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A FINITENESS THEOREM
FOR THE BRAUER GROUP

OF ABELIAN VARIETIES AND K3 SURFACES

ALEXEI N. SKOROBOGATOV AND YURI G. ZARHIN

Abstract

Let k be a field finitely generated over the field of rational numbers,
and Br(k) the Brauer group of k. For an algebraic variety X over k
we consider the cohomological Brauer–Grothendieck group Br(X). We
prove that the quotient of Br(X) by the image of Br(k) is finite if X is a

K3 surface. When X is an abelian variety over k, and X is the variety
over an algebraic closure k of k obtained from X by the extension of the
ground field, we prove that the image of Br(X) in Br(X) is finite.

1. Introduction

Let X be a geometrically integral smooth projective variety over a field k.
The Tate conjecture for divisors on X [30, 32, 34] is well known to be closely
related to the finiteness properties of the cohomological Brauer–Grothendieck
group Br (X) = H2

ét(X,Gm). This fact was first discovered in the case of a
finite field k by Artin and Tate ([31], see also Milne [18]) who studied the
Brauer group of a surface. In particular, the order of Br (X) appears in the
formula for the leading term of the zeta function of X. A stronger variant
of the Tate conjecture for divisors concerns the order of the pole of the zeta
function of X at s = 1; see [30, (12) on p. 101]. It implies the finiteness of the
prime-to-p component of Br (X), where X is a variety of arbitrary dimension,
and k is a finite field of characteristic p, as proved in [40, Sect. 2.1.2 and
Remark 2.3.11].

Since Manin observed that the Brauer group of a variety over a number
field provides an obstruction to the Hasse principle [17], the Brauer groups
of varieties over fields of characteristic 0 have been intensively studied. Most
of the existing literature is devoted to the so-called algebraic part Br 1(X)
of Br (X), defined as the kernel of the natural map Br (X) → Br (X), where
X = X ×k k, and k is a separable closure of k. Meanwhile, if k is a number
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field, the classes surviving in Br (X) can produce a non-trivial obstruction
to the Hasse principle and weak approximation (see [12] and [36] for explicit
examples). Therefore, such arithmetic applications require the knowledge of
the whole Brauer group Br (X).

To state and discuss our results we introduce some notation and conven-
tions. In this paper the expression ‘almost all’ means ‘all but finitely many’.
If B is an abelian group, we denote by Btors the torsion subgroup of B, and
write B/tors := B/Btors. For a prime � let B(�) be the subgroup of Btors

consisting of the elements whose order is a power of �, and B(non−�) the
subgroup of Btors consisting of the elements whose order is not divisible by �.
If m is a positive integer, we write Bm for the kernel of the multiplication by
m in B.

Let Br 0(X) be the image of the natural map Br (k) → Br (X). Recall that
both Br (X) and Br (X) are torsion abelian groups whenever X is smooth;
see [11, II, Prop. 1.4]. There are at least three reasons why the Brauer
group Br (X) can be infinite: Br 0(X) may well be infinite; the quotient
Br 1(X)/Br 0(X) injects into, and is often equal to, H1(k, Pic (X)), which
may be infinite if the divisible part of Pic (X) is non-zero, or if there is tor-
sion in the Néron–Severi group NS (X); finally, Br (X) may be infinite. This
prompts the following question.

Question 1. Is Br (X)/Br 1(X) finite if k is finitely generated over its
prime subfield?

Let Γ = Gal (k/k), and let Br (X)Γ be the subgroup of Galois invariants
of Br (X); then Br (X)/Br 1(X) naturally embeds into Br (X)Γ. A positive
answer to Question 1 would follow from a positive answer to the following
question.

Question 2. Is Br (X)Γ finite if k is finitely generated over its prime
subfield?

In this note we prove the following two theorems.
Theorem 1.1. Let k be a field finitely generated over its prime subfield.

Let X be a principal homogeneous space of an abelian variety over k.

(i) If the characteristic of k is 0, then Br (X)Γ and Br (X)/Br 1(X) are
finite.

(ii) If the characteristic of k is a prime p �= 2, then Br (X)Γ(non−p) and
(Br (X)/Br 1(X))(non−p) are finite.

Theorem 1.2. Let k be a field finitely generated over Q. If X is a K3
surface over k, then the groups Br (X)Γ and Br (X)/Br 0(X) are finite.

