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ABSTRACT 

We give an explicit procedure for constructing Shimura curves analogous 

to the modular curves Xo(N) that are counterexamples to the Hasse 

principle over imaginary quadratic fields. These counterexamples are 

accounted for by the Manin obstruction. 

Introduction 

The aim of this note is to show that  descent can be used to establish the non- 

existence of rational points on certain Shimura curves over number fields, in 

particular, in the case when rational points exist everywhere locally. Our result 

is an easy to implement algorithm which, when it applies, says that  a particular 

Shimura curve gives a counterexample to the Hasse principle over many imaginary 

quadratic fields. All these counterexamples are automatically accounted for by 

the Manin obstruction. 

We always consider Shimura curves attached to indefinite quaternion division 

algebras over Q. Shimura proved that  these curves have no real points [Sh]. 

Jordan and Livn~ determined the non-archimedian local fields over which a given 
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Shimura curve without level structure has rational points [JL]. Little seems to 

be known about rational points on Shimura curves over global fields, though 

some interesting results were obtained by B. Jordan in [J]. In particular, he 

showed that the Hasse principle for such curves does not always hold: he gave an 

explicit example of a Shimura curve which has no point rational over Q(x/-2-~) 

but does have rational points over all completions of this field. Jordan and 

Livn~ consider only Shimura curves without level structure (the compact open 

subgroup in Deligne's definition of Shimura varieties is maximal at all places). In 

this paper we consider Shimura curves with level structure, more precisely, the 

Shimura curves analogous to the modular curves Xo(N). 

Let B be an indefinite quaternion algebra over Q of reduced discriminant 

D ~ 1. We fix once and for all a maximal order O C B. Let 01 C O b e t h e  

group of elements of reduced norm 1. Let N be an odd prime not dividing D. 

Then O ® Z/N is isomorphic to the matrix algebra M2(Z/N). Let O~ C 01 be 

the preimage of the subgroup 

under the reduction map 01 --+ SL2(Z/N). Similarly, let O11 C 01 be the pre- 

image of the subgroup 

We view 01, O~ and O1 as arithmetic subgroups of SL2(R) under the iden- 

tification B ® R ~ M2 (R), and consider the compact Riemann surfaces that 

are obtained as the quotients of the upper half plane by these groups. Shimura 

showed that these Riemann surfaces have 'canonical models' which are smooth 

and projective algebraic curves over Q. Let S (resp. Y, resp. X) be the curve 

corresponding to O 1 (resp. 01, resp. Of). 

Let f:  X ~ Y and g: Y ~ S be the natural maps. Since Ol is normal in 0~, 

the map f is a Galois covering. The corresponding Galois group is (Z/N)*/4-1 ~ 
N--1 Z/---~.  Both maps are unramified provided we assume the following 

CONDITION 1: D is divisible by a prime congruent to 1 modulo 4, and a prime 

congruent to 1 modulo 3. 

Indeed, under this condition the action of 01 / 4- 1 on the upper half plane is free 

(there are no elliptic points; see [V], 3). Then f: X ~ Y is a Y-torsor under the 

group scheme (Z/N)*/ + 1. 
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Let k be an imaginary quadratic field, Fk = Gal(k/k),  and let Ak be the ring of 

addles ofk.  Our aim is to find examples when Y(k) = 0 but Y(Ak) ¢ 0. To show 

that  Y(k) = 0 we apply descent to the torsor f :  X ~ Y (see [S] for a general 

introduction). The Galois cohomology group H 1 (k, (Z/N)*/+ 1) is the group of 

characters of Fk with values in (Z/N)*/± 1. For a E Hom(Fk, (Z/N)*/+ 1) we 

define X ~ as the twisted form of X with respect to the action of (Z/N)*/± 1 on 

X by automorphisms. The collection of natural maps f~: X ° ~ Y is a 'covering 

family', in the sense that  the set Y(k) is the disjoint union of F'(X~'(k)) for all 

characters a. (A point P E Y(k) is in the image of X~(k), where a corresponds 

to the class of the k-torsor f - l (p )  in Hi(k, (Z/N)*/±I).) If for every a there is a 

place v of k such that  X~(kv) = 0 we conclude that  Y has no k-point. Moreover, 

by the descent theory (see, e.g., [S], 6.1.3 (1)), the counterexample to the Hasse 

principle provided by Yk is then accounted for by the Mania obstruction. 

