Algebraic number theory

Solutions sheet 2

February 4, 2011

1. (a) The multiplicativity is clear, so we just need to check that $N\left(\mathcal{O}_{K}\right) \subset$ \mathbb{Z} which is an issue when d is $1 \bmod 4$. But then any element of \mathcal{O}_{K} is either in $\mathbb{Z}[\sqrt{d}]$, or is one half of $n+m \sqrt{d}$, where n and m are both odd. Then $n^{2}-d m^{2}$ is $0 \bmod 4$, so it's OK.
(b) This is clear by taking norms.
(c) Let's first do the easy case when d is not $1 \bmod 4$. Then every element of \mathcal{O}_{K}^{*} can be written as $n+m \sqrt{d}$ and we need to find all pairs of integers n, m for which $(n+m \sqrt{d})(a+b \sqrt{d})=1$ for some $a, b \in \mathbb{Z}$. Taking norms we get

$$
\left(n^{2}+|d| m^{2}\right)\left(a^{2}+|d| b^{2}\right)=1,
$$

which implies $n^{2}+|d| m^{2}=1$. If $d<-1$, then $m=0$ and $n= \pm 1$, so $\mathcal{O}_{K}^{*}=\{ \pm 1\}$. If $d=-1$ we see that $\mathcal{O}_{K}^{*}=\{ \pm 1, \pm i\}$.

If d is $1 \bmod 4$ we know that any element of \mathcal{O}_{K} is as before or one half of $n+m \sqrt{d}$. So we need to solve the equation

$$
\left(n^{2}+|d| m^{2}\right)\left(a^{2}+|d| b^{2}\right)=4 .
$$

The factors can be 1,2 or 4 . We already listed all solutions with $n^{2}+|d| m^{2}=$ 1. Note that $|d|$ is $3 \bmod 4$, so $n^{2}+|d| m^{2}=2$ has no solutions. Finally, the solutions of $n^{2}+|d| m^{2}=4$ are $(\pm 2,0)$, or $(\pm 1, \pm 1)$ if $d=-3$. Therefore, for $d=-3$ the group \mathcal{O}_{K}^{*} is cyclic of order 6 formed by the 6 th roots of 1 in \mathbb{C}, for $d=-1$ the group \mathcal{O}_{K}^{*} is the group of 4 th roots of 1 , and so is the product of two groups of order 2 , and $\mathcal{O}_{K}^{*}=\{ \pm 1\}$ in all other cases.
(d) is an application of (b).
2. (a) This element is clearly non-zero, and not a unit by Q1. If it is a product of two non-units, then its norm is a product of two integers of modulus greater than 1 , a contradiction.
(b) For $n=0$ and $n=6$ we can use (a). A calculation as in Q1 shows that \mathcal{O}_{K} has no elements of norm 2,3 or 7 . Since the norm of an element of \mathcal{O}_{K} which is not a unit and not an irreducible, is a product of two integers >1 which are norms, we see that for $n=1,2,3,4$ the element $n+\sqrt{-5}$ is irreducible. It is clear that $5+\sqrt{-5}=\sqrt{-5}(1-\sqrt{-5})$ is not irreducible. It remains to understand $7+\sqrt{-5}$ whose norm is 54 . So let's find all elements of norm 6 and 9. Apart from ± 3, which is useless, we have $\pm 1 \pm \sqrt{-5}$ and $\pm 2 \pm \sqrt{-5}$. A little experimentation shows that

$$
7+\sqrt{-5}=(1+\sqrt{-5})(2-\sqrt{-5})
$$

so this one is certainly not irreducible.
3. (a) If y is even, then the LHS is congruent to $2 \bmod 4$, then the RHS is even, then the RHS is congruent to $0 \bmod 4$. Contradiction.
(b) If $a+b \sqrt{-2}$ is a common divisor of $y+\sqrt{-2}$ and $y-\sqrt{-2}$, it divides their sum and difference, that is, $2 y$ and $2 \sqrt{-2}$. On taking norms we get $a^{2}+2 b^{2} \mid 4 y^{2}$ and $a^{2}+2 b^{2} \mid 8$. By (a) it follows that $a^{2}+2 b^{2} \mid 4$, hence $(a, b)=$ $(\pm 1,0)$ or $(a, b)=(\pm 2,0)$ or $(a, b)=(0, \pm 1)$. The first solution corresponds to units. Since y is odd, $y+\sqrt{-2}$ is not divisible by $\sqrt{-2}$, neither is it divisible by 2. Thus the second and the third solutions do not lead to divisors of $y+\sqrt{-2}$. Hence $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are coprime.
(c) Comparing the coefficients at $\sqrt{-2}$ in $y+\sqrt{-2}=(c+d \sqrt{-2})^{3}$ one gets $1=d\left(3 c^{2}-2 d^{2}\right)$. The rest is immediate.
4. We note that p is odd and coprime with d, so that p can only be split or inert. If p is a norm, then $p=z . \bar{z}$, for some $z \in \mathcal{O}_{K}$. The ideal $I=(z)$ contains (p) and is different from the whole ring. Since the norm of z is p, and the norm of p is p^{2}, we have $z \notin(p)$. Hence $I \neq(p)$. By the classifications of prime ideals in \mathcal{O}_{K} we know that I must be a prime ideal over p, which is distinct from (p). Therefore p is split. This is known to be equivalent to $\left(\frac{d}{p}\right)=1$.

A more direct proof is this. We have $p=N(z)$, for some $z \in \mathcal{O}_{K}$. Then $2 z$ can be written as $a+\sqrt{d} b$ with integer a and b. Then $4 p=a^{2}-d b^{2}$. Since $p \neq 2$ and $(p, d)=1$, it follows that a and b are not divisible by p. Reducing modulo p we conclude that d is a square modulo p.

The converse. If p is split, then $(p)=(p, a+\sqrt{d})(p, a-\sqrt{d})$. Let z be a generator of the first of these ideals, then \bar{z} generates the second one. Hence $(p)=(N(z))$ as ideals in \mathcal{O}_{K}. This implies $p=u . N(z)$, where $u \in \mathcal{O}_{K}^{*}$. Since p and $N(z)$ are positive integers, $u=1$. Thus p is a norm.