Remark 1.3. The injective maps

Br (X)/Br 1(X) ↪→ Br (X)Γ and Br 1(X)/Br 0(X) ↪→ H1(k, Pic (X))
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can be computed via the Hochschild–Serre spectral sequence

Hp(k, Hq
ét(X,Gm)) ⇒ Hp+q

ét (X,Gm).

(A description of some of its differentials can be found in [26].) Recall that in
characteristic zero the Picard group Pic (X) of a K3 surface X is a free abelian
group of rank at most 20. The Galois group Γ acts on Pic (X) via a finite
quotient, so that H1(k, Pic (X)) is finite. Thus in order to prove Theorem 1.2
it suffices to establish the finiteness of Br (X)Γ.

In the case when the rank of Pic (X) equals 20, Theorem 1.2 was proved
by Raskind and Scharaschkin [23]. In an unpublished note, J.-L. Colliot-
Thélène proved that Br (X)Γ(�) is finite for every prime �, where X is a smooth
projective variety over a field finitely generated over Q, assuming the Tate
conjecture for divisors on X. (When dim(X) > 2, he assumed additionally
the semisimplicity of the Galois action on H2

ét(X,Q�).) See also [29] for some
related results.

When X is an abelian variety over a field finitely generated over its prime
subfield, the Tate conjecture for divisors on X (and the semisimplicity of
H2

ét(X,Q�) for � �= p) was proved by the second named author in charac-
teristic p > 2 [37, 38], and by Faltings in characteristic zero [8, 9]. This
result of Faltings combined with the construction of Kuga–Satake elaborated
by Deligne [3], implies the Tate conjecture for divisors on K3 surfaces in
characteristic zero [34, p. 80].

The novelty of our approach is due to the usage of a variant of the Tate
conjecture for divisors on X [39, 41] which concerns the Galois invariants of
the (twisted) second étale cohomology group with coefficients in Z/� (instead
of Q�), for almost all primes �. Using this variant we prove that under the
conditions of Theorems 1.1 and 1.2 we have Br (X)Γ� = {0} for almost all
primes �.

Let k be a number field, X(Ak) the space of adelic points of X, and
X(Ak)Br the subset of adelic points orthogonal to Br (X) with respect to
the Brauer–Manin pairing (given by the sum of local invariants of an element
of Br (X) evaluated at the local points; see [17]). We point out the following
corollary to Theorem 1.2.

Corollary 1.4. Let X be a K3 surface over a number field k. Then
X(Ak)Br is an open subset of X(Ak).

Proof. The sum of local invariants of a given element of Br (X) is a con-
tinuous function on X(Ak) with finitely many values. Thus the corollary is a
consequence of Theorem 1.2. �

Let us mention here some open problems regarding rational points on K3
surfaces. Previous work on surfaces fibred into curves of genus 1 [2, 28, 27]
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indicates that it is not unreasonable to expect the Manin obstruction to be
the only obstruction to the Hasse principle on K3 surfaces. One could raise
a more daring question: is the set of k-points dense in the Brauer–Manin set
X(Ak)Br ? By Corollary 1.4, this would imply that the set of k-points on any
K3 surface over a number field is either empty or Zariski dense. Moreover,
this would also imply the weak-weak approximation for X(k), whenever this
set is non-empty. (This means that k has a finite set of places S such that
for any finite set of places T disjoint from S the diagonal image of X(k) in
∏

T X(kv) is dense.)
The paper is organized as follows. In Section 2 we recall the basic facts

about the interrelations between the Brauer group, the Picard group and the
Néron–Severi group (mostly due to Grothendieck [11]). We also discuss some
linear algebra constructions arising from �-adic cohomology. In Section 3 we
recall the finite coefficients variant of the Tate conjecture for abelian varieties
and prove Theorem 1.1. Finally, Theorem 1.2 is proved in Section 4.

We are grateful to the referee whose comments helped to improve the ex-
position. This work was done during the special semester “Rational and
integral points on higher-dimensional varieties” at the MSRI, and we would
like to thank the MSRI and the organizers of the program. The second named
author is grateful to Dr. Boris Veytsman for his help with TEXnical problems.

2. The Néron–Severi group, H2 and the Brauer group

We start with an easy lemma from linear algebra.
Lemma 2.1. Let Λ be a principal ideal domain, H a non-zero Λ-module,

N ⊂ H a non-zero free submodule of finite rank. Let

ψ : H × H → Λ

be a symmetric bilinear form. Let N⊥ be the orthogonal complement to N in
H with respect to ψ, and let δ be the discriminant of the restriction of ψ to
N . If δ �= 0, then N ∩ N⊥ = {0} and

δ2H ⊂ N ⊕ N⊥ ⊂ H.