In this note we show how to produce triples of positive integers (D, N,d) 
such that  the Shimura curve Y, analogous to Xo(N), attached to the indefinite 

quaternion algebra over Q of reduced discriminant D has the following property. 

Let k = Q(x/L-d). For any character a E Hom(rk,  (Z/N)*/:t=I) there is a place v 

of k such that  Xa(kv) is empty, while Y has kw-points for any place w of k. Then 

Y(k) = 0. For example, one can take D = 35, N = 23, d = 127 (or d = 142). 

When Y(k) ~ 0 our method is obviously doomed to failure. When the method 

actually fails (e.g., for D = 26 or D = 39, and N = 11) it may or may not be 

because of possible k-points on Y. 

Note that  if the class number of k = Q(xfZd) is not 1, then a theorem of 

Jordan implies that  for infinitely many values of D the curve S has no k-points 

([J], Thin. 6.6). Then Y(k) is also empty. However, Jordan's result does not 

seem to rule out the possibility that  Y(kv) = 0 for some completion kv. Earlier 

Shimura observed that  if the class number of k = Q(x/~Zd) is 1, and every prime 

factor of D is inert or ramified in k, then a point of complex multiplication is a 

k-point on S, so that  S(k) ~ 0. 
The methods of this paper do not allow us to treat Jordan's counterexample 

to the Hasse principle mentioned above. See [SS] for an elementary proof (based 

on the conjectured equation of this Shimura curve) that  this counterexample is 

explained by the Manin obstruction. 

Although we work with imaginary quadratic fields, our method can be imple- 

mented over more general number fields. 
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1. G o o d  r e d u c t i o n  

1.1. REDUCTION TO THE CASE WHEN o- IS A POWER OF THE CYCLOTOMIC 

CHARACTER. If K is a field, XK a projective K-scheme acted on by a finite 

K-group scheme GK, and P a (right) K-torsor  under GK, then the twist of XK 

by P is defined as the quotient X P := (XK xK P) /GK by the simultaneous 

action of GK on both factors. The following fact is well known. We sketch a 

proof here for the sake of completeness. 

LEMMA 1.1: Let R be a discrete valuation ring with field of fractions K.  Let 

X be a smooth and projective R-scheme, and let G be a finite @tale R-group 

scheme acting freely on X.  Let P be a (right) K-torsor under G. If the twist X P 

has a K-point, then P is unramified, that is, P becomes trivial over a maximal 

unramified extension of K.  

Proof: (See, e.g., [S], p. 106.) The morphism of R-schemes X --+ Z = X / G  is a 

torsor under G. A K-point  on X p projects to a K-point  on Z whose preimage 

in X is isomorphic to P.  By the properness of Z any K-point  extends to an 

R-point. Its preimage in X is an R4orsor  under G whose generic fibre is P.  

Hence P is unramified. | 

We apply this lemma to the following situation. Let ( Z / N ) * / +  1 be the obvi- 

ous 'constant '  @tale group Z-scheme, and let k be an imaginary quadratic field. 

The @tale morphism of smooth, projective and geometrically irreducible k-curves 

f :  X --+ Y endows X with the structure of a Y-torsor under (Z /N)* /4 -  1. 

The morphism f extends to a morphism of relative curves which are smooth and 

proper over Z[1/DN], with geometrically integral fibres (see [B]). This morphism 

defines a torsor under (Z/N)*/-t-  1. 

The k-torsors of ( Z / N ) * / +  1 up to isomorphism are classified by the characters 

of the Galois group of k, that  is, 

a • Hi (k ,  ( Z / N ) * / +  1) = Hom(rk ,  ( Z / N ) * / +  1). 

By Lemma 1.1 a necessary condition for a twist X ~ to have a point in the 

completion kv of k at a place v not dividing D N  is that  a must be unramified 

at v. This means that  the restriction of a to the inertia group at v is trivial. 

Therefore, while checking that  X~(Ak) = 0 it is enough to consider characters 

unramified away from primes dividing DN. 

CONDITION 2: ( N  - 1)/2 is coprime to p(p2 _ 1), for all prime factors plD. 

The inertia group at a prime v of k over plD is an extension of a group of order 

p - 1 (if p is split or ramified in k) or p2 _ 1 (p inert) by a pro-p-group. The 
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assumption just made implies that  a is unramified at such primes of k. Thus a 

can be ramified only at the prime(s) over N. 

