
A very brief introduction to étale homotopy∗

Tomer M. Schlank and Alexei N. Skorobogatov

The task of these notes is to supply the reader who has little or no experience of
simplicial topology with a phrase-book on étale homotopy, enabling them to proceed
directly to [5] and [10]. This text contains no proofs, for which we refer to the
foundational book by Artin and Mazur [1] in the hope that our modest introduction
will make it more accessible. This is only a rough guide and is no substitute for a
rigorous and detailed exposition of simplicial homotopy for which we recommend [8]
and [4].

Let X be a Noetherian scheme which is locally unibranch (this means that the
integral closure of every local ring of X is again a local ring), e.g., a Noetherian
normal scheme (all local rings are integrally closed). All smooth schemes over a
field fall into this category. The aim of the Artin–Mazur theory is to attach to X
its étale homotopy type Ét(X). This is an object of a certain category pro−H, the
pro-category of the homotopy category of CW-complexes. The aim of these notes
is to explain this construction.

1 Simplicial objects

1.1 Simplicial objects and sisets

The ordinal category Δ is the category whose objects are finite ordered sets [n] =
{0, . . . , n}, one for each non-negative integer, where the morphisms are the order-
preserving maps [n] → [m]. It is easy to see that all these maps are compositions
of the face maps δi : [n] → [n + 1] (the image misses i) and the degeneracy maps
σi : [n+ 1]→ [n] (hitting i twice).
A simplicial object with values in a category C is a contravariant functor Δ→ C.

Simplicial objects in C form a category SC, where the morphisms are the natural
transformations of such functors.

For example, a simplicial set (or a siset) is a simplicial object S = (Sn) with values
in Sets, the category of sets. Let SSets be the category of sisets. The elements of
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Sn are called n-simplices of S. A simplex x is non-degenerate if it is not of the form
σi(y) for some simplex y ∈ S.
We denote by Δ[n] the siset given by the contravariant functor Δ → Sets sending

[m] to HomΔ([m], [n]). For example, Δ[0] has the one-element set in every degree
m, that is, the zero function [m] → [0]. Next, Δ[1]m can be identified with the set
of non-decreasing sequences of 0 and 1 of length m + 1. The degeneracy operators
repeat the i-th coordinate; the face operators erase the i-th coordinate. The siset
Δ[1] has only three non-degenerate simplices: the constant functions [0] → 0 and
[0]→ 1 in degree 0, and the identity function [1] → [1] in degree 1. In general, Δ[n]m
is the set of increasing sequences of 0, 1, . . . , n of length m+ 1, so that the identity
[n] → [n] is the unique non-degenerate n-simplex of Δ[n]. For any n-simplex of a
siset S there is a unique map Δ[n] → S that sends the identity function [n] → [n]
to this simplex, hence Sn = HomSSets(Δ[n], S).

The product of two sisets R × S is defined levelwise: (R × S)n = Rn × Sn with
face and degeneracy operators acting simultaneously on both factors.

The maps of sisets f : R → S and g : R → S are strictly homotopy equivalent
if there is a map of sisets R ×Δ[1] → S whose restrictions to R × (0) and R × (1)
give f and g, respectively. Two maps of sisets are homotopy equivalent if they can
be connected by a chain of strict homotopies.

If S is a siset and A is an abelian group, then the simplicial cohomology groups
Hn(S,A) are defined as the cohomology groups of the complex

. . .→ Maps(S1, A)→ Maps(S0, A)→ 0,

where the differentials are alternating sums of the maps induced by the face maps.

1.2 Topological realisation

Let Top be the category of topological spaces, where the morphisms are continuous
maps. Recall that a continuous map of topological spaces is a weak equivalence if it
induces isomorphisms on all the homotopy groups.

Consider the standard n-dimensional simplex:

Δn = {(x0, . . . , xn) ∈ R
n+1|xi ≥ 0,

∑
xi = 1}.

