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PART ONE. LINEAR TRANSFORMATIONS

Let k be a field. Usually, k will be the field of complex numbers C, but
it can also be any other field, e.g., the field of real numbers R.
Let V be an n-dimensional vector space over k, and f : V → V be a

linear transformation.
Given a basis e1, . . . , en of V we can write the matrix of f in this basis:

A = (aij), where f(ej) =
n∑

i=1

aijei

This means that j-th column of A is the column vector f(ej). In another
basis f will be given by a different matrix. How is it related to A?

Lemma. Let p1, . . . , pn be another basis of V , and let X be the matrix
of f in this basis. Then

P−1AP = X

where P = (pij) is a n × n-matrix whose columns are the column vectors
p1, . . . , pn in order; in other words, pj =

∑n
i=1 pijei.

Proof. By definition, A(pj) =
∑n
i=1 xijpi. The l.h.s. of this expression is

A(
n∑

i=1

pijei) =
n∑

i=1

pijAei =
n∑

i=1

pij

n∑

k=1

akiek =
n∑

k=1

(
n∑

i=1

akipij)ek.

The r.h.s. is
n∑

i=1

xij

n∑

k=1

pkiek =
n∑

k=1

(
n∑

i=1

pkixij)ek.

On comparing these expressions we conculde that

n∑

i=1

akipij =
n∑

i=1

pkixij
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for any k and j. Thus we have AP = PX. The matrix P is invertible because
p1, . . . , pn is a basis, hence we finally get what we claimed. QED

Defintion. Two square n × n-matrices A and B are similar if for some
invertible n× n-matrix P we have P−1AP = B.

This is an equivalence relation. The previous lemma shows that the
matrices in a similarity class are precisely the matrices of one and the same
linear transformation written with respect to all possible bases of V . The
first part of the course is devoted to the study of canonical forms of matrices:
the classification of matrices up to similarity, or, what is the same, to finding
a basis in which a given linear transformation has the matrix of the simplest
possible form. We want this canonical form to be unique.
The simplest possible matrices are diagonal matrices. One can ask a

natural question: is any matrix similar to a diagonal one? Unfortunately,
the answer is negative, as we shall see shortly.

We shall use the following result from the first year linear algebra course:
The following conditions are equivalent:
(i) Ker(A) 6= 0,
(ii) det(A) = 0,
(iii) A is not invertible.

Definition. The characteristic polynomial of A is defined as

fA(t) := det(t.Id− A),

where Id = δij is the identity matrix. The roots of fA(t) are called the
eigenvalues of A.

Similar matrices have the same characteristic polynomial, so it gives us a
means to distinguish between different similarity classes. Equivalently, λ ∈ k
is an eigenvalue of A if and only if λ.Id− A is not invertible.

Example. Find the characteristic polynomial and the eigenvalues of an
upper triangular matrix.

Definiton. A non-zero vector v ∈ V is called an eigenvector of A if
Av = λv for some λ ∈ k.

Properties. If λ is an eigenvalue of A, then there is an eigenvector with
this eigenvalue. If k = C, then any matrix has an eigenvalue, and hence an
eigenvector. If k = R, this is no longer true, for example the matrix

(
0 1
−1 0

)
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has no real eigenvalue, and hence no real eigenvector.

Theorem 1. A matrix is diagonalizable (that is, is similar to a diagonal
matrix) if and only if it has a basis consisting of eigenvectors. If this is the
case, then the entries of the corresponding diagonal matrix are the eigenvalues
of A.

Proof. We shall usually denote by e1, . . . , en the standard basis of V ,
ei = (0, . . . , 1i, . . . , 0).
Suppose that X = P−1AP is diagonal. Then e1, . . . , en are eigenvectors of

X. Then p1 := Pe1, . . . , pn := Pen, is a basis of V consisting of eigenvectors
of A.
Conversely, let p1, . . . , pn be a basis of A consisting of eigenvectors with

eigenvalues λ1, . . . , λn, respectively. By Lemma above X = P
−1AP is the

matrix of A in the basis p1, . . . , pn, where pi = Pei. Then Xei = λi.ei. QED

Examples. Let us consider the matrix

S =

(
0 1
0 0

)

If v = (v1, v2), then Sv = (v2, 0). Thus all eigenvectors of S are proportional
to e1. Hence S is not diagonalizable.

Theorem 2. Let v1, . . . , vm be eigenvectors of A such that their eigen-
values λi are pairwise different, λi 6= λj if i 6= j. Then v1, . . . , vm are linearly
independent.