In particular, if δ is a unit in Λ, then H = N ⊕ N⊥.
Proof. Let us put N∗ = HomΛ(N, Λ). The form ψ gives rise to a natural

homomorphism of Λ-modules eψ : H → N∗ with N⊥ = ker(eψ) and

δ · N∗ ⊂ eψ(N) ⊂ N∗.

In particular, the restriction of eψ to N is injective; therefore N ∩N⊥ = {0},
and eψ : N → eψ(N) is an isomorphism. Let u : eψ(N) ∼= N be its inverse,
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i.e., ueψ : N → N is the identity map. Let us consider the homomorphism of
Λ-modules

P : H → N, h �→ δu(eψ(h)).

This definition makes sense since δeψ(h) ∈ δN∗ ⊂ eψ(N). It is clear that
δ · ker P ⊂ N⊥ ⊂ ker(P ), and P acts on N as the multiplication by δ. For
any h ∈ H we have z = P (x) ∈ N and P (z) = δz, which implies that
P (δh) = P (z). Hence δh − z ∈ ker(P ), and therefore δ(δh − z) ∈ N⊥. It
follows that δ2h ∈ δz + N⊥ ⊂ N ⊕ N⊥. �

2.2. Let us recall some useful elementary statements, which are due to
Tate [31, 33]. Let B be an abelian group. The projective limit of the groups
B�n (where the transition maps are the multiplications by �) is called the �-
adic Tate module of B and is denoted by T�(B). This limit carries a natural
structure of a Z�-module; there is a natural injective map T�(B)/� ↪→ B�. One
may easily check that T�(B)� = {0}, and therefore T�(B) is torsion-free. Let
us assume that B� is finite. Then all the B�n are obviously finite, and T�(B)
is finitely generated by Nakayama’s lemma. Therefore, T�(B) is isomorphic
to Zr

� for some non-negative integer r ≤ dimF�
(B�). Moreover, T�(B) = {0}

if and only if B(�) is finite.
For a field k with separable closure k we denote by Γ the Galois group

Gal (k/k). Let X be a geometrically integral smooth projective variety over
k, and let X = X ×k k.

Let � �= char(k) be a prime. Following [11, II, Sect. 3] we recall that the
exact Kummer sequence of sheaves in the étale topology,

1 → µ�n → Gm → Gm → 1,

gives rise to the (cohomological) exact sequence of Galois modules

0 → Pic (X)/�n → H2
ét(X, µ�n) → Br (X)�n → 0.

Since Pic (X) is an extension of the Néron–Severi group NS (X) by a divisible
group, we have Pic (X)/�n = NS (X)/�n. We thus obtain the exact sequence
of Galois modules

(1) 0 → NS (X)/�n → H2
ét(X, µ�n) → Br (X)�n → 0.

Since the groups H2
ét(X, µ�n) are finite, the groups Br (X)�n are finite as well

[11, II, Cor. 3.4]. On passing to the projective limit we get an exact sequence
of Γ-modules

(2) 0 → NS (X) ⊗ Z� → H2
ét(X,Z�(1)) → T�(Br (X)) → 0.

Since T�(Br (X)) is a free Z�-module, this sequence shows that the torsion
subgroup of H2

ét(X,Z�(1)) is contained in NS (X) ⊗ Z�; that is, the torsion
subgroups of H2

ét(X,Z�(1)) and NS (X) ⊗ Z� coincide, and so are both equal
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to NS (X)(�). Tensoring the sequence (2) with Q� (over Z�), we get the exact
sequence of Γ-modules

(3) 0 → NS (X) ⊗ Q� → H2
ét(X,Q�(1)) → V�(Br (X)) → 0,

where V�(Br (X)) = T�(Br (X)) ⊗Z�
Q�. The Tate conjecture for divisors

[30, 32, 34] asserts that if k is finitely generated over its prime subfield, then

(4) H2
ét(X,Q�(1))Γ = NS (X)Γ ⊗ Q�.

Note also that (1) gives rise to the exact sequence of abelian groups

(5)
0 → (NS (X)/�n)Γ → H2

ét(X, µ�n)Γ → Br (X)Γ�n

→ H1(k, NS (X)/�n) → H1(k, H2
ét(X, µ�n)).

The lemma that follows is probably well known; cf. [14, Sect. 5, pp. 16–17]
and [7, pp. 198–199].

