then there exists a

k-form G of G with lienðGÞ ¼ kE, and a G-torsor Y over X such that the G-torsor
Y is obtained from Y by extension of scalars from k to �kk.

Proof. (1) Fix for each g 2 G an element jg of E such that qðjgÞ ¼ g. Then for any
�ss 2 Gð �kkÞ the element jg � �ss � j

�1
g 2 E is in the kernel of q. Let us call it ygð�ssÞ. It is

clearly the only element of Gð �kkÞ satisfying (5). By de¢nition of a torsor the map
F: ð �mm; �ssÞ7!ð �mm; �mm:�ssÞ is an isomorphism from Y 	 �kk G to Y 	X Y . Fixing �mm 2 Y ð �kkÞ
we have ygð�ssÞ ¼ p2½F�1ðjgð �mmÞ;jgð �mm:�ssÞÞ�, where p2:Y 	 �kk G! G is the second
projection. Therefore the map �ss 7!ygð�ssÞ is indeed an element of SAut ðGÞ. Formula
(5) now shows that it belongs to SAut grðGÞ.
(2) If we change the set-theoretic section j, then jg is replaced by �ttg � jg for some

�ttg 2 Gð �kkÞ. Then ygð�ssÞ is replaced by �ttgygð�ssÞ�tt
�1
g . Therefore y induces a well de¢ned

section kE :G! SOut ðGÞ. For any g; h 2 G we have jgh ¼ �uug;h � ðjg � jhÞ for some
�uug;h 2 Gð �kkÞ. Thus kE is a homomorphism. To show that kE is a lien, it remains
to check the continuity condition (cf. [FSS], (1.7)); in particular, it is suf¢cient
to show that one can choose the maps jg such that for each �mm 2 Y ð �kkÞ the map
g 7!jgð �mmÞ is locally constant. But this follows from Appendix A since (6) is locally
split by assumption, hence q:E ! G admits a continuous set-theoretic section.
The compatibility of (6) with kE is obvious.
(3) If a section j:G! E of q is a continuous homomorphism, then the

corresponding y:G! SAut ðGÞ is also a homomorphism. Then the lien kE is trivial,
and y de¢nes a k-form G of G as the quotient of G by the continuous action of
yðGÞ. Since Y is quasi-projective, we can also de¢ne Y as the quotient of Y
by jðGÞ. Now formula (5) shows that the right G-torsor Y is a k-form of the
G-torsor Y . &

Remark 2.3. The condition that there exists E � SAut ðY=X Þ which satis¢es (
)
means that for any g 2 G the associated conjugate X

g-torsor Y
g under G

g
is

isomorphic to the X -torsor Y under G. In the language of [DM] this is a descent
datum on the X -torsor Y .

DEFINITION 2.4. Assume that E satis¢es (
), and that there exists a k-form
ðX ;Y ;GÞ of the right torsor ðX ;Y ;GÞ. We shall say that this k-form is compatible
with E if the map G! SAut ðY=X Þ (de¢ned using the universal property of the ¢bred
product Y ¼ Y 	X X ) takes values in E.
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Therefore the class ClðEÞ can be regarded as the obstruction to descend the torsor
ðX ;Y ;GÞ to a k-form compatible with E.

2.2. THE ELEMENTARY OBSTRUCTION

To a subgroup E � SAut ðY=X Þ satisfying (
) we associate an obstruction to the
existence of a k-rational point on X .

THEOREM 2.5. Let E be a subgroup of SAut ðY=X Þ satisfying (
). Assume that X
contains a k-rational point x. Then for any �kk-point �yy of Y above x, there exists a
canonical continuous homomorphic section j�yy of q:E ! G uniquely de¢ned by the
property that the image of the induced section of q: SAut ðY=X Þ ! G leaves �yy
invariant. In particular, the class ClðEÞ in H2ðk;G; kEÞ is neutral.

Proof. Taking the push-out of (6) with respect to ix: x ¼ Spec k,!X we get a
commutative diagram

1 ��! Gð �kkÞ ��! E ��!
q

G ��! 1???y ???ya ����
1 ��! Aut ðYx=kÞ ��! SAut ðYx=kÞ ��!

q
G ��! 1

The ¢bre Yx of Y at x is a �kk-torsor under G. Choosing a point �yy 2 Yxð
�kkÞ de¢nes an

isomorphism of right �kk-torsors G! Yx. Since (6) is locally split, it admits a
continuous set-theoretic section j:G! E (cf. Appendix A). Then for every
g 2 G, there exists a unique sg 2 Gð �kkÞ such that aðjðgÞÞð�yyÞ ¼ �yy:sg. The map
g 7! sg is locally constant. De¢ne j�yy:G! E by j�yyðgÞ ¼ s�1g � jðgÞ. It is clear that
j�yyðgÞ is the only lifting of g which leaves �yy invariant. From this it follows that j�yy
is a homomorphic section of E ! G. It is continuous because j and g 7! sg are
continuous. &

DEFINITION 2.6. Suppose that E satis¢es (
). By Theorem 2.5, the condition that
the class ClðEÞ is not neutral is an obstruction to the existence of a k-rational point
on X . By analogy with the abelian case (see Subsection 3.4 below and [CS], 2.2.8)
we call this the elementary obstruction given by the quadruple c :¼ ðX ;Y ;G;EÞ
(or by E if no confusion is possible).

Remark 2.7. Let Y ! X be a G-torsor (de¢ned over k), and let m 2 X ðkÞ be such
that the ¢bre Ym of Y at m has no k-rational point. Then the section j�yy associated
to a geometric point �yy 2 Y ð �kkÞ lying over m de¢nes a k-form Y 0 ¼ Y=j�yyðGÞ which
is not isomorphic to Y . (Y 0 contains a k-rational point lying over m.) Actually,
Y 0 is isomorphic to the twist Y s of the torsor Y by a cocycle s such that Ym is
a k-torsor under G de¢ned by s.
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2.3. THE ELEMENTARY OBSTRUCTION OVER A NUMBER FIELD

Recall the following classical de¢nitions:

DEFINITION 2.8. LetX be a smooth variety de¢ned over a number ¢eld k. We shall
say that X is a counterexample to the Hasse principle if X ðAkÞ 6¼ ; and X ðkÞ ¼ ;. If
X is proper, it is said to satisfy weak approximation if X ðkÞ is dense in
X ðAkÞ ¼

Q
v2O X ðkvÞ (equipped with the product of the v-adic topologies). If S is

a ¢nite subset of O and X ðkÞ is dense in
Q

v 62S X ðkvÞ, then we shall say that weak
approximation outside S holds for X .

Now let k be a number ¢eld and ðX ;Y ;GÞ as in Subsection 2.1. Assume that
E � SAut ðY=X Þ satis¢es (
) and that X ðAkÞ 6¼ ;. Then by Theorem 2.5, the
obstruction ClðEÞ lies in the set of elements of H2ðk;G; kEÞ which become neutral
for all completions of k. If ClðEÞ is not neutral, we get an elementary obstruction
to the Hasse principle.

Remark 2.9. A result by Borovoi ([Bo93], Proposition 6.5) shows that in the case
when G is a connected linear algebraic group and k is a k-lien on G, an element
of H2ðk;G; kÞ which is locally neutral is neutral if and only if its image in
H2ðk;GtorÞ is trivial, where Gtor is the k-form of the toric part of G de¢ned by
k. Thus, the most interesting case of elementary obstruction to the Hasse principle
for a non-abelian torsor is the case G ¢nite.

3. Applications

In this section we review three realizations of the elementary obstruction treated in
the literature. We also establish a link with the elementary obstruction of
Colliot-The¤ le' ne and Sansuc.

3.1. TORSORS UNDER A FINITE GROUP SCHEME; GEOMETRIC FUNDAMENTAL GROUP

Let X be a reduced and geometrically connected k-variety equipped with a geometric
point �xx. In [Gr], IX.6.1, Grothendieck has proved that there is an exact sequence of
pro¢nite groups

1! p1ðX ; �xxÞ ! p1ðX ; �xxÞ ! G! 1 ðpÞ

which is split if X ðkÞ 6¼ ;.
Let Y be a connected and Galois e¤ tale covering of X and take for G the constant

�kk-group scheme Aut ðY=X Þ (as a scheme, it is a ¢nite disjoint union of copies of
Spec �kk). Chosing a point �yy 2 Y ð �kkÞ above �xx, we realize Aut ðY=X Þ as a quotient
of p1ðX ; �xxÞ. Take for E the whole of Aut ðY=X Þ and assume that
q: Aut ðY=X Þ ! G is surjective (this is equivalent to saying that the kernel of the
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corresponding map p1ðX ; �xxÞ ! Gð �kkÞ is stable under the outer action of G); then, one
comes to consider the obstruction related to the splitting of the push-out of (p) by the
map p1ðX ; �xxÞ ! Aut ðY=X Þ ¼ Gð �kkÞ, namely the elementary obstruction associated
to

1! Aut ðY=X Þ ! Aut ðY=X Þ ! G! 1 ð7Þ

This sequence is locally split because the e¤ tale covering Y ! X admits a K-form for
some ¢nite ¢eld extension K=k. Thus we obtain a k-lien k on G and a cohomology
class in H2ðk;G; kÞ. By Grothendieck’s result (or by Theorem 2.5), this class is
neutral if X ðkÞ 6¼ ;.
The general problem of determining whether a (possibly rami¢ed) covering Y is

de¢ned over k has been studied by De' bes and Douai in [DD].

