BSc and MSci EXAMINATIONS (MATHEMATICS) January 2009

M1GLA (Test)

Geometry and Linear Algebra

- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1\frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (i) Find all values of $a \in \mathbb{R}$ such that the line $\{(3,1) + \lambda(-1,a) | \lambda \in \mathbb{R}\}$ is parallel to the line with equation 2x + 3y = 1.

(*ii*) Let $\Pi \subset \mathbb{R}^3$ be the plane perpendicular to the line $\{(1,0,-1) + \lambda(1,2,-3) | \lambda \in \mathbb{R}\}$, such that $(1,1,1) \in \Pi$. Find the perpendicular distance from the point (0,1,-1) to Π .

(*iii*) Find the coordinates of the point $X \in \mathbb{R}^2$ such that |AX| = |BX| = |CX|, where A = (0, 0), B = (1, 3), C = (-1, 5).

(iv) Find the foci of the ellipse $\frac{x_1^2}{25}+\frac{x_2^2}{16}=1.$

(v) Find the type of the conic $-7x_1^2 + 48x_1x_2 + 7x_2^2 = c$ for all values of $c \in \mathbb{R}$.

(vi) Find all 3×3 matrices A satisfying the condition $A^T=-A$ such that I+A has no inverse.

SECTION B

- 2. (*i*) Define what is meant by an echelon form of a matrix.
 - (ii) Define the elementary row operations.

 $\left(iii\right)$ Briefly explain why every matrix can be reduced to echelon form by elementary row operations.

 $\left(iv\right)$ Find the inverse of the matrix

by reducing it to the identity matrix by row operations.

3. (*i*) Define what is meant by an orthogonal matrix.

(ii) Let A be a 2×2 orthogonal matrix such that det A = -1. What can you say about the eigenvalues of A?

(iii) Find all values of $a\in\mathbb{R}$ such that the following system of linear equations has infinitely many solutions

$$ax_1 + x_2 + x_3 = 1$$

$$x_1 + ax_2 + x_3 = 1$$

$$x_1 + x_2 + ax_3 = -2$$