CONDITION 3: The class number of k is coprime to (N - 1)/2. 

CONDITION 4: N is inert in k. 

These assumptions imply that  a is uniquely determined by its restriction to 

the Galois group of kv, vlN. Indeed, if a is unramified everywhere, then it comes 

from a character of the class group of k, and hence in our assumptions must be 

trivial. 

Let (N be a non-trivial N-th root of unity. Consider L -- Q((N) +, the maxi- 

mal real subfield of the cyclotomic field Q(ffN). This is a cyclic extension of Q 

with Galois group (Z /N)* /+  1, corresponding to (the image of) the cyclotomic 

character c(p) = p rood N. It is unramified away from N. Since L C R we 

have L ~ k = Q, hence Lk is an extension of k with Galois group (Z /N)* /+  1, 

corresponding to the restriction of c to Fk. This restriction is a generator of the 

group of characters of Fk with values in (Z /N)* /+  1 that  are unramified away 

from N. We have proved the following statement. 

PROPOSITION 1.2: Suppose that D, N and k satisfy Conditions 1, 2, 3 and 4. 

Then X ~ (Ak) = 0 unless a is a power of the cyclotomic character corresponding 

to the field extension Lk/k.  

1.2. ZETA-FUNCTIONS. It is well known that  X and Y have smooth and proper 

models over Z[1/DN] such that  all the fibres are geometrically integral (see [B]). 

Abusing the notation we denote these models by X and Y, respectively. The 

same convention applies to S which has a model with the same properties over 

Z[1/D]. 
Let p he a prime number not dividing DN. The Eichler-Shimura relation leads 

to the following formula for the Zeta-function of XFp : 

det(1 - Tpt + (p)pt 2) 
Z(XF,,, t) = (1 - t)(1 - pt) 

Here Tn, (n,N) = 1, is the Hecke operator acting on the space $2(F1) of cusp 

forms of weight 2 (as defined in [M]); (n), (n, N) = 1, is the diamond operator 

defined via the natural action of (Z /N)* /+  1 on $2(F1). 

Following the approach of [JL] we deduce an explicit formula for [ X (Fp,.)[. The 

identity log det(A) = Trlog(A) implies the identity of formal power series 

d logdet(1 - Tpt + = Tr((-Tp + 2(p)pt)(1 - Tpt + (p)pt 2) (p)pt2)-l ). 
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Set T1 = Id, Tp-1 = O. Using the identity 

r~,.r~ = r~,+, + (p)pT~,.-, 

for r _> 0, one proves that  

]X(Fp,.)I = 1 +p~ + Tr((p}pTp,.-2 - Tp,-) for r _> 1. 

Therefore, if I is a prime number that  does not divide DNp, we have 

( 1 )  , ~  1 Tr((Fp) [Het(Xy, , Ql)) = Tr(Tp,. - (p}pTp,.-2lS2(rl)), 

where Fp is the action of the Frobenius element Fp on the /-adic cohomology 

group H~t(Xp~, Ql). 

Let a be a character of Fk unramified away from tile primes dividing DN. Let 

X ° be the twist of Xk = X x k by a, considered as a 1-cocycle of the Galois 

group Fk with coefficients in (Z /N)* /+  1. Then X ~ is a smooth and proper 

curve over k, with good reduction away from the primes dividing DN. 
Let Ok be the ring of integers of k. We construct a model of X ~ over Ok [1/DN] 

as follows. Let 7 ) be a Ok[1/DN]-torsor under (Z /N)*/+ 1 defined by a. Then 

the quotient (Xok Xok[1/DN] 7))/G is smooth and proper over Ok[1/DN], has 

geometrically integral closed fibres, and its generic fibre is X% Abusing the 

notation we call X ° this Ok[1/DN]-scheme. 
Let v be a prime of k above p, and let Fq be the residue field at v, q = pf. 

Since a is unramified at v we can write 3  ̀= a(Fq). The action of the Galois group 

of Fq on X-  ~ is obtained from its action on X~q by composing the Probenius Fq Fq 
with 3', hence we have 

• ~ 1 ~ ~ * s F *  S H  1 X Tr((Fq) [Het(Xp,Qz) ) = ((3`) ( q) l e t ( ~ , , Q l ) ) ,  

using that  Tr(AB) = Tr(BA). The formula (1) now yields 

( 2 )  • 1 Tr((Fq) IH~t(XFq, QI) ) = Tr({TS}Tps~ - {7~p}pTp,.._21S~(rl)). 