DEFINITION 3.1. We shall refer to the fact that the sequence (p) does not split as to
the fundamental obstruction to the existence of a k-rational point on X . Considering
the push-forward of (p) by the map p1ðX ; �xxÞ ! pab1 ðX Þ

1! pab1 ðX Þ ! P! G! 1 ðpabÞ

we shall speak of the abelianized fundamental obstruction if the sequence (pab) does
not split.

If �ff :Y ! X is a connected torsor under a ¢nite �kk-group scheme G, then �ff is an
e¤ tale Galois covering ([Mi80], I.5.4). Thus if G is ¢nite, our general framework
essentially reduces to considering torsors arising from the geometric fundamental
group of X .

Remark 3.2. It can happen that for an e¤ tale connected Galois covering Y ! X the
map Aut ðY=X Þ ! G is not surjective, in other words, the normal subgroup
p1ðY ; �yyÞ � p1ðX ; �xxÞ is not stable under the action G! Out ðp1ðX ÞÞ. However, there
always exists an e¤ tale connected Galois covering Z! X which factors through
Y ! X and such that Aut ðZ=X Þ ! G is surjective (take the intersection of the
images of p1ðY ; �yyÞ by G, this is an open normal subgroup of p1ðX ; �xxÞ which is stable
under the outer action of G).
An example of this situation is an elliptic curve X containing two points of order 2

which are conjugate by an involution in G. The corresponding double e¤ tale coverings
of X are conjugate varieties but they may not be isomorphic as �kk-varieties.

3.2. THE CASE WHEN X IS A HOMOGENEOUS SPACE OFAN ALGEBRAIC k-GROUP

LetG be an algebraic k-group. LetX be a left ? homogeneous space underG, that is, a
k-variety equipped with a left action of G which is transitive on X ð �kkÞ. Springer

?Wehave to take this convention to be consistent with Section 2.
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([Sp], 1.20) has constructed a k-lien LX canonically associated to X and a class
aX 2 H2ðk;LX Þ which is neutral if and only if X is dominated by a principal
homogeneous space under G (in particular, X ðkÞ 6¼ ; implies the neutrality of
aX ). This construction was taken up by Borovoi for the study of the Hasse principle
on homogeneous spaces ([Bo93], 7.7), and also by Flicker, Scheiderer and Sujatha
([FSS], (5.2)). In this subsection, we want to reinterpret Springer’s construction
as a special case of our general set-up.
Fix a point �xx0 2 X ð �kkÞ and letH be the stabilizer of �xx0. Let us call Y the k-variety G

(without the group structure) and put Y :¼ Y 	k
�kk. Then the map �ff :Y ! X which

sends �mm to �mm: �xx0 makes Y a right X -torsor under H. There is also the natural left
action of G on Y which makes Y a left �kk-torsor under G.
We de¢ne SAut GðY=kÞ (resp. SAut GðY=X Þ) as the subgroup of SAut ðY=kÞ (resp.

of SAut ðY=X Þ) consisting of the elements jwhich are compatible with the left action
of G in the following sense:

jð�ss: �mmÞ ¼ ðqðjÞð�ssÞÞ:jð �mmÞ;

for any �ss 2 Gð �kkÞ; �mm 2 Y ð �kkÞ (recall that q: SAut ðY=kÞ ! G is the map de¢ned in
Subsection 1.2).

PROPOSITION 3.3. (1) The subgroup E :¼ SAut GðY=X Þ of SAut ðY=X Þ satis¢es (
)
(cf. 2.1) with respect to ðX ;Y ;HÞ.
(2) The k-lien kE (resp. the class ClðEÞ 2 H2ðk;H; kEÞ) coincides with the lien LX

(resp. the class aX) constructed by Springer.
Proof. (1) The action of G on Y obviously de¢nes a continuous and homomorphic

section of the map SAut GðY=kÞ ! G. The kernel of this map consists of the
automorphisms j of the �kk-variety Y satisfying jð�ss: �mmÞ ¼ �ss:jð �mmÞ for any
ð�ss; �mmÞ 2 G	 Y . Taking for �mm the unit element of G, we see that this kernel is
Gð �kkÞ acting on the right on Y . Thus the following sequence is exact and splits:

1! Gð �kkÞ ! SAut GðY=kÞ ��!
q

G! 1

By de¢nition, an element jg 2 SAut ðY=kÞwhere g ¼ qðjgÞ, belongs to SAut ðY=X Þ if
and only if it satis¢es �ff ðjgð �mmÞÞ ¼ gð�ff ð �mmÞÞwhich is the same as jgð �mmÞ: �xx0 ¼ gð �mm: �xx0Þ, for
any �mm 2 Y ð �kkÞ. Taking g to be the unit element of G we see that the set of elements of
Gð �kkÞ � SAut GðY=kÞ which belong to SAut GðY=X Þ is just Hð �kkÞ. It remains to show
that the map SAut GðY=X Þ ! G is surjective. For any g 2 G there exists
�ssg 2 Gð �kkÞ such that gð �xx0Þ ¼ �ssg: �xx0 (because X is a homogeneous space under G).
Put jgð �mmÞ ¼ gð �mmÞ�ssg, then jg 2 SAut GðY=kÞ and jgð �mmÞ: �xx0 ¼ gð �mmÞ:ð�ssg: �xx0Þ ¼
gð �mmÞ:gð �xx0Þ ¼ gð �mm: �xx0Þ, hence jg is a lifting of g to SAut GðY=X Þ. Therefore, the
following sequence is exact:

1! Hð �kkÞ ! SAut GðY=X Þ ��!
q

G! 1 ð11Þ
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It is locally split because it is split over K as soon as �xx0 is K-rational. Thus E satis¢es
(
) with respect to ðX ;Y ;HÞ.
(2) By Proposition 2.2, the lien kE corresponds to the map y:G! SAut ðHÞ

de¢ned by jgð �mm:�hhÞ ¼ jgð �mmÞ:ygð
�hhÞ, for any �hh 2 Hð �kkÞ and �mm 2 Y ð �kkÞ, where jg is a

lifting of g to SAut GðY=X Þ.
By de¢nition? ([Sp], 1.20; [FSS], (5.1)), the map fg:G! SAut grðHÞ de¢ning LX is

given by fgð�hhÞ ¼ �ss�1g :gð�hhÞ:�ssg, with �ssg: �xx0 ¼ g: �xx0. Choose the lifting jg de¢ned by
jgð �mmÞ ¼ gð �mmÞ�ssg. Then jgð �mm:�hhÞ ¼ gð �mmÞgð�hhÞ�ssg ¼ jgð �mmÞ:fgð�hhÞ, so the lien LX coincides
with kE . According to ([FSS], (5.1)) the class aX is given by the extension

1! Hð �kkÞ ! E 0 ! G! 1;

where E 0 is the subgroup of the semi-direct product Gð �kkÞ G consisting of the prod-
ucts �ssg such that �ss: �xx0 ¼ g: �xx0. The elements of E ¼ SAut GðY=X Þ � SAut GðY=kÞ ¼
Gð �kkÞ G are precisely the products jg ¼ �ssg satisfying jgð �mmÞ: �xx0 ¼ gð �mm: �xx0Þ. Taking
�mm to be the unit element we obtain that E ¼ E 0 and ClðEÞ ¼ aX . &

Here are two useful special cases:

EXAMPLE 3.4. Let X be a homogeneous space under G and assume thatH1ðk;GÞ is
trivial (e.g. G ¼ GLn, G ¼ SLn, or G is a semi-simple simply connected group over a
non-archimedean local ¢eld or a totally imaginary number ¢eld). Then X ðkÞ 6¼ ;
if and only if the class aX ¼ ClðEÞ is neutral in H2ðk;H;LX Þ ¼ H2ðk;H; kEÞ.

PROPOSITION 3.5. Let N and Z be two algebraic k-groups with Z central in N. Let
X be a k-torsor under the algebraic k-group N=Z given by a cocycle x 2 Z1ðk;N=ZÞ.
Let us consider X as a homogeneous space of N. Then aX ¼ dð½x�Þ, where ½x� is
the class of x in H1ðk;N=ZÞ, and d:H1ðk;N=ZÞ ! H2ðk;ZÞ is the connecting map.

Proof. Let c:G! N be a continuous cochain which lifts x. There is a �kk-point �xx0 on
X such that g: �xx0 ¼ cg: �xx0. By ([FSS], (5.1)) the class aX is given by the 2-cocycle
hg;t ¼ cggðctÞc�1gt . By [Se94], I.5.6 and I.5.7, the class of h inH2ðk;ZÞ is just the image
of x by the connecting map. &

3.3. THE ABELIAN CASE

LetX be a reduced and geometrically connected k-variety andY anX -torsor under a
linear commutative algebraic �kk-group S. Any k-lien on S de¢nes a unique k-form S
of S.

DEFINITION 3.6. Let S be a k-form of S. We denote by SAut SðY=X Þ the subgroup
of SAut ðY=X Þ consisting of the elements j satisfying jð �mm:�ssÞ ¼ jð �mmÞ:ðqðjÞð�ssÞÞ for any
�mm 2 Y ð �kkÞ; �ss 2 Sð �kkÞ, where the Galois group acts on S ¼ S 	k

�kk via the second factor.