Any siset S has the topological realisation |S| which is a topological space defined as
the quotient of the disjoint union of Sn ×Δn by the equivalence relation generated
by the following relations: for any order preserving map α : [m] → [n] we identify
(α∗(x), t) with (x, α(t)) (it is enough to do this for the face maps and the degener-
acy maps). The natural map |Δ[n]| → Δn is a homeomorphism. The topological
realisation |S| of a siset S can be given the structure of a CW-complex: the n-cells
are all non-degenerate n-simplices of S, with the face maps as the gluing maps, see
[8, Thm. 14.1].
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Any map of sisets induces a continuous map of topological realisations, hence
the topological realisation is a functor SSets → Top. Homotopic maps of sisets
give rise to topologically homotopic maps. One can define the homotopy groups
of a pointed siset directly, see [4, I.7], or, equivalently, as the homotopy groups of
its topological realisation. The topological realisation commutes with products: we
have |R×S| = |R|× |S| for any sisets R and S such that |R|× |S| is a CW-complex
(e.g. when R and S are both countable). See [8], Thm. 14.3 and Remark 14.4.

The singular functor Top → SSets attaches to a topological space T the siset
ST , where (ST )n is the set of continuous maps Δn → T . It is a crucial property
that the singular functor is right adjoint to the functor of topological realisation.

Let H be the homotopy category of CW-complexes. If X and Y are CW-
complexes, then the set of morphisms from X to Y in H is the set of homotopy
classes of maps X → Y . It is denoted by [X,Y ].
Let H0 be the pointed homotopy category of connected pointed CW-complexes

(the homotopy is assumed to preserve the base point).

1.3 Simplicial mapping space

In the category of sisets there is a natural notion of internal Hom.

Definition 1.1 Let A and B be sisets. The internal mapping space Maps(A,B) is
an object of SSets defined by

Maps(A,B)n := HomSSets(A×Δ[n], B),

with the natural face and degeneracy maps.

There is a natural map

φ : |Maps(A,B)| → MapsTop(|A|, |B|).

However, sisets are too rigid in the sense that some maps of their realisations cannot
be represented up to homotopy by maps of sisets, so that φ is not always a weak
equivalence. For example, let C be the siset obtained by identifying the two 0-
simplices of Δ[1]. It is clear that |C| is homotopy equivalent to S1, however one
can check that the only maps C → C are the constant map and the identity. Thus
all the surjective maps S1 → S1 of degrees more than 1 are not in the image of
|Maps(C,C)| → MapsTop(|C|, |C|).
Kan noticed that φ is a weak equivalence if B (but not necessarily A) belongs to
a special class of sisets that are now called Kan sisets.

1.4 Kan sisets and Kan fibrations

Let m ∈ {0, . . . , n}. The horn Λm[n] is the smallest sub-siset of Δ[n] containing all
the non-degenerate (n − 1)-simplices of which m is an element (that is, all except
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one). A map of sisets p : X → B is a Kan fibration if for any n ≥ 1 and any
commutative diagram

Λm[n] X

p

Δ[n] B

there exists a dotted map of sisets such that the two resulting triangles are commu-
tative (“every horn has a filler”). If (B, b) is a pointed siset, then p−1(b) is called
the fibre of f . A siset Y is called fibrant or a Kan siset if the map sending Y to a
point is a Kan fibration. For example, if T is a topological space, then ST is a Kan
siset. Note, however, that Δ[n] is a not a Kan siset for n ≥ 1 (exercise).
Recall that a continuous map of topological spaces f : V → U is a Serre fibration

if the dotted arrow exists in every commutative diagram of commutative maps

|Λm[n]| V

f

|Δ[n]| U

turning it into two commutative triangles. Kan fibrations of simplicial sets behave
similarly to Serre fibrations of topological spaces. For example, Kan fibrations have
the homotopy lifting property: if E → B is a Kan fibration and X is any siset, then
for every diagram

X E

X ×Δ[1] B

there exists a dotted map of sisets such that the two resulting triangles are commu-
tative. The adjointness of S and | | implies that f : V → U is a Serre fibration if
and only if f : S(V )→ S(U) is a Kan fibration. Quillen proved that if X → B is a
Kan fibration, then |X| → |B| is a Serre fibration, see [4, Thm. I.10.10].
As mentioned above, if A is a siset and B is a Kan siset, then the natural map φ
from the previous section is a weak equivalence1. This fact makes Kan simplicial sets
a good model for topological spaces. Indeed, the homotopy category of Kan sisets
(where the morphisms are the simplicial homotopy classes of maps) is equivalent
to the homotopy category of CW-complexes, via the topological realisation functor
and the singular functor. Thus in applications is it possible to use constructions
from either category.

