Supplement to the proof of Proposition 5.4

M. Orr and A.N. Skorobogatov

December 10, 2021

Proposition 5.4 of [OS18] concerns a smooth, proper and geometrically integral variety X over a field k of characteristic 0. We can assume that k can be embedded into \mathbb{C} ; let us fix such an embedding and define $H = \mathrm{H}^2(X_{\mathbb{C}}, \mathbb{Z}(1))/_{\mathrm{tors}}$. For a prime ℓ define $H_{\ell} = \mathrm{H}^2_{\mathrm{\acute{e}t}}(\overline{X}, \mathbb{Z}_{\ell}(1))/_{\mathrm{tors}}$. The group $\mathrm{Aut}(\overline{X})$ acts on H via the map $\mathrm{Aut}(\overline{X}) \to$ $\mathrm{Aut}(X_{\mathbb{C}})$. Define A(X) as the image of this action. The comparison theorem between Betti and ℓ -adic étale cohomology gives an isomorphism $H \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{\ell}$, which is $\mathrm{Aut}(\overline{X})$ -equivariant. Thus the image of the natural action of $\mathrm{Aut}(\overline{X})$ on H_{ℓ} is canonically isomorphic to A(X). The action of $\mathrm{Aut}(\overline{X})$ on H_{ℓ} is compatible with the action of the Galois group $\Gamma_k = \mathrm{Gal}(\overline{k}/k)$, hence Γ_k acts naturally on A(X).

In the third paragraph of the proof of [OS18, Prop. 5.4] we stated that the action of Γ_k on A(X) factors through a finite image of Γ_k . As was pointed out by Bjorn Poonen, our justification of this claim is insufficient. Let us prove this claim.

Since Γ_k acts continuously on H_ℓ , the image of Γ_k is a compact subgroup \mathfrak{G}_ℓ of $\operatorname{Aut}_{\mathbb{Z}_\ell}(H_\ell)$. Let G_ℓ be the Zariski closure of \mathfrak{G}_ℓ in $\operatorname{Aut}_{\mathbb{Z}_\ell}(H_\ell)$. The Γ_k -orbits in $\operatorname{Aut}(\overline{X})$ are finite, hence the \mathfrak{G}_ℓ -orbits in A(X) are finite. For any $x \in A(X)$ the inclusion $\mathfrak{G}_\ell(x) \subset G_\ell(x)$ of subsets of $\operatorname{Aut}_{\mathbb{Z}_\ell}(H_\ell)$ is an equality, because $\mathfrak{G}_\ell(x)$ is finite, hence Zariski closed in $G_\ell(x)$. Thus G_ℓ preserves $A(X) \subset \operatorname{Aut}_{\mathbb{Z}_\ell}(H_\ell)$.

Since \mathfrak{G}_{ℓ} is compact, G_{ℓ} has only finitely many connected components in the Zariski topology. The connected component of the identity $G_{\ell}^{\circ} \subset G_{\ell}$ acts on A(X) with finite and connected, hence trivial orbits. Thus $\mathfrak{G}_{\ell} \cap G_{\ell}^{\circ}$ is a subgroup of \mathfrak{G}_{ℓ} of finite index that acts trivially on A(X).

References

[OS18] M. Orr and A.N. Skorobogatov. Finiteness theorems for K3 surfaces and abelian varieties of CM type. *Compos. Math.* **154** (2018) 1571–1592.