	

	

?For a right homogeneous space the formulawould have been fg ¼ intð�ssgÞ � g.
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The kernel of the natural map q : SAut SðY=X Þ ! G is the group of
X -automorphisms of Y which commute with the action of S. Since S is abelian,
this is just SðX Þ (cf. [Gi], III.1.4.8, III.1.5.7). Thus the following sequence is exact:

1! SðX Þ ! SAut SðY=X Þ ! G ð9Þ

Since any unipotent abelian group is cohomologically trivial ([Se94], II.1.2,
Proposition 1), let us further assume that S is of multiplicative type. Denote by
ŜS the G-module dual to S. Under the hypothesis �kk½X �
 ¼ �kk



, which is used in the

abelian descent theory ([CS], [Sk]), the two following sequences are exact and
canonically isomorphic:

H1ðk;SÞ ! H1ðX ;SÞ ��!
w

HomGðŜS;PicX Þ ��!
@

H2ðk;SÞ ! H2ðX ;SÞ; ð10Þ

H1ðk;SÞ ! H1ðX ;SÞ ! H0ðk;H1ðX ;SÞÞ ��!
d

H2ðk;SÞ ! H2ðX ;SÞ: ð11Þ

Both sequences are functorial in k, X , and S. The ¢rst one was introduced by
Colliot-The¤ le' ne and Sansuc ([CS], 1.5.1) as the exact sequence of low degree terms
of the spectral sequence ExtpGðŜS;H

qðX ;GmÞÞ ) HpþqðX ;SÞ. The second one is
obtained from the Leray spectral sequence Hpðk;HqðX ;SÞÞ ) HpþqðX ;SÞ using
the assumption SðX Þ ¼ Sð �kkÞ (which follows from H0ðX ;GmÞ ¼

�kk


because S is of

multiplicative type). The comparison of the two spectral sequences is carried out
in Appendix B (if S is not a torus, then these two spectral sequences do not neces-
sarily coincide).
Recall that the type of an X -torsor Y under S is the image wð½Y �Þ of ½Y � in

HomGðŜS;PicX Þ. The following result shows that the obstruction O0l (by de¢nition
this is the class @ðlÞ) of Colliot-The¤ le' ne and Sansuc ([CS], 2.2.8) is a particular case
of the elementary obstruction de¢ned as in Section 2.

PROPOSITION 3.7. Let X be a reduced and geometrically connected k-variety such
that H0ðX ;GmÞ ¼

�kk


, and let S be a k-group of multiplicative type.

(1) Forany X-torsor Y under S, the map q: SAut SðY=X Þ ! G is surjective if and only if
the image wð½Y �Þ of ½Y � 2 H1ðX ;SÞ in HomðŜS;PicX Þ is Galois equivariant.

(2) The set of X-torsors Y under S (up to isomorphism) such that E :¼ SAut SðY=X Þ
satis¢es (*) is naturally identi¢ed with the group HomGðŜS;PicX Þ .

(3) Let l 2 HomGðŜS;PicX Þ, and let Y ! X be the corresponding torsor under S. Set
E :¼ SAut SðY=X Þ. Then the class ClðEÞ 2 H2ðk;SÞ coincides (up to a sign) with
@ðlÞ. In particular, ClðEÞ ¼ 0 if and only if @ðlÞ ¼ 0. It is the unique obstruction
for the existence of X-torsors under S of type l .

Proof. (1) The map q: SAut SðY=X Þ ! G is surjective if and only if for any g 2 G
the X

g-torsor Y
g under S

g
is isomorphic to the X -torsor Y under S, the induced

isomorphism S
g
! S being de¢ned by the form S. This is equivalent to saying that
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the class ½Y � 2 H1ðX ;SÞ is Galois equivariant. Now the result follows from the fact
that the exact sequences (10) and (11) coincide.
(2) Since sequence (10) is functorial in k, on considering it over �kk we see that the

G-modules H1ðX ;SÞ and HomðŜS;PicX Þ are isomorphic. Now the result follows
from (1) and from the exact sequence (11) because SðX Þ ¼ Sð �kkÞ.
(3) The element @ðlÞ 2 H2ðk;SÞ is also the element dðlÞ obtained via the exact

sequence (11). Let DðlÞ be the k-gerb associated to l 2 H0ðk;H1ðX ;SÞÞ as in ([Gi],
V.3.1.6). By de¢nition, for any ¢nite extension k � K � �kk, the ¢bre of DðlÞ at
SpecK is the category of SK -torsors over XK (where SK :¼ S 	k K,
XK :¼ X 	k K) which become isomorphic to the S-torsor Y after the extension
of scalars. By Proposition 2.2, the K-forms of the S-torsor Y over X correspond
to the sections of the exact sequence

1! Sð �kkÞ ! E ¼ SAut SðY=X Þ ! G! 1: ð12Þ

ThereforeDðlÞ is the gerb of sections of (12). By ([Gi], V.3.2.1) the cohomology class
of the gerb DðlÞ coincides with dðlÞ. On the other hand, the class ClðEÞ of (12) is also
the class of the gerb of sections of (12) (cf. Remark 1.14). &

3.4. THE ELEMENTARY OBSTRUCTION AND THE ABELIANIZED FUNDAMENTAL

OBSTRUCTION

The aim of this subsection is to show that after replacing a variety by some dense
open subset, the vanishing of the abelianized fundamental obstruction implies
the vanishing of the elementary obstruction of Colliot-The¤ le' ne and Sansuc. When
the geometric Picard group is of ¢nite type, the two obstructions are essentially
equivalent.
Let U be a geometrically connected and reduced k-variety, U :¼ U 	k

�kk. We have
an exact sequence of G-modules:

1! �kk
 ! �kk½U �
 ! �kk½U �
= �kk
 ! 1: ð13Þ

Let R be the k-torus dual to the torsion-free G-module �kk½U �
= �kk


. We rewrite (13) as

an extension of the G-modules bRR by �kk


:

1! �kk
 ! �kk½U �
 ! bRR! 1: ð
U Þ

It is clear that a k-point of U (actually, even a 0-cycle of degree 1 on U) de¢nes a
splitting of ð
U Þ. Hence the class of this extension in Ext1kðR̂R; �kk
Þ ¼ H1ðk;RÞ is
an obstruction to the existence of k-points on U . The multiplication by n sequence
1! R½n� ! R! R! 1 de¢nes the boundary maps @n:H1ðk;RÞ ! H2ðk;R½n�Þ.
We thus get a family of elements @nð½
U �Þ 2 H2ðk;R½n�Þ.
On the other hand, we have the abelianized fundamental exact sequence

1! pab1 ðUÞ ! P! G! 1: ðpabÞ
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Recall (cf. [KL]) that pab1 ðUÞ with its G-module structure is

pab1 ðUÞ ¼ lim
 

pab1 ðUÞ=n ¼ lim
 
HomðH1ðU; mnÞ;

�kk


Þ:

The Kummer sequence gives an exact sequence of G-modules

0! R̂R=n! H1ðU; mnÞ ! Pic ðUÞ½n� ! 0:

Therefore we get a surjective map of G-modules

pab1 ðUÞ ! HomðR̂R=n; �kk
Þ ¼ R½n�: ð14Þ

(It is surjective because Ext1Zð�; �kk

Þ ¼ 0 since �kk
 is divisible). Fix a geometric point �uu

of U . We de¢ne Zn! U as the connected e¤ tale covering corresponding to the
group homomorphism p1ðU; �uuÞ ! Rð �kkÞ½n� with Galois invariant kernel. We get a
commutative diagram of group extensions

1 ��! p1ðU; uÞ ��! p1ðU; uÞ ��! G ��! 1???y ???y ����
1 ��! RðkÞ½n� ��! AutðZn=UÞ ��! G ��! 1:

ð15Þ

Note that the G-module structure on Rð �kkÞ½n� ¼ Aut ðZn=UÞ given by the lower row of
(15) is its usual G-module structure.

THEOREM 3.8. The class of the lower extension in (15) in H2ðk;R½n�Þ coincides with
@nð½
U �Þ. The class ½
U � vanishes if and only if the push-out of the extension ðpabÞ by the
map (14) is split for every n.

Proof. The second assertion follows from the ¢rst one since H1ðk;RÞ contains no
divisible elements : indeed, let K be a ¢nite extension of k over which R is isomorphic
to Gr

m. Now H1ðK;Gr
mÞ ¼ 0 by Hilbert’s Theorem 90, and we conclude by a

restriction-corestriction argument. &

We need the following general lemma:

LEMMA 3.9. Let Y be a k-torsor under R such that ½Y � ¼ �½
U � 2 H1ðk;RÞ. Then
there exists a morphism v:U ! Y such that v
: �kk½Y �
 ! �kk½U �
 is an isomorphism.
In particular, v
 induces an equivalence of ð
Y Þ and ð
U Þ.