For an arbitrary siset A the adjunction between realisation and the singular func-
tors gives rise to a natural map

A→ S|A|.
1This is a consequence of the fact that sisets and topological spaces are Quillen equivalent as

simplicial model categories, and the Kan sisets are fibrant in the model category of sisets. See [6]
for more on this subject.
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This map is a weak equivalence, and S|A| is a Kan siset (cf. [4], the proof of Thm.
11.4). Therefore, every siset can be functorially replaced with a weakly equivalent
Kan siset. It is common to use for this purpose a different functor with a better
combinatorial description, namely the Kan replacement functor Ex∞, see [4, Thm.
III.4.8].

2 Pro-categories

See the appendix to [1] for more details.

Definition 2.1 A category is cofiltering if it satisfies the following conditions:

(1) for any objects A and B there is an object C with morphisms to both A and
B,

(2) if there are morphisms A
f

g
B , then there is a morphism h : C → A such

that fh = gh.

In other words, there is a diagram C
h
A

f

g
B .

Examples (1) The category whose objects are natural numbers, and the morphisms
are n→ m whenever n ≥ m.
(2) The category whose objects are positive natural numbers, and the morphisms
are n→ m whenever m|n.
(3) Connected pointed étale coverings of a pointed scheme.

Definition 2.2 Let C be a category. The objects of the pro-category pro− C are
functors F : I → C, where the category I is cofiltering. The morphisms are defined
as follows:

Hompro−C({Ci}i∈I , {Dj}j∈J ) = lim←−
j∈J

lim−→
i∈I

Hom(Ci, Dj).

This definition of morphisms between pro-objects should be familiar: homomor-
phisms of pro-finite groups are defined in the same way.

Define pro−H as the pro-category of the homotopy category of CW-complexes H.
For the objects of pro −H one defines the analogues of homology groups, but note
that these are defined as pro-groups, not groups. Let pro −H0 be the pro-category
of the pointed homotopy category of connected pointed CW-complexes H0. For the
objects of pro−H one defines the homotopy pro-groups.
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3 Coverings and hypercoverings

3.1 Coverings of CW-complexes and étale coverings of schemes

Let X be a CW-complex. An open covering X = ∪α∈JUα is called excellent if the
intersection of any number of open sets Uα is contractible or empty. The homotopy
type of X can be recovered from the siset attached to such a covering. Indeed, let Un
be the set of functions f : [n]→ J such that ∩ni=1Uf(i) 6= ∅. The face and degeneracy
maps in U• are defined in the obvious way. Then the topological realisation |U•| is
weakly equivalent to X. This means that X and |U•| can be connected by a zigzag
of morphisms that induce isomorphisms on all homotopy groups.

We can think of a covering X = ∪α∈JUα as a map U → X, where U is the disjoint
union of open sets Uα. Note that Uα ∩ Uβ = Uα ×X Uβ, so that the fibred product
U×XU is just the disjoint union of pairwise intersections Uα∩Uβ, the fibred product
U ×X U ×X U is the disjoint union of triple intersections, and so on.

Definition 3.1 Let U → X be a covering of a topological space X. The Čech nerve
π0(U) of U → X is the siset such that

π0(U)n = π0(U ×X . . .×X U) (n+ 1 times).

The face maps in π0(U) are obvious projections, and the degeneracy maps are various
diagonal embeddings.

If we allow all the n-fold intersections to be disjoint unions of contractible sets,
we arrive at the notion of a good covering. If U → X is a good covering, then the
topological realisation |π0(U)| of its Čech nerve is weakly equivalent to X.

Representing a covering by a morphism U → X is convenient because this carries
over to étale coverings. One would like to apply this construction to a Grothendieck
topology on a scheme X, for example, to the small étale site Xét of X. The ob-
vious problem is that open étale “subsets” are rarely contractible. However, it is
clear that to recover the space we started with, the connected components must be
contractible. Instead, we can think of the Čech nerve of an étale covering U → X
as an “approximation” to the homotopy type of the scheme X. This approximation
becomes better when we take finer and finer coverings. On passing to a limit in U
this system of approximations computes the Čech cohomology of X. Pro-objects
in étale homotopy theory are used exactly in order to formalise this notion of “a
hierarchic system of approximations”. Naively, one might want to define the étale
homotopy type as the pro-space Ét : Cov(X)→ Top, where Cov(X) is the category
of étale coverings of X, and Ét(U) = |π0(U)| is the topological realisation of the
Čech nerve of U . There are two problems with this definition. The first problem is
that the system of étale coverings does not always compute the correct cohomology
groups. The second problem is that the category of étale coverings Cov(X) is not
cofiltering (cf. [9], III, Remark 2.2 (a)).
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To understand the first problem better, we note that for an étale covering U → X
the cohomology groups Hn(|π0(U)|, A) coincide with the Čech étale cohomology
groups Ȟn(U , A) (by definition, see [9], III.2). Passing to the limit at the level of
cohomology groups is well defined (see [9], loc. cit.). Thus we obtain the groups

Ȟnét(X,A) = lim−→ Ȟ
n(U , A).