1.3. APPLICATION OF THE EICHLER-SELBERG TRACE FORMULA. Let X be a 

Dirichlet character modulo N such that  X(-1)  = 1. Let S(X) be the subspace of 

S2(F1) consisting of the cusp forms on which (Z/N)*/+ 1 acts via the character 

X- 
Here is the list of notation for the Eichler-Selberg trace formula. 

p is a prime, (p, DN) = 1; 
r is a non-negative integer; 
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t is an integer such that [t[ < 2p~/2; 

d = discr Q ( ~  - 4p~); 

h(d) is the class number of Q(~/~); 

w(d) is the number of roots of unity in Q(x/d); 

Of = Z + fOk is an order of conductor f in Q ( v ~ )  containing the roots of 

x 2 + tx + p~ = 0 (note that  if we write t 2 - 4p r = m2d, then rim);  

S(Of)  is a non-negative rational number defined in ([JL], p. 239): S(Of) = 0 

if (D, f )  ~ 1, otherwise 

h(d---~)~r ( 1 - ( d ) q ~ _ , )  H ( 1 - ( d ) )  
S(Of ) = Zw(d) I ~ltf q~.lD 

where ql (resp. q2) runs over the prime factors of f (resp. of D); 

X(a) + X(3) if (N, f )  = 1 and (*) has two roots a ~ 3, 
c ( t , f , x ) =  0 if (N, f )  = l and (*) has no roots, 

X(a) if (N, f )  = 1, N[d, and a is the double root of (*), 
2X(a) if N[f  and a is the double root of (*), 

where (,) is the equation 

(,) X 2 + tX  + p r  = 0 mod N. 

When there is no level structure we set c(t, f )  = 1. Note that if )C is trivial, then 

c(t, f, X) = 1 + ( d )  if N does not divide f ;  otherwise c(t, f ,  X) = 2. 
Now we define E,.(X) by the formula 

1 
s,.(x) = E E s(o )c(t, 

tEZ,ltl<2p,/2 Of 

Set E-I(X) = 0. When .~ is trivial, we shall write c(t, f ,  N) for c(t, f ,  X), and 

Er(N)  for Er(X), to emphasize the dependence on N. If (N, f )  = 1, then we 

have 

otherwise c(t, f,  N) = 2. Note that  the E~ (N) are non-negative rational numbers 

which depend on r, p, D and N. We use the notation E~ when no level structure 

is involved. 

Following [JL] we observe the following property of these numbers. 

PROPOSITION 1.3: For allr >_ 1 we have Er(N) >_ pEr-2(N).  The equality holds 

if  and only if  for any order Of C Q(~) containing a root ~ of x 2 + tx + pr = O, 
where t ¢ Z, It[ < 2p ~/2, at least one of the following conditions is satisfied: 
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(i) at least one prime factor qlD is sprit in Q(~), 

(ii) p[t and p splits in Q(~), 

(iii) (f, D) # 1, 

(iv) (N, f) = 1 and N is inert in Q(~). 

Proof: We note that S(Of)c(t, f ,  N) = 0 if and only if either some prime factor 

qlD is split in Q(~), or (D, f )  # 1, or (N, f )  = 1 and N is inert in Q(~). When 

there is no level structure the proposition is proved in ([JL], Prop. 2.4). The 

same proof works for the case of general N, and gives the following formula: 

t,M <2p~'/2,p]t O I ,(p,f )---1 

+ E E S(Of)c(t'f 'N)" 
tdtl<2p"/2,(p,t)=l (-9 f 

The proposition follows. | 

When no level structure is involved, Proposition 1.3 says that Er = per-2 for 

r _> 1 if and only if for any quadratic integer ~ such that N(~) = / ,  I Tr(~)l < 

2p r/2, at least one of the following conditions is satisfied: 