Proof. By Rosenlicht’s lemma �kk½Y �
= �kk
 ¼ R̂R as abelian groups. Actually this is an
isomorphism of G-modules (see [CS], 1.4). We get an extension of G-modules

1! �kk
 ! �kk½Y �
 ! R̂R! 1 ð
Y Þ

The class ½
Y � in Ext1kðR̂R; �kk
Þ ¼ H1ðk;RÞ is the opposite of ½Y � ([S], Section 6, [CS],
1.4.3), hence ½
U � ¼ ½
Y �. Therefore there exists an isomorphism of G-modules
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r: �kk½Y �
 ! �kk½U �
, such that we have a commutative diagram

1 ��! k


��! k½Y �
 ��! bRR ��! 1���� ???y ����

1 ��! k


��! �kk½U �
 ��! bRR ��! 1

It is a general fact that r 2 Homkð
�kk½Y �
; �kk½U �
Þ (homomorphisms of G-modules)

uniquely de¢nes ~rr 2 HomG; �kk�algð
�kk½Y �; �kk½U �Þ (G-equivariant homomorphisms of

�kk-algebras) such that ~rr gives r on invertible elements. Indeed, as Y :¼ Y 	k
�kk is

isomorphic to a ¢nite number of copies of Gm, �kk½Y �
 generates the �kk-algebra
�kk½Y �, hence ~rr is uniquely determined by r. To show that for any r there exists some
~rr we reason as follows. A �kk-point of Y realizes R̂R inside �kk½Y �
 as functions w which
equal 1 at this point. As a �kk-vector space, �kk½Y � is freely generated by the characters
w 2 R̂R. Thus r restricted to the subgroup R̂R � �kk½Y �
 is a homomorphism
R̂R! �kk½U �
. It uniquely extends to a morphism of �kk-algebras ~rr: �kk½Y � ! �kk½U �, then
~rr restricted to �kk½Y �
 is just r. It is clear that ~rr is G-equivariant since such is its
restriction to �kk½Y �
. (We thank J.-L. Colliot-The¤ le' ne for his help with this argument.)
Now we de¢ne v:U ! Y ¼ Spec ðk½Y �Þ as the morphism dual to the morphism of

k-algebras k½Y � ¼ �kk½Y �G! �kk½U �G ¼ k½U � de¢ned by ~rr. &

We resume the proof of Theorem 3.8. To prove the theorem we can replace U by
Y . Indeed, by Lemma 3.9 we have ½
U � ¼ ½
Y �. On the other hand, the map (14)
is the composition of v
: pab1 ðUÞ ! pab1 ðY Þ with pab1 ðY Þ ! pab1 ðY Þ=n ¼ Rð �kkÞ½n�. The
last equality is a canonical isomorphism by the Kummer sequence and the fact that
PicY ¼ 0. Let �yy be the image of �uu by v. It is clear that Zn ¼ U 	Y Yn, where
Yn is the unrami¢ed covering of Y corresponding to the surjection
p1ðY ; �yyÞ ! pab1 ðY Þ=n. We have an extension of abelian k-groups

1! R½n� ! R! R! 1:

The k-torsor Y under R can be viewed as a homogeneous space under R with
stabilizer R½n�. Let aY be its class as de¢ned by Springer (see Subsection 3.2).
We observe that the exact sequence

1! Aut ðYn=Y Þ ! Aut ðYn=Y Þ ! G! 1 ð16Þ

is (8) of Subsection 3.2 with Hð �kkÞ ¼ Aut ðYn=Y Þ ¼ R½n�ð �kkÞ. Indeed, since R is con-
nected we have SAut ðYn=Y Þ ¼ Aut ðYn=Y Þ, therefore E ¼ SAut RðYn=Y Þ must
coincide with this group. By Proposition 3.3 the class of (16) is the class aY .
Now Proposition 3.5 tells us that @nð½
Y �Þ coincides with aY . This ¢nishes the proof.&

COROLLARY 3.10. Let X be a smooth and geometrically integral variety over k such
that �kk½X �
 ¼ �kk



. Assume that PicX is of ¢nite type, and let S be the k-group which is

dual to PicX. Let U � X be a dense open subset such that PicU ¼ 0. Consider
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the image @ðIdÞ 2 H2ðk;SÞ of Id 2 HomGðŜS;PicX Þ. Then @ðIdÞ ¼ 0 if and only if the
push-out of ðpabÞ for U by the maps pabðUÞ ! pabðUÞ=n splits for all n.

The class @ðIdÞ is the elementary obstruction for the existence of a k-point on X
introduced by Colliot-The¤ le' ne and Sansuc ([CS], Proposition 2.2.8). Its vanishing
is the necessary and suf¢cient condition for the existence of universal torsors on
X (by de¢nition, these are torsors of type Id).

Proof. Since PicU ¼ 0, we have an exact sequence of G-modules

1! �kk½U �
= �kk
 ! Div XnU ðX Þ ! PicX ! 1

where Div XnU ðX Þ is the group of divisors with support in X nU . Consider the dual
sequence of k-groups of multiplicative type

1! S! Q! R! 1

Since Div XnU ðX Þ is a permutation G-module, the connecting map
d:H1ðk;RÞ ! H2ðk;SÞ is injective by Shapiro’s lemma. It is proved in [CS],
pp. 417^419, that dð½
U �Þ coincides with @ðIdÞ up to a sign. It remains to apply
Theorem 3.8. &

4. Descent Obstructions

4.1. NON-ABELIAN DESCENT

Let ðX ;Y ;GÞ be as in Section 2, and E a subgroup of SAut ðY=X Þ satisfying (
) (cf.
2.1). If ClðEÞ is neutral, we can choose a continuous homomorphic section of
q:E ! G. This de¢nes k-forms G of G and Y of Y such that f :Y ! X is a torsor
under G which is a k-form of �ff :Y ! X (see Proposition 2.2 (3)).
We de¢ne a pairing H1ðX ;GÞ 	 X ðkÞ ! H1ðk;GÞ by taking the pull-back with

respect to the inclusion of a k-point into X . If Y is an X -torsor under G and
P 2 X ðkÞ we denote it by ½Y �:P. This is the same thing as the class of the ¢bre
of Y at P.
Let s 2 Z1ðk;GÞ. There is an obvious commutative diagram

H1ðX ;GÞ ��! H1ðX ;GsÞ

:P
???y ???y:P

H1ðk;GÞ ��! H1ðk;GsÞ

ð17Þ

where the horizontal maps are bijections which associate to a torsor its twist by s. In
particular, if ½Y �:P ¼ ½s�, then ½Ys�:P is the trivial element of H1ðk;GsÞ. In the
abelian case, the inner form Gs can be identi¢ed with G and the map
H1ðX ;GÞ ! H1ðX ;GsÞ is just the translation by �½s�.
The following lemma is similar to classical descent statements:
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LEMMA 4.1.

� For any ¢eld extension K=k the subset f sðY sðKÞÞ of X ðKÞ depends only on the class
½s� 2 H1ðk;GÞ.

� We have:X ðkÞ ¼
S
½s�2H1ðk;GÞ f

sðYsðkÞÞ:

Proof. Let P 2 X ðKÞ. Then P 2 f sðY sðKÞÞ if and only if ½Ys�:P is trivial in
H1ðK;GsÞ, that is if and only if ½s� ¼ ½Y �:P (by the commutativity of (17)). The last
condition depends only on ½s�.
In particular, let P 2 X ðkÞ and put ½s� ¼ ½Y �:P; then ½Ys�:P is trivial in H1ðk;GsÞ.

Thus the ¢bre of Y s at P is a trivial torsor, and there exists a k-rational point
Q of Ys such that f sðQÞ ¼ P. &

From now on let k be a number ¢eld. We suppose that X ðAkÞ 6¼ ;. ‘Evaluating’
f :Y ! X at an adelic point of X gives a map

yf :X ðAkÞ !
Y
v2O

H1ðkv;GÞ:

Note that if G is linear, then the set H1ðkv;GÞ is ¢nite ([Se94], III.4). For each
s 2 Z1ðk;GÞ, we let sv denote its image in Z1ðkv;GÞ. (This image is de¢ned by ¢rst
choosing a place w of k over v, and then restricting s to the decomposition group
Dw of w. The union of completions at w of ¢nite subextensions of �kk is an algebraic
closure of kv, and Dw is its Galois group over kv, cf. [Se94], II.6.1.).

DEFINITION 4.2. Let f :Y ! X be a torsor underG. De¢neX ðAkÞ
f as the subset of

X ðAkÞ consisting of adelic points whose image under yf comes from an element of
H1ðk;GÞ

X ðAkÞ
f ¼

[
½s�2H1ðk;GÞ

f sðYsðAkÞÞ:

We haveX ðkÞ � X ðAkÞ
f � X ðAkÞ. The emptiness ofX ðAkÞ

f is thus an obstruction to
the existence of a k-point on X , that is, an obstruction to the Hasse principle. We
shall call it the descent obstruction de¢ned by f :Y ! X .
The motivation to introduce the descent obstruction in the non-abelian case is to

re¢ne the classical Brauer^Manin obstruction, as will become apparent in the explicit
examples given in the last section of the paper. Note that if G is a k-group of
multiplicative type, the diagonal image of H1ðk;GÞ in the productQ

v2O H1ðkv;GÞ is described by the Poitou^Tate exact sequence (cf. [Mi86], I.4.20
(b), I.4.13). There is a generalization, due to Kottwitz, of this sequence to the case
when G is connected reductive (cf. [Bo98], Theorem 5.15):

H1ðk;GÞ ! �v2OH1ðkv;GÞ ! ðp1ðGÞGÞtors

where p1ðGÞ is the algebraic fundamental group of G (this is a G-module which is of
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¢nite type as an abelian group, see [Bo98], 1.4) and p1ðGÞG is its coinvariant module.
Here �v2OH1ðkv;GÞ is the subset of the product

Q
v2O H1ðkv;GÞ consisting of ðxvÞ

such that xv ¼ 1 for almost all places v.

PROPOSITION 4.3. Let ðX ;Y ;GÞ be as in Section 2, and let E be a subgroup of
SAut ðY=X Þ satisfying (*) (cf. 2.1), such that the class ClðEÞ 2 H2ðk;G; kEÞ is neutral
(that is, the elementary obstruction given by E is empty). Then for any k-form
f :Y ! X of the torsor Y compatible with E, the set X ðAkÞ

f depends only on
c :¼ ðX ;Y ;G;EÞ and not on f .