Proof. Define Bi as the product of λj.Id−A for all j 6= i. (These matrices
commute so the order is not important.) Then Bi sends vj for j 6= i to 0,
and multiplies vi by a non-zero number

(λ1 − λi) . . . (λi−1 − λi)(λi+1 − λi) . . . (λn − λi),

because by assumption the λi are all different.
Suppose that

μ1v1 + . . .+ μnvn = 0.

Applying Bi to this we conclude that μi = 0. Hence there is no non-trivial
relation among the vi. QED

A corollary of this theorem is a sufficient condition of diagonalizability.

Corollary. If fA(t) has n different roots, then A is diagonalizable.

A diagonal matrix is clearly upper triangular. Over an algebraically closed
field any matrix is similar to an upper triangular matrix, as shows the fol-
lowing theorem.
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Theorem 3. Let A be a matrix such that fA(t) is a product of linear fac-
tors over k, then A is similar to an upper triangular matrix (with eigenvalues
on the main diagonal).

Proof. We proceed by induction in dim(V ). The assertion is trivially true
for dim(V ) = 1. Suppose it is true for vector spaces of dimension n− 1
Let λ1 ∈ k be a root of fA(t), and v1 ∈ V be an eigenvector with eigenvalue

λ1. Let v2, . . . , vn be vectors in V such that v1, . . . , vn is a basis of V . Then
the matrix of A in this basis is

X =











λ1 ∗ . . . ∗
0 b11 . . . b1,n−1
0 b21 . . . b2,n−1
. . . . . .
0 bn−1,1 . . . bn−1,n−1











Then fX(t) = fA(t) = (t − λ1)fB(t), where B = (bij), hence fB(t) is a
product of linear factors. By the inductive assumption, C := Q−1BQ is
upper triangular for some (n − 1) × (n − 1)-matrix Q. Let T be the direct
sum of Id of size 1× 1 and Q. Then

T−1XT =











λ1 ∗ . . . ∗
0 c11 . . . c1,n−1
0 c21 . . . c2,n−1
. . . . . .
0 cn−1,1 . . . cn−1,n−1











This matrix is upper triangular. QED

This theorem shows that when k is an algebraically closed field, say k =
C, then any matrix is similar to an upper triangular matrix. This is often a
big help in calculations, as shows the following proof.

Cayley–Hamilton theorem. fA(A) = 0.

First proof. Before starting the proof we note that for any polynomial g(t)
we have g(P−1AP ) = P−1g(A)P . Thus it is enough to check the statement
on any matrix in the similarity class of A.
To check that fA(A) = 0 we can go over to an extension of the ground

field k over which fA(t) is a product of linear factors. Then by the previous
theorem we can assume that

A =











λ1 ∗ ∗ . . . ∗
0 λ2 ∗ . . . ∗
0 0 λ3 . . . ∗
. . . . . .
0 0 0 . . . λn
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One proves by induction that (A−λ1Id) . . . (A−λmId) kills e1, ... ,em. (Note
that (A−λmId)em is a linear combination of e1, ..., em−1.) Thus fA(A) maps
V to 0, that is, fA(A) is a zero matrix. QED

Second proof. Recall that the matrix adj(B) (whose entries are principal
minors of B with appropriate signs) is a matrix of the same size as B such
that det(B).Id = adj(B)B. Let adj(t.Id − A) be the adjacent matrix of
t.Id−A. Then we have fA(t).Id = adj(t.Id−A).(t.Id−A). Both sides here
are polynomials in t with matrix coefficients. Hence we can substitute t by
A. Then the right hand side vanishes, and we get fA(A) = 0. QED

There exists a unique monic polynomial mA(t) with coefficients in k such
that mA(A) = 0 and deg(mA(t)) is minimal among the polynomials anni-
hilating A. Indeed, by the Cayley–Hamilton theorem the set of non-trivial
polynomials p(t) such that p(A) = 0 is not empty, therefore it contains a
monic polynomial of minimal degree. If there are two such polynomials, the
degree of their difference is less than deg(mA(t)), which is a contradiction.
Hence such a polynomial is unique.

Definition. The unique polynomialmA(t) with coefficients in k such that
mA(A) = 0 and deg(mA(t)) is minimal among the polynomials annihilating
A is called the minimal polynomial of A.

It is clear that mA(t) divides fA(t). (We have fA(t) = g(t)mA(t) + r(t)
for some polynomials g(t) and r(t), deg(r(t)) < deg(mA(t)); this implies that
r(A) = 0 which is a contradiction.) Note that mA(t) = mP−1AP (t).