Unfortunately, Ȟnét(X,A) is not always equal to the étale cohomology group H
n
ét(X,A).

For a quasicompact scheme X the canonical morphism Ȟnét(X,A)→ H
n
ét(X,A) is an

isomorphism when any finite subscheme of X is contained in an affine subset, e.g.,
X is quasi-projective over an affine scheme (for example, X is quasi-projective over
a field). This is Artin’s theorem, see [9, III.2.17].

A theorem of Verdier points at a way to remedy this situation by replacing cover-
ings by a more general notion of hypercoverings. To define hypercoverings we first
need to introduce the notions of skeleton and coskeleton which we do in the next
section.

Unfortunately, even replacing the category Cov(X) by the category of hypercover-
ings Hyp(X) is not enough to solve the second problem. The reason is that Hyp(X)
is not cofiltering, either. To circumvent this problem one can work with the notion of
the homotopy category of hypercoverings HC(X) which is cofiltering. But passing
to the homotopy classes of hypercoverings comes with a price: we obtain an object
in Pro−H rather than in Pro−Top. This suffices for our needs, but in some cases
one would like to get the actual “étale topological type”. This can be done; we refer
the interested reader to Friedlander’s book [3] and to the recent paper [2].

3.2 Skeleton and coskeleton

Let C be a category closed under finite limits and colimits (e.g. the category of
sets Sets, the category of pointed sets, or the étale site of a scheme). For n ≥ 0
one defines functors skn and coskn from SC to itself, as follows. Let Δ/n be the
ordinal category Δ truncated at level n, i.e. the full subcategory of Δ whose objects
are [m] for m ≤ n. Let SnC be the category of functors Δ/n → C. Since Δ/n
is a finite category and C is closed under finite colimits, the obvious truncation
functor τn : SC → SnC has a left adjoint (the left Kan extension, cf. [7, X.4]). The
composition of the truncation functor and its left adjoint

skn : SC → SnC → SC

is called the skeleton functor. For example, if C = Sets, then skn(X) is the simplicial
subset of X that agrees with X up to the level n, and which has no non-degenerate
simplices in dimensions greater than n.

Since Δ/n is a finite category and C is closed under finite limits, the functor
τn : SC → SnC also has a right adjoint (the right Kan extension, cf. [7, X.3]). The
composed functor

coskn : SC → SnC → SC
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is called the coskeleton functor. By definition we have

HomSC(skn(A), B) = HomSnC(τn(A), τn(B)) = HomSC(A, coskn(B)),

and taking A = B we obtain the canonical morphisms

skn(A)→ A and A→ coskn(A).

Now let C be the category of sets or pointed sets. If A is a (pointed) siset, then
it is clear that coskn(A) is the siset such that

coskn(A)m = HomSSets(Δ[m], coskn(A)) = HomSSets(skn(Δ[m]), A).

In particular, cosk0(A) is the siset such that

cosk0(A)m = HomSets(sk0(Δ[m]), A) = A
m+1
0 .

Also, coskn(Δ[r]) = Δ[r] if n ≥ r.

The coskeleton functor preserves Kan sisets (but not Kan fibrations2). If X is an
object ofH0, then the coskeleton coskn(X) is characterised by the following universal
property: πm(coskn(X)) = 0 for m ≥ n, and the canonical map X → coskn(X) is
universal in the homotopy category among the maps to objects with vanishing πm
form ≥ n, cf. [1], (2.4). For m < n the map X → coskn(X) induces an isomorphism
πm(X)−̃→πm(coskn(X)). In other words,

...→ coskn+1(X)→ coskn(X)→ ...→ cosk0(X)

is a Postnikov tower of X.

Next, the homotopy fibre of coskn+1(X) → coskn(X) is the Eilenberg–MacLane
space K(πn(X), n). Recall that for a group G a connected CW-complex X is called
an Eilenberg–MacLane space K(G, n) if the only non-trivial homotopy group of X
is πn(X) = G; all such CW-complexes are homotopy equivalent.

