M1GLA Geometry and Linear Algebra, Solutions to Sheet 3

1. The inequalities are

$$x_1 \ge 0, x_2 \ge 0, x_1/2 + x_2/4 \le 6, x_1/4 + x_2/2 \le 7, x_1/4 + x_2/4 \le 4.$$

Simplify these to

$$x_1 \ge 0, x_2 \ge 0, 2x_1 + x_2 \le 24, x_1 + 2x_2 \le 28, x_1 + x_2 \le 16$$

Draw the region and compute its corners: (0,0), (12,0), (8,8), (4,12), (0,14). Check that maximum profit $5x_1 + 6x_2$ over the region occurs at the point (4,12).

2. (i) Let $p = (0, \alpha)$, let n = (1, 2), a normal to L, and a = (1, 1), a point on L. By lectures we have

$$dist(p,L) = |(p-a).n|/||n|| = |-1 + 2(\alpha - 1)|/\sqrt{5}.$$

To make this 1, we need $\alpha = (3 \pm \sqrt{5})/2$.

(ii) If the centre is $c = (c_1, c_2)$, then the equation of the circle centered at c is

$$(x_1 - c_1)^2 + (x_2 - c_2)^2 = r^2,$$

where r is the radius. If a, b, c lie on this circle, then we have

$$(4-c_1)^2 + (2-c_2)^2 = (3-c_1)^2 + (3-c_2)^2 = (0-c_1)^2 + (2-c_2)^2.$$

First equation yields $2c_1 - 2c_2 = 2$, second gives $6c_1 + 2c_2 = 14$. Solve to get $(c_1, c_2) = (2, 1)$. Radius is the distance from centre to any of the points, which is $\sqrt{5}$.

(iii) The tangent at a is normal to the vector a - c = (2, 1), so taking n = (2, 1), the equation of the tangent is $x \cdot n = a \cdot n$, i.e. $2x_1 + x_2 = 10$.

3. (i) The mid-point of ab is $\frac{1}{2}(a+b)$, so the equation of the perpendicular bisector is $(x-\frac{1}{2}(a+b)).(a-b) = 0$. This works out as $x.(a-b) = \frac{1}{2}(a+b).(a-b) = \frac{1}{2}(||a||^2 - ||b||^2)$. (ii) The three perpendicular bisector have equations

(1)
$$x.(a-b) = \frac{1}{2}(||a||^2 - ||b||^2)$$

(2) $x.(b-c) = \frac{1}{2}(||b||^2 - ||c||^2)$
(3) $x.(c-a) = \frac{1}{2}(||c||^2 - ||a||^2)$

Adding (1) and (2) gives (3). Hence the point of intersection of lines (1) and (2) lies on (3), i.e. the three lines meet in a common point.

(iii) For a, b, c as in the question, the three perpendicular bisectors are $x_1 + 2x_2 = 5/2$, $2x_1 + 3x_2 = 5/2$ and $x_1 + x_2 = 0$. Their point of intersection is (-5/2, 5/2).

4. (i) Rotate axes (anticlockwise) through $\pi/4$. If (y_1, y_2) are the new coordinates, then as in lectures we have $x_1 = (y_1 - y_2)/\sqrt{2}$, $x_2 = (y_1 + y_2)/\sqrt{2}$, and the equation becomes $y_1^2 - y_2^2 = -4$, or $y_2^2/4 - y_1^2/4 = 1$, a hyperbola.

(ii) Translation $y_1 = x_1 + 1$, $y_2 = x_2 - 2$ gives equation $y_1^2 - y_2^2 = 0$, which is a pair of lines, $y_1 = \pm y_2$.

(iii) As in (i) rotate through $\pi/4$ to get $6y_1^2 + 12y_1 - 12y_2 + 6 = 0$. The translation $z_1 = y_1 + 1$, $z_2 = y_2$, gives $y_1^2 - 2y_2 = 0$, a parabola.

(iv) By lectures, the first step in reducing a conic $ax_1^2 + bx_1x_2 + cx_2^2 + ... = 0$ is to rotate through angle θ , where $\tan 2\theta = b/(a-c) = \sqrt{3}$, so $\theta = \pi/6$. This changes coordinates to y_1, y_2 , where $x_1 = y_1 \cos \theta - y_2 \sin \theta$, $x_2 = y_1 \sin \theta + y_2 \cos \theta$, whence equation becomes $y_1^2/2 - 3y_2^2/2 = 1$, which is a hyperbola.

5. (i) $||x+y+z|| \le ||x+y|| + ||z||$ (by the triangle inequality) which is $\le ||x|| + ||y|| + ||z||$ by the triangle inequality again. Equality holds if and only if x, y, z are collinear and all three vector point in the same direction. PTO for (ii).

(ii) Similar to the proof for \mathbb{R}^2 in lectures:

$$|x.y|^{2} \leq ||x||^{2} ||y||^{2} \Leftrightarrow (x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3})^{2} \leq (x_{1}^{2} + x_{2}^{2} + x_{3}^{2})(y_{1}^{2} + y_{2}^{2} + y_{3}^{2}),$$

which after expanding and cancelling terms works out as

$$\Leftrightarrow 0 \le (x_1y_2 - x_2y_1)^2 + (x_1y_3 - x_3y_1)^2 + (x_2y_3 - x_3y_2)^2,$$

which is true, hence result.