Example. If A is diagonal with paiwise different diagonal entries, then
mA(t) = fA(t). Note, however, that mId(t) = t−1, whereas fId(t) = (t−1)n.

Proposition. Every eigenvalue of A is a root of mA(t).

Proof. If Av = λv, v 6= 0, then 0 = mA(A)v = mA(λ)v, hence mA(λ) = 0.
QED

Exercise. The minimal polynomial of the matrix











0 0 0 . . . 0 −c0
1 0 0 . . . 0 −c1
0 1 0 . . . 0 −c2
. . . . . .
0 0 0 . . . 1 −cn−1











is tn + cn−1t
n−1 + . . .+ c1t+ c0.
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From now on we suppose that fA(t) is a product of linear factors, in other
words, that all eigenvalues of A are k.

We fix our notation. Let

fA(t) =
m∏

i=1

(t− λi)
di , where λi 6= λj, if i 6= j,

m∑

i=1

di = n;

fj(t) =
m∏

i=1,i 6=j

(t− λi)
di .

Define Vi := Ker((λi.Id − A)di). It is clear that AVi ⊂ Vi, that is, the
subspaces Vi are A-invariant.

Lemma. Vi = Im(fi(A)).

Proof. Cayley–Hamilton theorem implies that Im(fi(A)) ⊂ Vi, so it re-
mains to show the opposite inclusion. The ideal in k[t] generated by the
polynomials fi(t) is the whole ring k[t], hence 1 =

∑m
i=1 hi(t)fi(t) for some

polynomials hi(t). (This follows from the fact that k[t] has Euclid’s algo-
rithm.) Then we have for any v ∈ V

v =
m∑

i=1

hi(A)fi(A)v =
m∑

i=1

fi(A)hi(A)v.

Applying this to v ∈ Vi, and taking into account that fj(t) for j 6= i is
divisible by (t − λi)di , we conclude that v = hi(A)fi(A)v = fi(A)hi(A)v ∈
Im(fi(A)). QED

Theorem. V = ⊕mi=1Vi.

Proof. The last displayed formula shows that V is generated by the sum
of the Vi = Im(fi(A)). Let us show that the sum is direct. Suppose that
v1 + . . . + vm = 0, where vi ∈ Vi. Since fi(A) kills all the vj except possibly
vi, it must also kill vi, that is, fi(A)vi = 0. Since Id =

∑m
i=1 hi(A)fi(A) we

have vi = hi(A)fi(A)vi. This implies that vi = 0. QED

This reduces the classification of arbitrary linear transformations to that
of nilpotent ones (a matrix M is nilpotent if Md = 0 for some d).

Let us explain this. Recall that AVi ⊂ Vi. If we choose some bases, say
p
(i)
1 , . . . , p

(i)
ki
, in each of the Vi, we get a basis of V in which the matrix of A

is the direct sum of blocks. Each block is the matrix of A restricted to Vi
(in the basis p

(i)
1 , . . . , p

(i)
ki
). Let Bi be the restriction of A− λi.Id to Vi. Then

Bdii = 0.
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Remark. We have fBi(t) = t
dim(Vi) because the only eigenvalue of any

nilpotent matrix is 0. This implies that the characteristic polynomial of A
restricted to Vi is (t− λi)dim(Vi). Since fA(t) =

∏m
i=1(t− λi)

di is the product
of these, we conclude that dim(Vi) = di.

It remains to construct a “good” basis of a nilpotent linear transforma-
tion.

Let B be a linear transformation of a vector space W such that Bd = 0
whereas Bd−1 6= 0. Define

Wi = Ker(B
i), i = 0, . . . , d.

Then BWi ⊂ Wi−1. We have

W = Wd ⊃ Wd−1 ⊃ . . . ⊃ W1 ⊃ W0 = 0

Lemma. For any j > i if w ∈ Wj is not in Wj−1, then Bj−iw is in
Wi \Wi−1 (obvious).

(In particular, taking j = d we see that all the inclusions in the dispayed
formula above are strict, that is, Wi 6= Wi−1.) Based on this Lemma we
construct a basis of W as follows.

Choose w
(1)
1 , . . . , w

(1)
s1
to be linearly independent vectors in W such that

W =< w
(1)
1 , . . . , w

(1)
s1
> ⊕Wd−1.