Proof. If we change the homomorphic section j:G! E, then the forms G and Y
are respectively replaced by Gs and Y s for some s 2 Z1ðk;GÞ. Indeed, the
homomorphism g 7!yg de¢ning the action of G on G is well de¢ned up to
conjugation, and jgð �mm:�ssÞ ¼ jgð �mmÞ:ygð�ssÞ (with Y ¼ Y=jðGÞ and G ¼ G=yðGÞ) by
Proposition 2.2. &

Because of Proposition 4.3 we shall sometimes write X ðAkÞ
c for X ðAkÞ

f where
f : Y ! X is a k-form compatible with E, with the convention X ðAkÞ

c
¼ ; if

ClðEÞ is not neutral.
Now we are going to prove the following ‘non-abelian’ version of [Sk],

Theorem 3(b).

PROPOSITION 4.4. Let f :Y ! X be a torsor under a linear algebraic group G and
assume that X is a proper k-variety. Fix a ¢nite set of places S � O and let AS

k denote
the image of Ak by the projection to

Q
v 62S kv. Then there are only ¢nitely many classes

½s� 2 H1ðk;GÞ such that YsðAS
k Þ 6¼ ;.

Proof. Let G0 be the connected component (of unity) of G. Then F ¼ G=G0 is a
¢nite k-group.
For a ¢nite set of places S0 � S containing the Archimedean ones let Ok;S0 � k be

the ring of S0-integers of k (integers away from S0). Let us ¢x S0 large enough
so that the following properties hold:

G extends to a smooth group scheme G over Spec ðOk;S0 Þ,
X extends to a proper scheme X over Spec ðOk;S0 Þ,
Y extends to an X -torsor Y under G.

We denote by G0 and F the group schemes over Spec ðOk;S0 Þ extending G0 and F
respectively. Up to enlarging S0 we can assume that the these group schemes ¢t into
an exact sequence

1! G0! G! F ! 1

Let ½s� 2 H1ðk;GÞ be such that Y sðAS
k Þ 6¼ ;. The condition Y sðkvÞ 6¼ ; implies that

there exists a kv-point Mv 2 X ðkvÞ such that ½YMv � ¼ ½sv�. By the properness of
X=Ok;S0 for all v 62 S0 we have X ðkvÞ ¼ XðOvÞ. By our choice of S0, for all v 62 S0
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the class ½sv� is the image of ½YMv � under the natural map H1ðOv;GÞ ! H1ðkv;GÞ.
Thus the image of ½sv� in H1ðkv;F Þ comes from H1ðOv;FÞ for all v 62 S0. The image
of ½s� inH1ðk;F Þ can be represented by a k-torsor Z under F . This is a 0-dimensional
k-scheme, hence Z ¼ Spec ðk½Z�Þ. The e¤ tale k-algebra k½Z� is a product of ¢eld
extensions of k. The fact that the image of ½sv� in H1ðkv;F Þ comes from
H1ðOv;FÞ implies that all of these ¢elds are not rami¢ed at all v 62 S0. The degrees
of these extensions of k are bounded by jF ð �kkÞj. There are only ¢nitely many
extensions of k of bounded degree, which are unrami¢ed away from S0 ([Lan86],
V.4, Theorem 5). In particular, there exists a ¢nite Galois ¢eld extension k0=k which
contains all these extensions. Thus the image of ½s� in H1ðk;F Þ is contained in a
¢nite subset (the image of H1ðGal ðk0=kÞ;F Þ in H1ðk;F Þ), which we can take to
be the image of a ¢nite subset F � H1ðk;GÞ consisting of elements coming from
H1ðOv;GÞ for all v=2S0. On replacing G with its twist by a cocycle representing a class
in F, it is now enough to prove that the set of classes ½s� 2 H1ðk;GÞ going to zero in
H1ðk;F Þ, and such that for all v 62 S0 we have ½sv� 2 Im ½H1ðOv;GÞ ! H1ðkv;GÞ�,
is ¢nite. Let ½rv� 2 H1ðOv;GÞ be a class mapping to ½sv�. We claim that ½rv� goes
to zero in H1ðOv;FÞ. For this it is enough to show that the kernel of the map
H1ðOv;FÞ ! H1ðkv;F Þ is trivial. To prove this we observe that a SpecOv-torsor
under a ¢nite (hence proper) group F is proper over SpecOv, hence, by the valuative
criterion of properness, a section over the generic point Spec kv � SpecOv extends to
a section over the whole of SpecOv. Therefore ½rv� goes to zero in H1ðOv;FÞ, and
hence comes from H1ðOv;G

0
Þ. However, every SpecOv-torsor under the smooth

and connected group G0 is trivial by Lang’s theorem [Lan56] (which allows one
to a ¢nd a rational point in the closed ¢bre) and Hensel’s lemma (which allows
one to lift it to a section over SpecOv). Thus H1ðOv;G

0
Þ is trivial, and ½sv� ¼ 0

for all v 62 S0. Since every set H1ðkv;GÞ is ¢nite, ð½sv�Þ belongs to the ¢nite subset
of

Q
v2OnS H1ðkv;GÞ consisting of ðavÞ such that av is arbitrary for v 2 S0 n S, and

av ¼ 0 otherwise. By a theorem of Borel^Serre ([Se94], III.4.6; [BS], 7.1) the natural
diagonal mapH1ðk;GÞ !

Q
v2OnS H1ðkv;GÞ has ¢nite ¢bres, hence the inverse image

of our ¢nite subset is also ¢nite. Thus the set of classes ½s� 2 H1ðk;GÞ such that
YsðkvÞ 6¼ ; for any v 62 S is ¢nite. &

4.2. OBSTRUCTIONS TO WEAK APPROXIMATION

Throughout this subsection we assume thatX is a proper, smooth, and geometrically
connected variety over a number ¢eld k, with X ðkÞ 6¼ ;. Let G be a linear algebraic
k-group. Let f : Y ! X be a torsor under G.

DEFINITION 4.5. Let S be a ¢nite set of places of k. We let X ðAS
k Þ

f denote the
subset of X ðAS

k Þ consisting of points whose image under the evaluation map
ySf :X ðA

S
k Þ !

Q
v2OnS H1ðkv;GÞ comes from an element of H1ðk;GÞ. We have:

X ðAS
k Þ

f
¼

[
½s�2H1ðk;GÞ

f sðY sðAS
k ÞÞ:
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Recall the following result (which is well known when G is abelian):

LEMMA 4.6. Let kv be a completion of k and ½Y � 2 H1ðX ;GÞ. Then the evaluation
map y:X ðkvÞ ! H1ðkv;GÞ induced by ½Y � is locally constant.

Proof. (cf. [Du], II, (0.31)). Letm 2 X ðkvÞ. We want to ¢nd a v-adic neighbourhood
V ofm such that y is constant on V . Twisting G and Y by a cocycle representing yðmÞ
if necessary, we can assume that yðmÞ is trivial. LetA be the Henselization of the local
ring of X at m, then the restriction of ½Y � to H1ðA;GÞ is trivial. Since A is the
inductive limit of the e¤ tale ring extensions B � OX ;m such that the ¢bre of
SpecB! SpecOX ;m contains a point over kðmÞ ¼ kv, there exists an e¤ tale morphism
p:Z! X such that m 2 pðZðkvÞÞ and the restriction p
½Y � of ½Y � to H1ðZ;GÞ is
trivial. By the implicit function theorem, the map ZðkvÞ ! X ðkvÞ induced by p is
open. Therefore, its image contains a v-adic neighbourhood V of m. For any point
m0 2 V there exists a kv-point n0 2 ZðkvÞ such that pðn0Þ ¼ m0. Then
½Y �:m0 ¼ ðp
½Y �Þ:n0 is trivial. &

THEOREM 4.7. Let X ðkÞ
S

be the closure of the image of X ðkÞ in X ðAS
k Þ, then

X ðkÞ
S
� X ðAS

k Þ
f :

Proof. To begin with, let us show that f ðY ðAS
k ÞÞ is a closed subset of X ðAS

k Þ. Let
ðMvÞ be an adelic point of X which belongs to the closure of f ðY ðAS

k ÞÞ. Then for
any place v 62 S, there exists a kv-point Pv of Y such that Nv :¼ f ðPvÞ is arbitrary
close to Mv. As ½Y �:Nv is trivial, so is ½Y �:Mv by Lemma 4.6. Similarly
f sðY sðAS

k ÞÞ is closed for any s 2 Z1ðk;GÞ (this argument does not use the assumption
X proper).
Since X is proper, Proposition 4.4 applies and X ðkÞ is a subset ofS
½s�2S f sðYsðAS

k ÞÞ, where S is a ¢nite subset of H1ðk;GÞ. A ¢nite union of closed
subsets is closed, hence the closure of X ðkÞ in X ðAS

k Þ is a subset ofS
½s�2S f sðYsðAS

k ÞÞ. &

COROLLARY 4.8. The condition X ðAkÞ
f
6¼ X ðAkÞ (resp. X ðAS

k Þ
f
6¼ X ðAS

k Þ) is
an obstruction to weak approximation (resp. to weak approximation outside S)
on X.

We shall call this condition the descent obstruction to weak approximation (resp.
to weak approximation outside S) associated to f :Y ! X .

4.3. RELATION WITH THE BRAUER^MANIN OBSTRUCTION

Recall that for any number ¢eld k, local class ¢eld theory gives an injective map
jv:Br kv ! Q=Z which is an isomorphism for v ¢nite. Let X be a smooth and
geometrically integral k-variety, and BrX :¼ H2ðX ;GmÞ the cohomological Brauer
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group of X . Set

X ðAkÞ
Br
¼ ðMvÞ 2 X ðAkÞ; 8A 2 BrX ;

X
v2O

jvðAðPvÞÞ ¼ 0

( )
:

(The sum is well-de¢ned, [CS], III.) The reciprocity law of global class ¢eld theory
implies X ðkÞ � X ðAkÞ

Br . In particular, the condition X ðAkÞ
Br
¼ ; is an obstruction

to the existence of a k-rational point on X , this is the Manin or Brauer^Manin
obstruction.
If X is proper, we let X ðkÞ denote the closure of X ðkÞ embedded diagonally in

X ðAkÞ ¼
Q

v2O X ðkvÞ. In this case we have X ðkÞ � X ðAkÞ
Br ; and the condition

X ðAkÞ
Br
6¼ X ðAkÞ is the Brauer^Manin obstruction to weak approximation.