An important fact in homotopy theory is Whitehead’s theorem that states that
a map of CW-complexes is a homotopy equivalence if and only if it induces isomor-
phism on all homotopy groups. Whitehead’s theorem allows us to study homotopy
types ”one homotopy group at a time” which makes it an essential tool in homotopy
theory. However the analog of Whitehead’s theorem is false for pro-CW-complexes.
To remedy this situation Artin and Mazur [1, §3] presents the following construction.
For an object (X•) = (Xi) of pro−H0 the universal property of coskeleton allows

us to define the following object of pro −H0:

X\ = {coskn(Xi)}.

2As it is incorrectly stated on page 8 of [1].
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It is indexed by pairs (n, i) with the obvious canonical maps coskm(Xi)→ coskn(Xj),
m ≥ n, where i→ j is a morphism in the indexing category I of X. The canonical
map X → X\ is a weak homotopy equivalence, but not necessarily an isomorphism
in pro−H0. Indeed, if X is a CW-complex, then

[X\, X] = lim−→ [coskn(X), X],

so for the canonical map X → X\ to be invertible in H0, X must be bounded, i.e.,
πn(X) = 0 for large n. In such a case X is homotopy equivalent to coskn(X) for
some n.

By functoriality, any map f : X → Y in pro−H0 induces a map X\ → Y \. The
latter is an isomorphism if and only if f induces isomorphisms of all coskeletons of
X and Y , and, equivalently, of all homotopy pro-groups of X and Y (see [1, Cor.
4.4]).

The functor X → X\ can also be defined in pro−H. Informally speaking, a base
point is not needed to “Postnikov-filter” the homotopy information by dimension,
but is required to define the “associated graded filtration” in terms of groups.

3.3 Hypercoverings

Let X be a scheme, and let Xét be the small étale site of X. This is the category
of all schemes Y étale over X; the coverings in Xét are surjective families of étale
morphisms. To a covering Y → X we can associate the simplicial étale X-scheme
(Y•), where

Yn = Y ×X . . .×X Y (n times).

The simplicial scheme (Y•) is an example of a hypercovering.

Definition 3.2 A simplicial étale X-scheme U• is called a hypercovering if
(1) U0 → X is a covering;
(2) for every n the canonical morphism Un+1 → coskn(U•)n+1 is a covering.

Note that U0 → X is a covering, by (1), and cosk0(U•) is the corresponding simplicial
étale X-scheme

cosk0(U•)n = U0 ×X . . .×X U0.

The definition of a hypercovering implies that U1 → U0 ×X U0 is a covering, so it
refines the notion of covering by allowing greater freedom at every level. This very
general categorical construction is due to Verdier (SGA 4, Exp. V). It can be used
with any site on X, see [1, Ch. 8].

A very important example is when X is a point and the site is the category Sets,
where a covering is just a surjective family of maps. Then a hypercovering is the
same thing as a contractible Kan siset, see Enlightenment 8.5 (a) in [1].
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3.4 Homotopy category of hypercoverings

Assume that C is a category with finite direct sums. If K is an object of C, and
S is a finite set, then K ⊗ S denotes the direct sum of copies of K indexed by the
elements of S. Now let (K•) be a simplicial object with values in C. Define the
simplicial object (K•)⊗Δ[1] in SC by the formula

((K•)⊗Δ[1])n = Kn ⊗Δ[1]n,

with the simultaneous action of face and degeneracy operators on both factors.
There are two obvious inclusions Δ[0] → Δ[1], indexed by 0 and 1. Let e0 and e1
be the corresponding inclusions (K•)→ (K•)⊗Δ[1].

Definition 3.3 The maps f0 : (K•) → (L•) and f1 : (K•) → (L•) are strictly
homotopic if there is a map (K•) ⊗Δ[1] → (L•) such that f0 = fe0 and f1 = fe1.
Two maps are homotopic if they are related by a chain of strict homotopies.

We apply this to the case when C is the small étale site Xét.

Definition 3.4 The homotopy category of hypercoverings HC(Xét) is the category
whose objects are étale hypercoverings of X, and whose maps are homotopy classes
of morphisms of simplicial étale X-schemes.

An important result is that HC(Xét) is a cofiltering category [1, Cor. 8.13 (i)].
Passing to the limit over HC(Xét) one establishes a canonical isomorphism [1, Thm.
8.16]

Hnét(X,F ) = lim−→H
n(U•, A).