By the previous Lemma we conclude that Bw
(1)
1 , . . . , Bw

(1)
s1
are linearly inde-

pendent vectors in Wd−1, and the intersecion of the space generated by them

with Wd−2 is zero. Let us choose linearly independent vectors w
(2)
1 , . . . , w

(2)
s2

in Wd−1 so that

Wd−1 =< w
(2)
1 , . . . , w

(2)
s2
> ⊕ < Bw(1)1 , . . . , Bw

(1)
s1
> ⊕Wd−2.

Then we continue like this, adding new vectors at each step to generate Wi
by Wi−1 and the images of vectors already chosen. In the end we get the set

of vectors {Bkw(i)j }, where i = 1, . . . , d − 1, j = 1, . . . , si, k = 0, . . . , d − i.
It is clear by construction that it generates the whole space W . We assert
that the vectors {Bkw(i)j }, i = 1, . . . , d− 1, j = 1, . . . , si, k = 0, . . . , d− i, are
linearly independent. Let

∑
aijkB

kw
(i)
j = 0
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be a non-trivial linear combination. Apply Bd−1 to it, the only possibly
surviving terms are

∑
a1j0B

d−1w
(1)
j = 0, but then

∑
a1j0w

(1)
j = 0 (by the

Lemma). However, these vectors are linearly independent, hence all a1j0 =
0. Next, we apply Bd−2, then the only possibly non-vanishing terms are
∑
a1j1B

d−1w
(1)
j +

∑
a2j0B

d−2w
(2)
j = 0. By the Lemma this implies that

∑
a1j1Bw

(1)
j +

∑
a2j0w

(2)
j = 0, and then again all coeficients must be zero

since these vectors are linearly independent by constrution. Continuing in
the same spirit we prove that all our vectors are linearly independent, and
so form a basis of W .

Although the construction of this basis was somewhat involved, the ma-
trix of B now takes a very simple form. Let us rearrange the basis vectors
as follows:

Bd−1e
(1)
1 , B

d−2e
(1)
1 , . . . , e

(1)
1 , B

d−1e
(1)
2 , B

d−2e
(1)
2 , . . . , e

(1)
2 , . . . , B

d−1e(1)s1 , B
d−2e(1)s1 , . . . , e

(1)
s1
,

Bd−2e
(2)
1 , B

d−3e
(2)
1 , . . . , e

(2)
1 , B

d−2e
(2)
2 , B

d−3e
(2)
2 , . . . , e

(2)
2 , . . . , B

d−2e(2)s2 , B
d−3e(2)s2 , . . . , e

(2)
s2
,

. . . ,

Be
(d−1)
1 , e

(d−1)
1 , Be

(d−1)
2 , e

(d−1)
2 , . . . , Be(d−1)sd−1

, e(d−1)sd−1
, e
(d)
1 , . . . , e

(d)
sd
.

Then the matrix of B is the direct sum of blocks of the form












0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . .
0 0 0 0 . . . 1
0 0 0 0 . . . 0













Such a matrix is called a nilpotent Jordan block. There are s1 such blocks
of size d, s2 such blocks of size d− 1, and so on, finally, there are sd−1 blocks
of the form (

0 1
0 0

)

and sd zero blocks of size 1.

Note that the form of this matrix implies that rk(Bi) = (d− i)s1 + (d−
i−1)s2+ . . .+sd−i. this implies that the numbers si are uniquely determined
by the similarity class of B. We have proved that a nilpotent matrix B is
similar to a direct sum of nilpotent Jordan blocks uniquely determined up to
a permutation.
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A matrix of the form












λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
. . . . . .
0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ













is called a Jordan block. Summarizing our preceding discussion we obtain
the following statement.

Theorem. (The Jordan normal form.) Any matrix is similar to a
direct sum of Jordan blocks. The Jordan normal form in each similarity class
is unique up to a permutation of Jordan blocks.

Exercises - corollaries of this theorem. (a) Let A be a Jordan normal
form, then mA(t) =

∏m
i=1(t− λi)

δi , where δi is the size of a maximal Jordan
block with eigenvalue λi. (Use the fact that the minimal polynomial of a
direct sum of matrices is the l.c.m. of their minimal polynomials.)
(b) A matrix is diagonalizable iff its minimal polynomial is a product of

distinct linear factors. (This is read directly from the Jordan normal form.)
A corollary of this fact: if the direct sum of two matrices is diagonalizable,
then these matrices are also diagonalizable.

Definition. Let A be a linear transformation on a vector space V . The
set of vectors v ∈ V such that Av = λv is called the eigenspace with eigen-
value λ, and is denoted by Vλ.