If B is a subset of BrX , we set

X ðAkÞ
B
¼ ðMvÞ 2 X ðAkÞ; 8A 2 B;

X
v2O

jvðAðPvÞÞ ¼ 0

( )
:

We also set Br 1X :¼ Ker ½BrX ! BrX �.
We now reformulate Theorem 3 (a) of [Sk] (which is an extension of one of the

main results of [CS]) as the equivalence of the Brauer^Manin obstruction related
to Br 1X and the descent obstructions given by all torsors under groups of
multiplicative type. More precisely:

THEOREM 4.9. Let X be a smooth and geometrically integral variety over a number
¢eld k such that �kk½X �
 ¼ �kk



(e.g. X proper). Denote by T ab the set of quadruples

c ¼ ðX ;Y ;S;EÞ such that S is a k-group of multiplicative type, Y is an X-torsor under
S, and E ¼ SAut SðY=X Þ satis¢es (*) (cf. 2.1). Then:

X ðAkÞ
Br 1X ¼

\
c2T ab

X ðAkÞ
c:

(Recall that X ðAkÞ
c has been de¢ned after the proof of Proposition 4.3).

Proof. Let r:Br 1X ! H1ðk;PicX Þ be the map given by the Hochschild^Serre
spectral sequence ([CS], (1.5)):

0! PicX ! ðPicX ÞG ! Br k! Br 1X��!
r

H1ðk;PicX Þ ! 0

By ([Se94], I.2.2, Corollary 2) for any a 2 Br 1X there exists a G-submodule
l:M,!PicX of ¢nite type such that rðaÞ 2 l
ðH1ðk;MÞÞ. Thus X ðAkÞ

Br 1X ¼

\lX ðAkÞ
Br l , where Br l ¼ r�1l
ðH1ðk;MÞÞ � Br 1X . Let S be the k-group dual to

M, and let Y be an X -torsor of type l. We have �kk½X �
 ¼ �kk


, then

E :¼ SAut SðY=X Þ satis¢es (*) by Proposition 3.7. Set c ¼ ðX ;Y ;S;EÞ, then
X ðAkÞ

Br l ¼ X ðAkÞ
c by [Sk], Theorem 3 (a) (note that X ðAkÞ

Br l is empty if the
elementary obstruction does not disappear, which is a nontrivial fact: see [Sk], proof
of Theorem 3 (a)). This ¢nishes the proof. &
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The set X ðAkÞ
Br can be empty even if X ðAkÞ

Br 1X is not, because elements of BrX
which are not killed in BrX can give a Brauer^Manin obstruction; see [Ha96]
for an example of this situation. Now we are going to show that such a
‘transcendental’ Manin obstruction, at least when it is realized by an Azumaya
algebra on X , is still equivalent to a descent obstruction provided one uses
non-abelian torsors.
We denote by BrAz X the Brauer group of X , de¢ned as the group of similarity

classes of Azumaya algebras on X . By a theorem of Grothendieck there is an
injection BrAz X ! BrX . More precisely, the exact sequence of e¤ tale sheaves

1! Gm ! GLn! PGLn ! 1

gives rise to the exact sequence of pointed sets

H1ðX ;GmÞ ! H1ðX ;GLnÞ ! H1ðX ;PGLnÞ ��!
d

BrX ;

and BrAz X is the union (for n > 0) of the images of H1ðX ;PGLnÞ by d (cf. [Mi80],
IV.2.5). It is conjectured that in fact BrAz X ¼ BrX . (There are results by O. Gabber
and R. Hoobler in this direction.) For any ¢eld K it is well known that
BrK ¼ BrAz K ; moreover the map d:H1ðK;PGLnÞ !n BrK is injective ([Se68],
X.5). Note that for any ¢eld K of characteristic zero, we have
nBrK ¼ H2ðK; mnÞ by Kummer theory, and mn is the fundamental group of
PGLn. If K is a number ¢eld or the completion of a number ¢eld, then the map
d:H1ðK;PGLnÞ ! H2ðK; mnÞ ¼n BrK is an isomorphism (this is also well-known,
and can be viewed as a special case of [Bo98], 5).
We want to relate the Brauer^Manin obstruction associated to the subgroup

BrAz X of BrX to the obstruction de¢ned by X -torsors under the groups PGLn,
n ¼ 1; 2; . . . : Let T PGLn denote the set of PGLn-torsors f :Y ! X considered up
to isomorphism, and set T PGL ¼

S
n T PGLn .

THEOREM 4.10. We have

X ðAkÞ
BrAz X

¼
\

f2T PGL

X ðAkÞ
f :

Proof.Let f :Y ! X be a torsor under PGLn and a :¼ dð½Y �Þ be the corresponding
element of nBrAz X . Let ðMvÞ 2 X ðAkÞ. The following diagram is commutative:

H1ðX ;PGLnÞ ��!
d

Br X

:Mv

???y ???y:Mv

H1ðkv;PGLnÞ ��!
d

Br kv

and the canonical maps d:H1ðk;PGLnÞ !n Br k and d:H1ðkv;PGLnÞ !n Br kv are
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isomorphisms. Now it follows from the commutativity of this diagram that

ð½Y �:MvÞ 2 Im H1ðk;PGLnÞ !
Y
v2O

H1ðkv;PGLnÞ

" #

if and only if ðaðMvÞÞ 2 Im ½Br k!
Q

v2O Br kv�. This implies X ðAkÞ
a
¼ X ðAkÞ

f . Since
BrAz X is the union of the images of H1ðX ;PGLnÞ in BrX for n ¼ 1; 2; . . ., we are
done. &

Remark 4.11. The already mentioned example [Ha96] of a smooth and projective
k-variety X with X ðAkÞ

Br AzX ¼ ; and X ðAkÞ
Br 1X 6¼ ;, shows (by Theorems 4.9

and 4.10) that the descent obstruction to the Hasse principle for a connected linear
algebraic group does not necessarily reduce to the corresponding obstruction for
its toric part. From this point of view, the case of the descent obstruction differs
from the case of the elementary obstruction (cf. [Bo93], Theorem 6.5).

5. Examples

5.1. A COUNTEREXAMPLE TO THE HASSE PRINCIPLE NOT ACCOUNTED FOR BY THE
MANIN OBSTRUCTION

The ¢rst example of (proper, smooth, and geometrically integral) k-variety which
does not satisfy the Hasse principle, but for which there is no Manin obstruction,
was recently given by the second author in [Sk]. We are going to revisit this
counterexample using the obstruction associated to a non-abelian torsor.
Let C and D be the curves of genus one over k ¼ Q, and f :C 	D! X be the

quotient by a ¢xed point free involution, as de¢ned by equations in ([Sk], Section
2). Let E be the Jacobian of C. We have ½C� 2 IIIðEÞ, DðkÞ 6¼ ;, hence X has points
everywhere locally. Let C0 be the principal homogeneous space under E given by
equations in ([Sk], App. A). We have ½C0� 2 IIIðEÞ and 2½C0� ¼ ½C�. Finally, let C00

be a principal homogeneous space under E whose class ½C 00� 2 H1ðk;EÞ is such that
2½C00� ¼ ½C0� (any element in the Tate^Shafarevich group IIIðEÞ is divisible by any
prime number in H1ðk;EÞ, if E is an elliptic curve, [Mi86], I.6.18). Consider the
tower of ¢nite e¤ tale coverings

Y 00 ¼ C 00 	D ���!
x0	Id

Y 0 ¼ C0 	D ���!
x	Id

Y ¼ C 	D��!
f

X ;

where the morphisms x0 and x are induced by multiplication by 2 on E. Let
f 0 ¼ f � ðx	 IdÞ, f 00 ¼ f � ðx	 IdÞ � ðx0 	 IdÞ. Let E½4� be the group of points of
E of order dividing 4. The map f 00 makes Y 00 an X -torsor with respect to a k-group
scheme G whose underling group is E½4� Z=2, where the non-trivial element of
Z=2 acts on E½4� as multiplication by �1. G contains E[4] as a normal k-group sub-
scheme. Suppose that ½C� 2 IIIðEÞ½2� is not divisible by 4 in IIIðEÞ. (It follows from
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the Birch^Swinnerton-Dyer conjecture that IIIðEÞ ¼ ðZ=4Þ2, so it should be the case
here.)

PROPOSITION 5.1. Assume that the Birch^Swinnerton-Dyer conjecture is true
for the elliptic curve E. Then no twisted form of the torsor f 00:Y 00 ! X has points
everywhere locally.

Without assuming the Birch^Swinnerton-Dyer conjecture the same result remains
true if one chooses ½C0� 2 IIIðEÞ such that ½C� ¼ 2i½C0� with i maximal with this
property, and then de¢nes C00 and Y 00 in the same way as above. (The group
IIIðEÞ is ¢nite by Rubin’s theorem, see [Sk], the proof of Proposition 2.)