(i) at least one prime factor qlD is split in Q(~), 

(ii) PI~ and p splits in Q(~) (this case does not occur for r = 1). 
As an example let us compute E0(N). Here r = 0, t 6 {-1 ,0 ,1} ,  and the 
relevant algebraic integers ~ are +x/L-f and ½(+1 4- v/23). Thus Of is Z[v/L1] 
or Z[½(1 + v/-2--3)]. In the first case d = -4 ,  h ( -4 )  = 1, w( -4 )  = 4, and in the 

second case d = -3 ,  h ( -3 )  = t, w( -3 )  = 6. Therefore we have 

: + - + 1 (1 + (~--~3-3} / ]-[ (1 - ( 8 / / .  1 (  1 ( ? ) ) I  I (  1 ( ? ) )  3  o(N) 
\ \ 1 ¥ ] / - - - - \ \ ( 1 2 /  

qlD qlD 

Under Condition 1 we have E0(N) = E0 = 0. Obviously this need not always be 

the case: for instance, for the lowest possible D = 6 we have Eo = ~.7 If instead 

of Condition 1 we assume that N is a prime congruent to 11 modulo 12, then 

Eo(N) = 0. 
We can now state the Eichler-Selberg trace formula. We use the convention 

that X(xfn) = 0 if n is not a square. 

PROPOSITION 1.4 (Eichler-Selberg trace formula): In the above notation, if X 
is not trivial, we have 

Tr(Tp, lS(~) ) = l X ( / / 2 ) ( N  + 1 ) I I ( q  - 1) - E ~ ( x ) .  
qlD 
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I f  X is trivial then one has to add 1 + • .. + pr to this expression. 

Proof'. This is proved in [M], Thm 6.8.4, and Remark 6.8.1, p. 264. In the 

notation of [M] we have S(Of  ) = 2a(t)b(t, f).* | 

Prom this formula and the fact that  $2(F1) is the direct sum of the S(;~) taken 

over all characters of ( Z / N ) * / +  1, it follows that  

1 
=p +.. .  + K-l+ - p(N + 1)1-I(q- 1)E X(TrP~/2) 

q(n X 

- p E ,~(Tr p)Er-2(X). 
X 

We have used that  (n) acts as multiplication by ~(n) on S(.X). We also have 

Tr(<Tr)Tp~ IS2(F1)) =1 + p + . . -  + pr 

+ I ( N  + 1 ) I I ( q - 1 ) E X ( 7 r p  ~/2) - E x(~r)E~(x). 
qtD X X 

Now let us assume that  p is split or ramified in k. We obtain from (2) 

* r 1 c~ - Tr((Fp) [H~t(Xy, , Ol)) =(I)r - (1 + pr) 

+ l ( p _  1)(N + 1 ) H (  q - 1 ) E x ( T r p r / 2 ) ,  

ql D x 

where (I% = ~ X(Tr)(E~(x) - PX(P)Er-2(X)). We finally obtain 

(3) [ X ~ ( F p , . ) l = o r + l ( x + l ) ( p - 1 ) H ( q - 1 ) E X ( T r p r / 2 ) .  
qlD X 

In particular, we have 

(4) 

The space of cusp forms S2(F0) with respect to Fo is identified with the sub- 

space of S~(F1) on which ( Z / N ) * / +  1 acts trivially. Therefore, if in all the 

* It appears that the definition of a(t) in [M] should be corrected: a(t) = 0 if there 
is a prime factor plD such that p is split in Q(x/~) or divides f; see [JL], p. 239. 
In particular, a(t) actually depends on f as well as on t. 



328 A. SKOROBOGATOV AND A. YAFAEV Isr. J. Math. 

calculations of this and the previous subsection we consider only the trivial char- 

acter X, we obtain the following formula for the number of points on Y: 

1 
(5) IY(Fp,.)I = E~(N) - pE~-2(N) + ~A(1 + (-1)~)(N + 1)(p - 1) II(q- 1). 

qlD 

We quote a similar formula for S from [JL], Prop. 2.3: 

(6) 
1 

IS(Fp~)l = E ~ -  pE~_: + 2-~(1 + (-1)~)(p - 1 ) I I ( q -  1). 
qlD 

One can use the Eichler-Selberg trace formula in the case T1 = Id to deduce 

a formula for the genus of the relevant Shimura curve. However, we just quote 

([V], p. 120) which says that  the genus of Y is 

1 
gy = 1 -  E o ( N ) +  7:4(N + 1) II(q- 1), 

qID 

and the genus of S is 

= 1- o÷ lII( -l). 
qlD 

1.4. LOCAL POINTS IN THE CASE OF GOOD REDUCTION. 

PROPOSITION 1.5: Let v be a prime of k of residuM characteristic p not dividing 

DN.  If  p is inert in k, then Y(kv) ¢ O. If  p is split or ramified in k, then 

Y (kv) ¢ 0 K and only i f  El (N) ¢ O. 