Reformulating an earlier result we have the following criterion of diago-
nalizability: A is diagonalizable iff V is the direct sum of eigenspaces of A.
(=iff V has a basis consisting of eigenvectors of A)

Another corollary of the theorem. The number of Jordan blocks
with eigenvalue λ equals dim(Vλ). (Each block contributes one eigenvector.)

Proposition. Two commuting diagonalizable matrices are simultane-
ously diagonalizable. (In other words, there exists an invertible matrix P
such that P−1AP and P−1BP are both diagonal.)

Proof. If Vλ is an eigenspace of A, then AB = BA implies that BVλ ⊂ Vλ.
We have seen that the restriction of B to Vλ is diagonalizable (its minimal
polynomial is a divisor of mB(t) which is a product of diffirent linear factors,
hence it is also a product of diffirent linear factors). Since the restriction of A
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to Vλ is scalar, we can find a basis of Vλ in which both A and B are diagonal.
Putting such bases of Vλ together we get a desired basis of V . QED

Actually, the same is true for any number of pairwise commuting diago-
nalizable matrices (induction on the number of matrices).

The following result has many applications in the theory of Lie groups
and Lie algebras.

Theorem. (Jordan decomposition) Any (square) matrix A can be
represented as a sum A = DA + NA, where DA is diagonalizable and NA
is nilpotent, and DA = g1(A), NA = g2(A), for some polynomials g1(t) and
g2(t). This implies that DANA = NADA, and, more generally, DA and NA
commute with any matrix B such that AB = BA.

Hint. In our previous notation take DA =
∑m
i=1 λihi(A)fi(A), and use the

fact that hi(A)fi(A) is the projector from V to Vi (that is, it is identity on
Vi and zero on Vj if j 6= i).
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PART TWO. BILINEAR FORMS

Definition. Let V be a vector space over a field k. A function <,> from
V × V to k is called a bilinear form if it is linear in each argument.

Definition. If p1, . . . , pn is a basis of V , then the Gram matrix of <,>
in this basis is the matrix A = (aij) such that aij =< pi, pj >.

Then if v and u are column vectors

v =
∑

i=1

vipi = (v1, . . . , vn)
t, u =

∑

i=1

uipi = (u1, . . . , un)
t

we have
< v, u >= vtAu.

Lemma. If f1, . . . , fn is another basis of V , and F = (fij) is a matrix
such that fj =

∑n
i=1 fijpi, then the Gram matrix of <,> in the new basis

f1, . . . , fn is F
tAF , where F t is the transpose of F .

The proof is a direct check.

Matrices A and B (square, of the same size) such that B = F tAF for
some invertible matrix F are called congruent. Note that then we have
rk(B) = rk(A). If rk(A) = n, the bilinear form <,> is called non-singular
(or non-degenerate).

Theorem. <,> is non-singular iff for any non-zero v ∈ V there exists
u ∈ V such that < v, u > 6= 0.

Proof. The set of v ∈ V such that < v, u >= 0 for any u ∈ V is just the
kernel of At. QED

Definition. If U ⊂ V is a subspace, then

U⊥ := {v ∈ V such that < v, u >= 0 for all u ∈ U}

Lemma. If U is a subspace of V such that the restriction of <,> to U
is non-singular, then V = U ⊕ U⊥.

Proof. We need to prove that U ∩ U⊥ = 0 (an immediate consequence
of the non-singularity assumption), and that V is generated by U and U⊥.
Take any v ∈ V , then by non-singularity we can find w ∈ U such that
< u, v >=< u,w > for all u ∈ U . Such a w can be defined by the formula

Bw = (< p1, v >, . . . , < pm, v >)
t,
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where p1, . . . pm is a basis of U , and B is the Gram matrix of <,> restricted
to U . Then v − w ∈ U⊥, and v = w + (v − w) is the desired decomposition.
QED

Symmetric bilinear forms

Definition. A bilinear form is called symmetric if < v, u >=< u, v > for
all v, u ∈ V .

Bilinear forms correspond to symmetric Gram matrices (such that At =
A).

Lemma. Assume char(k) 6= 2. A symmetric form is non-zero iff there
exists v ∈ V such that < v, v > 6= 0.

Proof. The form is non-zero iff there exist v, u ∈ V such that < v, u > 6= 0.
Then the formula

< u, v >=
1

2
(< v + u, v + u > − < v, v > − < u, u >)

implies that at least one of < v + u, v + u >, < v, v >, < u, u > is non-zero.
QED

The previous formula implies that provided the characteristic of the ground
field is different from 2, a symmetric bilinear form < u, v > can be recovered
from its restriction to the diagonal, that is the function V → k given by
< v, v >. This function is called the associated quadratic form, in coordi-
nates it is simply the expression

∑n
i,j=1 aijxixj. The well known process of

reducing a quadratic polynomial to a sum of squares is what lies behind the
idea of proof of the following theorem.