Proof.Let s 2 Z1ðk;GÞ, and let ðY 00Þs! X be the twist ofY 00 ! X by s. Since E½4�
is normal in G, Gs contains its twisted group E½4�s. The quotient of ðY 00Þs by E½4�s is
an X -torsor under Z=2. This is the same thing as the twist Y t of Y ! X by the
image t 2 Z1ðk;Z=2Þ of s. It is shown in ([Sk], the proof of Theorem 2 (a)) that
if Y tðAQÞ 6¼ ;, then ½t� ¼ 1 and Y t is isomorphic to Y . Hence the morphism
ðY 00Þs! X factors as ðY 00Þs! Y ! X . From the exact sequence of pointed sets

H1ðk;E½4�Þ ! H1ðk;GÞ ! H1ðk;Z=2Þ

it follows that there exists r 2 Z1ðk;E½4�Þ such that ½s� is the image of ½r�. Then
ðY 00Þs! Y can be considered as the twist of Y 00 ¼ C 00 	D! Y by r. The action
of E½4� on Y 00 ¼ C 00 	D is given by the natural action on C00 and the trivial action
on D. Thus ðY 00Þs ¼ ðC00Þr 	D. It is clear that ðC 00Þr is an 8-covering of E which
is a lifting of the 2-covering C ! E. Since IIIðEÞ ¼ ðZ=4Þ2 by the
Birch^Swinnerton-Dyer conjecture, we conclude that ðC00Þr cannot represent an
element of IIIðEÞ for any class ½r� 2 H1ðk;E½4�Þ. Thus no twist of Y 00 ! X has an
adelic point. &

We thus have X ðAkÞ
f 00
¼ ;. Note that it is shown in [Sk] that X ðAkÞ

Br
6¼ ; : the point

is that in this case BrX ¼ Br 1X , hence the Brauer^Manin obstruction is controlled
by abelian torsors over X (cf. Theorem 4.9). But although the coverings Y ! X
and Y 00 ! Y are abelian, the covering Y 00 ! X is not; the condition that
Y tðAkÞ

Br is empty for any twisted form Y t ofY ! X (this is the ‘re¢ned obstruction’
de¢ned in [Sk]) follows from the fact that ðY 00ÞsðAkÞ is empty for any twisted form
ðY 00Þs of Y 00 (apply Theorem 4.9 to the abelian torsor Y 00 ! Y ).
This example shows that the descent obstruction associated to a non-abelian

torsor can be ¢ner than the Manin obstruction.

5.2. COUNTEREXAMPLES TO WEAK APPROXIMATION RELATED TO NON-ABELIAN

FUNDAMENTAL GROUPS

The following result is proven in [Ha99]:
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Let X be a proper, smooth, and geometrically integral variety over a number ¢eld k
such that X ðkÞ 6¼ ;. Assume that ðBrX ÞG is ¢nite (e.g. H2ðX ;OX Þ ¼ 0) and that
the geometric fundamental group p1ðX Þ is non-abelian. Assume further that
H1ðX ;OX Þ ¼ 0 or that the tangent bundle TX of X is nef. Then,
pSðX ðAkÞ

Br
Þ 6� X ðkÞ

S
for any ¢nite set S � O, where pS is the canonical projection

X ðAkÞ ! X ðAS
k Þ.

This statement can be reinterpreted using the obstruction to weak approximation
de¢ned in Subsection 4.2. Indeed, the assumption p1ðX Þ non-abelian gives a torsor
f :Y ! X under a ¢nite non-abelian group scheme G (cf. 3.1). Now, using the
additional hypothesis and abelian descent theory as in Theorem 4.9 ([CS], [Sk]),
one shows that in¢nitely many elements of pSðX ðAkÞ

Br
Þ do not belong to

X ðAS
k Þ

f . Thus the fact that G is not abelian implies that the descent obstruction
to weak approximation (or to weak approximation outside S) can be ¢ner than
the Brauer^Manin obstruction.
This result applies for example to e¤ tale quotients of abelian varieties, in

particular, to bielliptic surfaces (this is not surprising in view of the counterexample
in the previous subsection). It is worth noting that in this case, X ðKÞ is Zariski-dense
in X for some ¢nite ¢eld extension K=k. See ([Ha99], Section 6) for more
details.

5.3. HOMOGENEOUS SPACES OF BOROVOI AND KUNYAVSKI
II

In this subsection we apply the general machinery of the elementary obstruction to
homogeneous spaces constructed by Borovoi and Kunyavski|
. In particular, we
show how to ¢nd adelic points on such a space X , which satisfy the Manin conditions
with respect to Br 1X .
Let k be a ¢eld of characteristic zero. Consider a ¢nite k-group F with centerZ. Let

A be a ¢nite abelian k-group containing Z and de¢ne N :¼ ðF 	 AÞ=Z, where Z is
embedded into ðF 	 AÞ=Z by the map z 7!ðz; z�1Þ. For some m, N can be realized
as a subgroup of SLm;k. Note that Z ¼ F \ A, A is central in N, and F is normal
in N. Let X be the homogeneous space of SLm;k de¢ned by twisting (cf. [Se94], I.5.3)
SLm;k=F by a cocycle x 2 Z1ðk;A=ZÞ (the natural right action of N on SLm;k=F
induces an action of N=Z on SLm;k=F , hence an action of A=Z on SLm;k=F ). Let
Z be the image of ½x� 2 H1ðk;A=ZÞ by the connecting homomorphism
H1ðk;A=ZÞ ! H2ðk;ZÞ, and denote by D the connecting map of pointed sets
H1ðk;F=ZÞ ! H2ðk;ZÞ. SinceZ is the center of F , we have a simply transitive action
ðb; aÞ7!b:a of H2ðk;ZÞ on H2ðk;F Þ (Remark 1.15). Then we have:

PROPOSITION 5.2. The variety X has a k-point if and only if Z 2 ImD.

We use the following lemma:
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LEMMA 5.3. Let nF be the neutral class in H2ðk;F Þ corresponding to the extension
E0 :¼ F ð �kkÞ G, and let aX be the Springer class of the homogeneous space X. Then
aX ¼ Z:nF .

Proof. Fix a continuous cochain g 7! cg:G! Að �kkÞ which is a lifting of the cocycle
x. Let B be the subgroup ofNð �kkÞ G consisting of the elements ngwith nZ ¼ cgZ, and
E the subgroup of Nð �kkÞ G consisting of the elements ng with nF ¼ cgF . Then
(cf. Proposition 3.5) Z is the class in H2ðk;ZÞ of the exact sequence

1! Zð �kkÞ ! B! G! 1: ð18Þ

Applying the results of Subsection 3.2. with �xx0 ¼ �eeF , we see that aX is the class in
H2ðk;F Þ of the exact sequence:

1! F ð �kkÞ ! E ! G! 1 ð19Þ

(We have LX ¼ lienðF Þ because A is central in N). Now, by [FSS], (1.24), the class
Z:nF is represented by the exact sequence:

1! F ð �kkÞ ! E 0 ! G! 1; ð20Þ

where E 0 ¼ B 	G E0=D and D is the subgroup ðz; z�1Þ; z 2 Zð �kkÞ, of the ¢bre product.
An element of B 	G E0 corresponds to a triple ðn1; n2; gÞ, where n1 2 Að �kkÞ,
n2 2 F ð �kkÞ and n1Z ¼ cgZ. The map F:B 	G E0 ! E sending ðn1; n2; gÞ to ðn1n2; gÞ
is well de¢ned because n1n2F ¼ cgn2F ¼ cgF (recall that A is central in N). Since
F \ A ¼ Z, the kernel of F is D. On the other hand F is clearly surjective so F
identi¢es E 0 with E and aX ¼ Z:nF . &

COROLLARY 5.4. The class aX 2 H2ðk;F Þ is neutral if and only if Z 2 ImD.
Proof. For any a 2 H2ðk;F Þ there exists a unique b 2 H2ðk;ZÞ such that a ¼ b:nF .

By [Bo93], Proposition 2.3, b:nF is neutral if and only if b belongs to the image
of D. Now the result follows from Lemma 5.3. &

Since H1ðk; SLmÞ is trivial, Proposition 5.2 follows from Corollary 5.4 and
Example 3.4. &

PROPOSITION 5.5. Let k be a number ¢eld. Suppose that the restriction of Z to
H2ðkv;ZÞ is trivial for any v 2 O. Then the set X ðAkÞ

Br 1X is not empty.
Proof. The map SLm; �kk ! X is a ¢nite e¤ tale Galois covering with group F ð �kkÞ. We

have Pic SLm; �kk ¼ 0 ([S], 6.9), and H0ðSLm; �kk;GmÞ ¼
�kk


. Now the Hochschild^Serre

spectral sequence ([Mi80], III.2.20) HpðF ð �kkÞ;HqðSLm; �kk;GmÞÞ ) HpþqðX ;GmÞ shows
that PicX is the group of characters of F ð �kkÞ, hence is F abð �kkÞ ¼ dF=ZF=Zð �kkÞ.
Let T be the twist of SLm;k=Z by x, then f :T ! X is anX -torsor under the k-group

F=Z. Its type l: dF=ZF=Z! PicX is injective because T is connected, hence it is an
isomorphism (dF=ZF=Z and PicX have the same cardinality). In other words, T is a
universal torsor over X . Using ([Sk], Theorem 3 (a)) we obtain X ðAkÞ

Br 1X ¼ X ðAkÞ
f .
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For each place v of k, set Tv ¼ T 	k kv. Since the image of Z in H2ðkv;ZÞ is trivial,
by Lemma 5.3 there exists a Tv-torsor Yv ! Tv under Z 	k kv, which is a principal
homogeneous space under SLm;kv . Since H1ðK; SLm;K Þ ¼ 0 for any ¢eld K , we have
YvðkvÞ 6¼ ;. Hence, T ðkvÞ 6¼ ; for any place v of k. Thus X ðAkÞ

f
6¼ ; and we are

done. &

Remark 5.6. It is possible to choose the data above such that BrXc ¼ 0, where Xc

is a smooth compacti¢cation of X (Borovoi^Kunyavski|
, personal communication).
Then it follows from Proposition 5.5 that XcðAkÞ

Br is not empty. It is an interesting
question whether one can arrange that X ðkÞ ¼ ; or XcðkÞ ¼ ;.