We will also need the pointed versions of the above constructions: the pointed
étale site on X (with the choice of a geometric point on every étale X-scheme),
pointed sisets, pointed hypercoverings, homotopy classes of pointed morphism (the
strict homotopies are assumed to preserve the base point).

3.5 Étale homotopy type

Now we are ready to implement the strategy outlined earlier.

Let X be a locally Noetherian scheme. Then every scheme Y étale over X is
a finite disjoint union of connected schemes. Write π0(Y ) for the set of connected
components of Y . Let π0(U•) be the siset obtained by applying the functor π0 to a
simplicial étale hypercovering U•. Since HC(Xét) is cofiltering we can consider the
pro-object

π0(Xét) = {π0(U•)},

which is an object in the pro-category of the homotopy category of sisets. Applying
the topological realisation functor we obtain the étale homotopy type Ét(X) of X
as an object in pro −H.
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When a base point is fixed, one can define the homology and homotopy pro-groups
of Ét(X). The situation with cohomology is much better because cohomology is
contravariant, the direct limit is an exact functor and the direct limit of abelian
groups is also an abelian group. For an abelian group A this leads to the definition
of the cohomology groups Hn(Ét(X), A). Using the previous theory one obtains a
canonical isomorphism

Hn(Ét(X), A) = Hnét(X,A),

see [1, Cor. 9.3].

If X is equipped with a geometric base point, then we can consider the pointed
étale site of X and define Ét(X) as an object in pro −H0. A base point allows us
to define homotopy pro-groups. By [1, Cor. 10.7] for every pointed scheme we have

π1(Ét(X)) = π1(Xét).

This makes it possible to define higher étale homotopy pro-groups for all n ≥ 0

πn(Xét) := πn(Ét(X)).

3.6 Profinite completion and the comparison theorem

Let X be a pointed connected geometrically unibranch scheme over C. Let us
consider X(C) as a topological space with the classical topology on C. By the
Riemann existence theorem we have

π1(Xét) = ̂π1(X(C)),

where Ĝ is the profinite completion of the group G, see [9, §5]. It is natural to ask if
for n > 1 there is an isomorphism between πn(Xét) and the profinite completion of
πn(X(C)). In general this is not the case. Here one could recall a guiding principle
of homotopy theory that says that functors should always be applied to homotopy
types rather than to homotopy groups.

Let Hfin0 be the full subcategory of H0 consisting of pointed connected CW-
complexes all of whose homotopy groups are finite. The following result is [1, Thm.
3.4].

Theorem 3.5 For any X in pro−H0 there are an object X̂ of pro−Hfin0 and a map
X → X̂, which are universal with respect to maps from X to objects of pro−Hfin0 .

Let us call X̂ the profinite completion of X. Associating to X its profinite com-
pletion defines a left adjoint functor to the inclusion of pro −Hfin0 into pro−H0.

Now we have the following generalisation of the isomorphism π1(Xét) = ̂π1(X(C)),
see [1], Thm. 12.9 and Cor. 12.10.
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Theorem 3.6 Let X be a pointed connected geometrically unibranch scheme over
C. Let Cl(X) be the object of H0 given by the homotopy type of the topological space
X(C). Consider H0 as a subcategory of pro−H0. There is a natural map

Cl(X)→ Ét(X)

which makes Ét(X) the profinite completion of Cl(X).

Note that in the light of this theorem Ét(X) can be computed from the homotopy
type of X(C), which makes Ét(X) a tractable object.
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[5] Y. Harpaz and T.M. Schlank. Homotopy obstructions to rational points, this
volume.

[6] M. Hovey. Model categories. Mathematical Surveys and Monographs 63, Amer-
ican Mathematical Society, 1998.

[7] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, 1998.

[8] J. Peter May. Simplicial objects in algebraic topology. D. Van Nostrand, 1967.

[9] J.S. Milne. Étale cohomology. Princeton University Press, 1980.

[10] A. Pál. Homotopy sections and rational points on algebraic varieties.
arXiv:1002.1731

Einstein Institute of Mathematics, Givat Ram, The Hebrew University of Jerusalem,
Jerusalem, 91904, Israel

Tomer.Schlank@mail.huji.ac.il

Department of Mathematics, South Kensington Campus, Imperial College London,
SW7 2BZ England, U.K.

12



Institute for the Information Transmission Problems, Russian Academy of Sciences,
19 Bolshoi Karetnyi, Moscow, 127994 Russia

a.skorobogatov@imperial.ac.uk

13