Theorem. Diagonalization of a symmetric bilinear form. Assume
char(k) 6= 2. For any symmetric bilinear form there exist a basis of V in
which its Gram matrix is diagonal.

Proof. If our form is zero there is nothing to prove. Suppose it is not,
then by the previous lemma we can find u ∈ V such that the restriction of
<,> to the subspace generated by u is non-singular. Call this subspace U .
Then V = U ⊕ U⊥, and we repeat this argument for <,> restricted to U⊥,
and so on. QED

Corollary 1. Assume char(k) 6= 2. Every symmetric matrix is congruent
to a diagonal one.

Although in general the coefficients of this diagonal matrix are not uniquely
defined, over some fields one can be more precise.
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Corollary 2. If k = C, then any symmetric matrix is congruent to the
diagonal matrix diag(1, . . . , 1, 0, . . . , 0). In particular, symmetric matrices
A and B are congruent over C iff rk(A) = rk(B). Hence there are n + 1
congruency classes.

Corollary 3. If k = R, then any symmetric matrix is congruent to the
diagonal matrix diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0).

Theorem. Sylvester’s law of inertia. The number of 1’s and −1’s
in a diagonal form of a real symmetric matrix are well defined (i.e., these
numbers only depend on the congruency class of our matrix).

Proof. Let p be the number of 1’s and let q be the number of −1’s. The
fact that p + q is well defined is clear - this is just the rank of A. We need
a definition. A symmetric bilinear form <,> is positive definite if < u, u >
is positive for any non-zero u. (Likewise <,> is negative definite if < u, u >
is negative for any non-zero u. If the form is neither positive definite nor
negative definite it is called indeterminate.)
Consider the following number which clearly does not depend on the

choice of a basis:
maxU⊂V {dim(U)},

where U is a subspace of V such that <,> restricted to U is positive definite.
Let us compute this number. Let W ⊂ V be generated by the last n − p
basis vectors of the basis in which <,> has the form of Corollary 3. Then if
dim(U) + dim(W ) > n, then U ∩W contains a non-zero vector, say u. But
then < u, u >≤ 0 by the construction of W . Hence our number cannot be
greater than n − (n − p) = p. On the other hand, the restriction of <,>
to the subspace generated by the first p vectors of the above basis is clearly
positive definite. Hence this number is p, which therefore is well defined.
QED

Definition. The number p − q is called the signature of the symmetric
bilinear form <,>.

Alternating bilinear forms

Definition. A bilinear form <,> is alternating if < u, u >= 0 for any
u ∈ V . A bilinear form <,> is skew-symmetric if < u, v >= − < v, u > for
any u, v ∈ V .

An alternating form is skew-symmetric, but the converse is only true when
char(k) 6= 2 (take u = v and divide by 2), and is wrong when char(k) = 2
(symmetric form over such a field is the same thing as skew-symmetric!).
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A standard example of an alternating form is < (v1, v2), (u1, u2) >=
v1u2 − v2u1. Its Gram matrix is

J =

(
0 1
−1 0

)

Theorem. Let k be a field of characteristic different from 2. Then for
any alternating form there exists a basis in which its Gram matrix is the
direct sum of copies of J and a zero matrix.

In other words, any skew-symmetric matrix (that is, At = −A) with zeros
on the main diagonal is congruent to a matrix of the above form. Note that
this theorem is valid over any field.

Proof. If <,> is not zero, take a non-zero vector v such that there exists
u with the property that < v, u > 6= 0. Then v and u/ < v, u > are linearly
independent. Let U be the space spanned by them. The Gram matrix of
<,> restricted to U is J . Since this restriction is non-singular we have
V = U ⊕U⊥. We repeat this process for U⊥ until we get a zero form. QED

Corollary. The rank of an alternating form is even. In particular, non-
singular alternating forms exist only on even-dimensional vector spaces. The
determinant of a skew-symmetric matrix is a square in k. In particular, if
k = R, it is always non-negative.

Exercise: The Pfaffian of a skew-symmetric matrix. The last
corollary leaves open the question: what is “the square root” of det(A),
where A = (aij) is a skew-symmetric matrix of size n = 2m? If m = 1,
then obviously det(A) = a212, so here the answer is clear. Show by direct
computation that for m = 2 we have

det(A) = (a12a34 − a13a24 + a14a23)
2

This formula has an analogue for any m. In fact, there exists a polynomial in
matrix entries of A, called the Pfaffian Pf(A), such that det(A) = Pf(A)2

(over any field).

