M1GLA Geometry and Linear Algebra, Solutions to Sheet 6

1. (i) A straightforward calculation shows that for the first two matrices we have m =3
and m = 4, respectively. The third matrix gives A2 = 0, hence any higher power is the
all-zero matrix, so no m such that A™ = I exists. For the fourth matrix an easy proof
by induction shows that for m > 1 we have

(52 )

Again, no m > 0 such that A™ = I, exists.
(ii) If A is the first matrix, then A* = I;. The other matrix gives A% = 0.

2. (i) The column vector Ap has coordinates Z?Zl ai;p; > 0. Their sum equals

n n n n n n n
DD aupi =)D aypi =) O ayp; =) pi=1
i=1 j=1 j=11i=1 j=1 i=1 j=1
The first equality is due to changing the order of summation, and the third equality uses
the definition of a stochastic matrix. Thus the sum of coordinates of Ap is 1. Conversely,
let p be the vector with p; = 1 and p; = 0 for j # ¢. Then Ap is the column vector
(a1i,a2iy- .., an;). All these entries must be non-negative and sum up to 1. Doing this
for all 7 from 1 to n we get the result.

(ii) All the terms in the sum Z?Zl a;;p; are non-negative. Thus the sum is zero
means that all the terms are zero. But at least one of the p; has to be positive, and all
aij > 0,80 320 aigpj > 0.

3. The entries of AB are 22:1 airby; > 0. The sum of entries in the j-th column is

S awb; =>_ O ain)bi; =Y by =1,
k=1

i=1 k=1 k=1 i=1
using > 1 aix =1and Y, bg; = 1.

4. Consider the matrix F;; whose ij-entry is 1, and all the other entries are 0. Let the
entries of A be a,b,c,d. Let’s write down the restrictions on a, b, c,d imposed by the
formulae A - Eij = Eij <A fOI‘, say E171 and ELQZ

(ca)loo)=(eo) Go)lea)=(5s)
(ca)(00)=(5 ) (5o)(Ca)=(50)

The formulae show that b = ¢ =0 and a = d, hence A is a scalar matrix:

=(50)

Visibly it commutes with any other matrix.
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5. The same method as in the previous question shows that these are precisely the scalar
matrices.

6. Let us compare both products

(ea)(Vo)=(at) (Vo)(ea)=(a3)

Thus the matrices A are the matrices of the form

a b
()

for real numbers a and b.