Appendix A: Extensions of Topological Groups

The following result is useful to deal with the various topological conditions used in
the paper for exact sequences of groups.

PROPOSITION.With the assumptions of Subsection 1.4 consider an exact sequence
of topological groups, where the ¢rst inclusion is continuous (i.e. open onto its image):

1! GðkÞ ! E��!
q

G! 1 ð3Þ

Then,

(1) The map q is open onto its image if and only if it admits a continuous set-theoretic
section. This is in particular the case if (3) is locally split.

(2) Let k be a k-lien on the algebraic group G. Assume that the induced homomorphism
G! Out ðGð �kkÞÞ is k:G! SOut ðGÞ followed by the canonical map
SOut ðGÞ ! Out ðGð �kkÞÞ. Then the sequence (3) is compatible with k if and only
if it is locally split.

Proof. (1) Assume that q admits a continuous set-theoretic section s. Let U be an
open subset of E. Take any g 2 qðUÞ, say, g ¼ qðuÞ for some u 2 U . We may assume
sðgÞ ¼ u (translating s by an element of ker q if necessary). Now s�1ðUÞ is an open
subset of qðUÞ which contains g. Since g is arbitrary in qðUÞ, the set qðUÞ is open.
Conversely, assume that q is open. Since Gð �kkÞ is discrete, one can ¢nd an open

neighbourhood U of �ee such that U \ Gð �kkÞ ¼ f�eeg. Shrinking U if necessary, we
may assume that the restriction of q to U is injective (consider the inverse image
of U by the continuous map ðx; yÞ7!x�1y:E 	 E ! E; it is an open neighbourhood
of f�eeg 	 f�eeg which contains a set of the form V 	 V , where V � E is an an open
neighbourhood of f�eeg. Then replace U by U \ V ). Since q is open, the image of
qðUÞ contains GK :¼ Gal ð �kk=KÞ for some ¢nite Galois ¢eld extension K=k, and
(on replacing U by U \ q�1ðGK Þ) we shall assume qðUÞ ¼ GK . Then the bijective
map q:U ! GK (which is open) admits a continuous inverse map. In particular
the restriction qK :EK :¼ E \ q�1ðGK Þ ! GK admits a continuous set-theoretic
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section. Note that if we had supposed (3) locally split instead of q open, such a section
would have existed by de¢nition, so it just remains to prove that q admits a con-
tinuous set-theoretic section if qK does.
Suppose that qK admits a continuous set-theoretic section sK . Then G is the ¢nite

disjoint union of cosets giGK (gi 2 G, 1W iW n). Take an arbitrary lifting ji 2 E
of gi; any g 2 G admits a unique decomposition g ¼ gih (1W iW n, h 2 GK ), put
sðgÞ ¼ jisK ðhÞ. Let g 2 G, for each ¢nite ¢eld extension L=K , any element of the
open neighbourhood gGL of g belongs to the same GK -coset as g. Since h 7!sK ðhÞ
is continuous on GK , so is g 7!sðgÞ on G.
(2) Using (1), it remains to prove that if (3) is compatible with k, then it is locally

split, and by Proposition 1.13, this is equivalent to saying that any class in
H2ðk;G; kÞ becomes neutral after a ¢nite ¢eld extension of k. To do that, we
may assume that G admits a k-form G, which de¢nes a continuous homomorphic
splitting y:G! SAut grðGÞ of (1). The lien k lifts to a continuous set-theoretic section
f of (1), which can be written fg ¼ ygjg, where the map j:G! Aut grðGÞ is locally
constant by [FSS], (1.7). Let K be a ¢nite ¢eld extension of k such that j becomes
constant on GK , then this constant must be trivial in SOut ðG=KÞ because k and
y are homomorphic. So we may assume that the k-lien k is trivial. Now any element
of H2ðk;G; kÞ can be represented by a cocycle which is given by a pair of maps
ðf ; sÞ, where f :G! SAut grðGÞ is a homomorphic section of (1) and
s:G	 G! Gð �kkÞ is locally constant ([FSS], (1.17)). If s is constant, say s & a, then
the cocycle ðf ; sÞ is equivalent to ðf 0; s0Þ, where f 0g ¼ intða

�1Þ � fg and s0 & 1 (by
the formula (6) in [FSS], (1.17)), so any cocycle is locally equivalent to a neutral
cocycle (we are indebted to C. Scheiderer for this argument). &

Appendix B: Comparison of Two Spectral Sequences

In this appendix we relate the spectral sequence used by Colliot-The¤ le' ne and Sansuc
to obtain the exact sequence (10) of Subsection 3.3 to the Leray spectral sequence
which gives the sequence (11).

PROPOSITION. Let k be a ¢eld of characteristic zero, and p:X ! Spec k a reduced
and geometrically connected variety. Let S be a k-group of multiplicative type
and M :¼ ŜS the G-module which is dual to S. Then there is a canonical morphism
of the Leray spectral sequence E

p;q
2 ¼ Hpðk;HqðX ;SÞÞ to the spectral sequence

E0
p;q
2 ¼ Ext

p
kðM;Rqp
GmÞ, both sequences converging to HiðX ;SÞ. When S is a torus,

this morphism is an isomorphism. If S is an arbitrary k-group of multiplicative type,
and X is a k-variety such that �kk½X �
 is divisible (for example, �kk½X �
 ¼ �kk
), then
the exact sequences of the ¢rst ¢ve low degree terms of these two spectral sequences
are canonically isomorphic.

Proof.We write HomX for Hom of sheaves on X�eet, and Homk for Hom of sheaves
on Spec k. The sheaf of abelian groups on X given by S can be written as
HomX ðp
M;GmÞ (M is a G-module of ¢nite type, and checking it locally one sees
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that here homomorphisms of sheaves over X are the same thing as morphisms of
group X -schemes). We have

p
HomX ðp
M;FÞ ¼ HomkðM; p
FÞ

since p
 and p
 are adjoint (this is a sheaf version of HomX ðp
M;FÞ ¼

HomkðM; p
FÞ). This implies that there is a natural isomorphism of functors from
the derived category DþðX Þ of sheaves on X�eet to the derived category D

þðkÞ of
sheaves on Spec k (complexes of G-modules)

Rp
RHomX ðp
M; �Þ ¼ RHomkðM;Rp
ð�ÞÞ:

Let us apply this to the sheaf Gm. By Lemma 1.3.3(ii) of [CS], we have
ExtiX ðp


M;GmÞ ¼ 0 for any i > 0, hence the complex RHomX ðp
M;GmÞ consists
of the sheaf S ¼ HomX ðp
M;GmÞ in degree 0. We obtain

Rp
ðSÞ ¼ RHomkðM;Rp
GmÞ:

Now we apply the derived functorHðk; �Þ of the functor A7!AG to both sides. On the
left-hand side we get Hðk;Rp
SÞ ¼ HðX ;SÞ (HðX ; �Þ is the derived functor of
H0ðX ; �Þ). The resulting spectral sequence of composed functors is

Hpðk;Rqp
SÞ ) HpþqðX ;SÞ:

On the right-hand side we get RHomkðM;Rp
GmÞ which gives rise to the spectral
sequence

Ext
p
kðM;Rqp
GmÞ ) HpþqðX ;SÞ:

Let us relate these spectral sequences.
Let G be a complex of sheaves onX�eet which is an injective resolution ofGm. There is

a natural map of complexes of G-modules (¼sheaves over Spec k)

p
HomX ðp
M;GÞ ! HomkðM; p
GÞ: ð1Þ

Let I ¼ I

 be a bicomplex which is a Cartan^Eilenberg resolution of p
G, and let T
be the total complex of HomkðM; IÞ. The complex T represents
RHomkðM; p
GmÞ in DþðkÞ ([W], 10.5.6). The resolution p
G ! I induces a natural
map of complexes HomkðM; p
GÞ ! T , and on combining with (1) a map

p
HomX ðp
M;GÞ ! T : ð2Þ

This gives a map between the corresponding hypercohomology spectral sequences,
which is a natural morphism we are looking for. (We have actually proved more:
the image of this morphism is contained in the image of the natural map
Hnðk;HomkðM;Rkp
GmÞÞ ! ExtnkðM;Rkp
GmÞ.)
If S is a torus, thenM is locally in the e¤ tale topology isomorphic to a ¢nite direct

sum of copies of Z. Then (1) is an identity map, and the second assertion of the
proposition becomes obvious. To prove our last assertion it is enough to prove that
(2) induces isomorphisms on H0 and H1 (in other words, (2) induces a
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quasi-isomorphism of complexes truncated at 1). We can check it locally and
suppose that M ¼ Z=n. Then on the level of H0 we have H0ðX ; mnÞ !

HomðZ=n;H0ðX ;GmÞÞ which is always an isomorphism. On the level of H1 we have
H1ðX ; mnÞ ! HomðZ=n;H1ðX ;GmÞÞ. This map is always surjective, and its kernel
is H0ðX ;GmÞ=n which is trivial under our assumptions. This ¢nishes the proof of
the proposition. &
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