Inner product spaces. Geometry of quadric surfaces

Let V be a vector space over R. An inner product is a positively definite
symmetric bilinear form <,> on V .
An example of such a form is the standard dot product ut.v. One defines

orthonormal bases and proves the Cauchy–Schwarz inequality. In terms of
the dot product one writes < u, v >= ut.A.v, where A is the Gram matrix
of <,>. One has ut.(A.v) = (At.u)t.v.
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Definition. A square matrix P is an orthogonal matrix if P tP = Id.

Such matrices preserve the dot product, and hence preserve the dis-
tances. Recall that the distance between v and v′ is defined as |v − v′| :=√
(v − v′)t.(v − v′).

Proposition. All eigenvalues of a real symmetric matrix (considered as
complex numbers) are real.

Proof. Let z = (z1, . . . , zn) be a complex eigenvector, then z
t.A.z =

λ
∑n
i=1 |zi|

2. Since A is symmetric and real, this also equals (A.z)t.z =
λ
∑n
i=1 |zi|

2. Hence λ ∈ R. QED

Theorem. Reduction to principal axes. For any real symmetric
matrix there exists an orthonormal basis of V consisting of its eigenvectors.

Such a basis is not necessarily unique.

Proof. We proceed by induction on n = dim(V ). When n = 1 there is
nothing to prove. Suppose the statement is true for n − 1. We can find an
eigenvector u of length 1 (that is, ut.u = 1) with some eigenvalue λ, and call
U its linear span. Let U ′ be its orthogonal complement with respect to the
dot product. Since ut.A.v = (A.u)t.v = λ.ut.v, we see that if v is orthogonal
to u with respect to the dot product, then Av is also. Hence AU ′ ⊂ U ′.
Then V = U ⊕ U ′ (since the restriction of the dot product to U is non-
singular), and U and U ′ are A-invariant. Now take any othonormal basis in
U ′, which exists by the inductive assumption. Together with u this gives an
orthonormal basis of V . QED

The lines passing through the vectors of the basis constructed in this
theorem are called principal axes.

Corollary. For any real symmetric matrix there exists an orthogonal
matrix P such that P−1AP = P tAP is diagonal (with eigenvalues on the
diagonal).

Definition. A map f : Rn → Rn which preserves distances, that is, such
that |f(v)− f(v′)| = |v − v′| for all v, v′ ∈ R, is called an isometry.

Proposition. Any isometry is a composition of an orthogonal transfor-
mation v 7→ Pv and a translation v 7→ v + w.

Proof. Let f : Rn → Rn be an isometry. By composing f with the
translation by −f(0) we arrange that 0 goes to 0. So we can assume that
f(0) = 0. Now taking v′ = 0 in the definition of isometry, we see that
|f(u)| = |u| for any u. Now note that

ut.v = (1/2)(|u|2 + |v|2 − |u− v|2)
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and all the terms in the right hand side are preserved by f . Therefore,
we have (f(u)t.f(v)) = ut.v for any u and v. (This is, in fact, the standard
observation that the angles of a triangle are uniquely determined by its sides.)
In other words, f preserves the dot product. In particular, the image of an
orthonormal basis is again an orthonormal basis, say pi = f(ei). Now any
vector u is written as

u =
n∑

i=1

uiei, ui = (u
t.ei).

If we write f(u) =
∑n
i=1 xipi we must have xi = f(u)

t.pi = f(u)
t.f(ei) =

ut.ei = ui. Therefore, we have f :
∑n
i=1 uiei 7→

∑n
i=1 uipi, hence f is linear,

say f(u) = Fu. Then (Fu)t.Fv = ut.v implies that F is an orthogonal
matrix. QED

Proposition. Any equation of degree two

n∑

i,j=1

aijxixj +
n∑

i=1

bixi + c = 0

can be reduced by an isometry to one of the following forms, where all the
coefficients are non-zero:

I :
m∑

i=1

λix
2
i − 1 = 0,

II :
m∑

i=1

λix
2
i = 0,

III :
m−1∑

i=1

λix
2
i + xm = 0,

where 1 ≤ m ≤ n, and in the last case m− 1 ≥ 1.