Proof: Formula (5) and the first statement of Proposition 1.3 imply that  Y 

always has Fp2-points. Since we are in the good reduction case, the proposition 

now follows from Hensel's lemma. | 

Proposition 1.3 gives an explicit criterion for El (N)  ¢ 0. 

PROPOSITION 1.6: If for any m E {0, 1 , . . . ,  (N - 3)/2} there exists a prime p 

not dividing DN,  split or ramified in k, and such that p2m + tpm + p ~ 0 rood N 

for all integers t satisfying Itl < 2v/-~, then X~(Ak) = fl for all twists X ~. 

Proof: By Proposition 1.2, Xa(Ak) = O unless a is a power of c, the restriction 

to Fk of the cyclotomic character at N, that  is, for p ~ N we have c(Fp) = 

p mod N. The target group being (Z /N)* /4 -1  we can assume without loss 
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of generality that  a = c -m, where m E {0, 1 , . . . ,  (N - 3)/2}. We have 7 = 

c-,~(Fp) = p-m rood N. Thus (4) yields 

1 
I X  c . . . .  (Fp)[ = E ~(p-'rn)~l()(') ~ - ~ E ~_,S(Of)~-~ ~((p-m)c(t, f, x)  

t~Z,ltl<2v'~ os x 

By definition, c(t, f, X) is a weighted sum of X(a), where a E Z / N  is a root of 

x 2 + tx + p = 0 mod N, t E Z, It[ < 2v/~. It is clear that  for x E Z / N  we have 

E X ( x ) = 0  i f x # + l ,  

where the sum is over all characters of (Z/N)* such that  )~(-1) = 1. Thus 

~ X(p-ma) = 0 as long as a # =t=p m mod N. Thus IX c .... (Fp) I = 0 as long as 

pm mod N is not a root of such a quadratic equation. | 

2. B a d  r e d u c t i o n  

2.1. BAD REDUCTION OF Y AT N. Recall that  S has good reduction away from 

primes dividing D. An integral model of Y over Spec ZN can be obtained using 

the results of [B], by first choosing some level structure at a prime not dividing 

DN, and then passing to the quotient by the action of the corresponding finite 

group. The structure of this model is very similar to the model of the classical 

modular curves Xo(N) studied by Deligne and Rapoport. 

The curve Y has a flat and proper model y / S p e c  ZN such that  the scheme yh  

obtained by deleting the supersingular points in the closed fibre YFN is smooth 

over Spec ZN. The closed fibre YFN is isomorphic to the union of two copies of 

SFN intersecting transversally at supersingular points. 

PROPOSITION 2.1: Suppose that D satisfies Condition 1. If N is inert in k, and 

v is the place ofk  over N, then Y(kv) # 0 if and only if there exists a quadratic 

integer ~ of norm N(~) = N 2 and trace [Tr(~)[ < 2N, such that the following 

condition holds: 

(a) if (N, Tr(()) = 1, then every prime factor of D is inert or ramified in Q(~), 

(b) if Tr(~) E { - N , O , N } ,  then every prime factor of DN is inert or ramified 

in Q(~). 

Proof'. Using the constancy of the arithmetic genus in a flat projective family 

we find the number of supersingular Fg-points  in YFN as s = gy -- 2gs + 1. It 

is known that  all supersingular points are defined over FN2. Now (6) and the 
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formulae for gy and gs imply that ]S(FN2)[ - s = E2 - (N + 2)Eo + Eo(N) = E2. 

Now Prop. 2.4 of [JL] gives a necessary and sufficient condition for E2 > 0, 

equivalent to the condition in the proposition. An ordinary FN2-point is smooth 

on YEN. Hence, by Hensel's lemma, it can be lifted to a kv-point on Y. | 

2.2. BAD REDUCTION OF Y AT THE PRIMES DIVIDING D. When p divides 

D, then Y has bad reduction at p. This problem is studied in [JLV] via p-adic 

uniformization of the curve. Theorem 5.5 of [JLV] implies that if the place p is 

inert in k, then Y has a point rational over kv (in their notation f = 2). 

