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1∗. (a) We have AT (A−1)T = (A−1A)T = IT = I and (A−1)TAT = (AA−1)T =
I.

(b) Yes, by (a).

(c) Note that (A + In)x = 0 for many vectors x, e.g. x = (1,−1, 0, . . .).
Similarly, (A + (1 − n)In)x = 0 for x = (1, . . . , 1). Hence |A + In| = |A +
(1− n)In| = 0.

2∗. (a) t2 + a2 = (t− ia)(t+ ia).

(b) −t(t2 + a2 + b2 + c2); the eigenvalues are 0 and ±i
√
a2 + b2 + c2.

(c) (P−1AP )T = (P TAP )T = P TATP = −P TAP = −P−1AP .

(d) Yes, by Q1 (a).

3∗. (a) No, e.g. B =




0 0 1
0 0 0
0 0 0



 .

(b) The characteristic polynomial of A =

(
11 3
3 19

)

is (t− 10)(t− 20).

The rotation matrix formed by orthogonal eigenvectors of length 1 is A =(
1/
√
10 3/

√
10

−3/
√
10 1/

√
10

)

. The standard form is 10y21 + 20y
2
2 = a, which is an

ellipse for a > 0, a single point if a = 0, and the empty set if a < 0.

4∗. (a) Any symmetric matrix with real entries is diagonalizable, that is, can
be written as P−1DP , whereD is diagonal with ±1 on the main diagonal. We
have D−1 = D = DT . Now (P−1DP )−1 = P−1DP = P TDTP = (P−1DP )T .

(b) A3 = I3, as can be checked by a straightforward calculation. A
more intelligent proof is by observing that A can be diagonalized. Indeed,
the eigenvalues of A are 1, ζ, ζ2, and these are distinct. Thus we can write
A = PDP−1 for some invertible matrix P with complex entries, and the
diagonal matrix D with diagonal entries 1, ζ, ζ2. Therefore, A3 = PD3P−1 =
PP−1 = I3.

5. (a) is obvious.

(b) λv̄.v = (v̄)TAv = (AT v̄)Tv = λ̄v̄.v, using (a), hence the result. (c) is
similar.

(d) Note that A−1v = λ−1v, then proceed as in (b).