Proof. By the principal axes theorem we can assume that the terms of or-
der 2 have diagonal form. Use translations to complete the squares. If there
are no linear terms left, after possibly multiplying by an overall constant,
we find ourselves in case I or II. If there are some linear terms, change the
coordinates by an orthogonal transformation in xm+1, . . . , xn, which is iden-
tity on x1, . . . , xm, so that there is only one linear term. (This uses the fact
that any vector of unit length can be completed to an orthonormal basis.)
After a translation (to eliminate the constant term) and a multiplication by
a constant we arrive at case III. QED
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If m < n, we say that the graph of the corresponding equation is a
cylinder, such a graph can be obtained from a graph in a space of dimension
≤ n − 1. In case II the graph is a cone. Recall that if n = m = 2, then
the quadric curve (a conic) is an ellipse if both coefficients are positive, a
hyperbola if just one is positive, and an imaginary ellipse if both are negative.
In case III we get a parabola.
Let us now consider the case n = m = 3. In case I if all the coefficients are

positive, the quadric is called an ellipsoid, if just one coefficient is negative
we get a hyperboloid of one sheet, if exactly two coefficients are negative,
we have a hyperboloid of two sheets, and, finally, if all the coefficients are
negative, we have an imaginary ellipsoid. In case III, if the coefficients have
the same sign, we have an elliptic paraboloid, and in the opposite case an
hyperbolic paraboloid.

It is clear that cylinders and cones are “made of lines” (there is a line
contained in our surface passing through any point of it). One can prove
that an ellipsoid, an elliptic paraboloid and a hypeboloid of 2 sheets do not
contain lines. (In fact, they do not contain a subset of a straight line if it
has at least 3 points!) On the contrary, there are lines on a hyperboloid
of 1 sheet and on a hyperbolic paraboloid. Actually, we have the following
stronger statement.

Theorem. Through every point of a hyperbolic paraboloid pass two dif-
ferent lines entirely contained in it. (And the same is true for the hyperboloid
of 1 sheet.)

Proof. We have an equation ax2− by2 = z, where a, b > 0. Let (x0, y0, z0)
be any solution of this equation. Consider the plane given by the equation
2ax0x− 2by0y − (ax20 − by

2
0) = z (this is a tangent plane). Substituting this

expression for z into the first equation we obtain a(x − x0)2 = b(y − y0)2,
which is equivalent to the union of the line

√
a(x−x0) =

√
b(y− y0) and the

line
√
a(x − x0) = −

√
b(y − y0) (in the plane given by the above equation).

QED

Thus we have a really curved surface entirely made of absolutely straight
lines! This has important applications in architecture: one can build a curved
surface by using only straight metal rails. Hyperboloids of 1 sheet can be
used to build towers...

Note that the lines we have found are never parallel to the plane given
by y = 0. Thus such a line intersects this plane, and the resulting point is
(r, 0, ar2) for some r ∈ R. The two lines on our paraboloid passing through
this point (which we just have found) are L±r given by the equations y =

±
√
a/b(x− r), z = ar(2x− r). We have found two one-parameter families of
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lines entirely contained in our surface such that through every point of the
surface passes exactly one line of each family.

Lemma. For any r and s the lines L+r and L
−
s meet in exactly one point.

The lines L+r and L
+
s never meet unless r = s. (easy)

One can rephrase this by saying that points of L+r (for any r) parametrize
lines of the family {L−s }, and vice versa.

This gives a bijective parametrization of the hyperbolic paraboloid by
polynomials in two variables r and s:

x =
1

2
(r + s), y =

1

2

√
a

b
(s− r), z = ars.

With this parametrization the point (r, s) is mapped to the intersection point
of L+r and L

−
s .

Perhaps a more conceptual way of constructing the lines of a hyperbolic
paraboloid is this: the equation ax2 − by2 = z is satisfied by the points of
the following two lines

√
ax−

√
by = rz,

√
ax+

√
by = 1/r,

√
ax+

√
by = sz,

√
ax−

√
by = 1/s,

for real parameters r and s. This can also be used on a hyperboloid of 1
sheet. Indeed, it is given by the equation ax2− cz2 = 1− by2, a, b, c > 0, and
this equation holds for any point of the following two lines:

√
ax−

√
cz = r(1−

√
by),
√
ax+

√
cz = 1/r(1 +

√
by),

√
ax+

√
cz = s(1−

√
by),
√
ax−

√
cz = 1/s(1 +

√
by).

These families can be used to prove the analogue of the previous theorem for
hyperboloids of 1 sheet.

Note also that parabolic mirrors (elliptic paraboloids of round shape)
are used from cars’ lights to radiotelescopes, whenever one needs to focus a
parallel beam of light (or vice versa).
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