We now summarize the results obtained so far regarding the local points on Y. 

THEOREM 2.2: Suppose that D satisfies Condition 1. Let k be an imaginary 

quadratic field such that 

(1) all the prime divisors o lD  are inert in k; 

(2) N is inert in k, and there exists a quadratic integer ~ with N(~) = N 2, 

[ Tr(~)[ < 2N, such that if Tr(~) ¢ { -N,0 ,  N}, then every prime factor o l D  is 

inert or ramified in Q(~), and if Tr(~) E { - N ,  0, N}, then every prime factor of 

D N  is inert or ramified in Q(~); 

(3) the primes not dividing D N  and such that E1 (N) = 0 are inert in k; 

then Y has points over all completions of k. 

(Note that the archimedian places are not a problem since k is imaginary.) The 

curve Y has Fp-points when p is large enough (p > 4gv is clearly enough), 

therefore the set of primes mentioned in (3) is finite. In particular, conditions 

(1) and (3) are satisfied as long as finitely many 'small' primes are inert in k. 

3. Numer ica l  examples  

3.1. ALGORITHM. 

1. Set D = qlq2 with primes ql and q2 satisfying Condition 1. 

2. Choose a prime N satisfying Condition 2, then check condition (2) of Theorem 

2.2. 

3. Make a list of primes not dividing qlq2N such that El(N) = 0. We actually 

make a somewhat larger list of 'bad' primes. A prime not dividing qlq2N is called 

good  if there exists t E Z, It[ < 2v~, such that all of the following conditions 

are satisfied: neither ql nor q2 is split in Q ( v  ~ - 4p); p does not divide t, or 

p is not split in Q(V ~ - 4p); N is not inert in Q ( x / ~  - 4p). These conditions 

guarantee that El(N) ~ 0 (see Proposition 1.3), hence Y(Qp) ~ 0 by (5). 
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4. For each m E {0, I,..., (N-3)/2} find a good prime p such that p2m+tpm+p # 
0 mod N for all integers t satisfying Itl < 2x/~. Call these primes auxiliary. 

5. Choose an imaginary quadratic field k where ql, q2, N, and the (finitely many) 

bad primes are inert (Condition 4 is now fulfilled), whereas the auxiliary primes 

are split or ramified. Verify Condition 3, that the class number of k is coprime 

to (N - 1)/2. 

3.2. A WORKED-OUT EXAMPLE. We choose D = 35, N = 23. Then Conditions 

1 and 2 are satisfied. Condition (2) of Theorem 2.2 is also satisfied (for many 

values of Tr(~), e.g., 1 or 43). We check that  the following primes are good: 

p = 2, 11, 13, 17, 19 (for respective values t = 1, 4, 3, 5, 4). In fact, a computation 

using p a r i  reveals that  the only bad prime is 3. We check that  p = 2 is an 

auxiliary prime for all m, 0 _< m _< 10, except for rn = 5 and m = 7, when p = 13 

is an auxiliary prime. Now let k = Q ( ~ ) .  We check that  3, 5, 7 and 23 are 

inert in k, and 2 and 13 are split in k. Moreover, k has class number 5, which is 

coprime to (23 - 1)/2 = 11. Hence Conditions 3 and 4 are satisfied. (Another k 

that  works is k = Q(v/L-T~). The only difference with the previous case is that  

2 is now ramified, and the class number is 7.) 

CONCLUSION: For D = 35 and N = 23, the curve Yk over the field k = 

Q(v/L--I~) or k = Q(v/L- i~)  has points everywhere locally but not globally. 

Our method of proof used the unramified cyclic covering X -+ Y of degree 11. 

Another case when the algorithm works is D = 26 (or D = 39) and N = 23. 

A case when the algorithm does not work is D = 26 (or D = 39) and N = 11 

(no auxiliary primes were found for m = 2, 3, 4). 

It would be interesting to know whether our algorithm can produce infinitely 

many triples (D, N, d) such that  the curve Yk over the field k = Q(x/-L-d) has 

points everywhere locally but not globally. One could try to fix D and N and 

vary d. It would be enough to know that  a certain arithmetic progression (one 

that  ensures that  k satisfies the conditions of step 5 of the algorithm) contains 

infinitely many positive integers d such that  the class number of Q(v/-L--d) is 

coprime to a given number. This seems to be an open problem. 
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