Lemma 2.3. Let L ∈ NS (X)Γ be a Galois invariant hyperplane section
class. Assume that d = dim(X) ≥ 2. If char(k) = 0, then the kernel of the
symmetric intersection pairing

ψ0 : NS (X) × NS (X) → Z, x, y �→ x · y · Ld−2,

is NS (X)tors.
In any characteristic the same conclusion holds under the following condi-

tion:

there exist a finite extension k′/k with k′ ⊂ k, and a prime
q �= char(k) such that Gal (k/k′) acts trivially on NS (X),
the Gal (k/k′)-module H2

ét(X,Qq(1)) is semisimple, and
H2

ét(X,Qq(1))Gal (k/k′) = NS (X) ⊗ Qq.

Proof. We start with the case of characteristic zero. If K is an algebraically
closed field containing k, then the Néron–Severi group NS (X ⊗k K) is identi-
fied with the group of connected components of the Picard scheme of X [15,
Cor. 4.18.3, Prop. 5.3, Prop. 5.10], and so does not depend on K. Let k0 ⊂ k

be a subfield finitely generated over Q, over which X and L are defined. Then
there exists a smooth projective variety X0 over the algebraic closure k0 of
k0 in k, such that X = X0 ×k0

k. The natural map NS (X0) → NS (X) is
bijective and therefore a group isomorphism.

For generalities on twisted classical cohomology groups we refer the reader
to see [6, Sect. 1] or [4, Sect. 2.1].

Fix an embedding k0 ↪→C and consider the complex variety XC =X0×k0
C.

The natural map NS (X0) → NS (XC) is an isomorphism. Since the intersec-
tion indices do not depend on the choice of an algebraically closed ground
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field, it suffices to check the non-degeneracy of ψ0 for the complex variety
XC. In order to do so, consider the canonical embedding

NS (XC) ⊗ Q ↪→ H2(XC(C),Q(1)),

and the symmetric bilinear form

ρ : H2(XC(C),Q(1)) × H2(XC(C),Q(1)) → Q, x, y �→ x ∪ y ∪ Ld−2.

The hard Lefschetz theorem says that the map

H2(XC(C),Q(1)) −→ H2d−2(XC(C),Q(d − 1)), x �→ x ∪ Ld−2,

is an isomorphism of vector spaces over Q. Poincaré duality now implies that
ρ is non-degenerate. Let us show that the restriction of ρ to NS (X) ⊗ Q ⊂
H2(XC(C),Q(1)) is also non-degenerate. Indeed, let P ⊂ H2(XC(C),Q(1))
be the kernel of the multiplication by Ld−1. The group H2(XC(C),Q(1)) is
the orthogonal direct sum QL ⊕ P . On the one hand, the form ρ is positive
definite on QL since L is ample. On the other hand, the restriction of ρ to P

is negative definite, due to the Hodge–Riemann bilinear relations [35, Ch. V,
Sect. 5, Thm. 5.3]. This implies the non-degeneracy of ρ on NS (XC) ⊗ Q,
because this space is the direct sum of QL and (NS (XC)⊗Q)∩P . To finish
the proof, we note that the form induced by ρ on the Néron–Severi group
coincides with ψ0, whereas the kernel of NS (XC) → NS (XC) ⊗ Q is the
torsion subgroup NS (XC)tors = NS (X)tors.

Now let us prove the lemma in the case of arbitrary characteristic, assuming
the condition on the Galois module H2

ét(X,Qq(1)).
Let us replace k by k′. Consider the symmetric Galois-invariant Qq-bilinear

form

ρq : H2
ét(X,Qq(1)) × H2

ét(X,Qq(1)) → Qq, x, y �→ x ∪ y ∪ Ld−2.

The hard Lefschetz theorem, proved by Deligne [5] in all characteristics, says
that the map

hL : H2
ét(X,Qq(1)) −→ H2d−2

ét (X,Qq(d − 1)), x �→ x ∪ Ld−2,

is an isomorphism of vector spaces over Qq. Thus hL is an isomorphism of
Galois modules. Poincaré duality now implies that ρq is non-degenerate.

Since hL is an isomorphism of Galois modules, we have

H2d−2
ét (X,Qq(d − 1))Γ = hL(H2

ét(X,Qq(1))Γ) = (NS (X) ⊗ Qq) ∪ Ld−2.

By the semisimplicity of H2
ét(X,Qq(1)) there is a unique Γ-invariant vector

subspace W that is also a semisimple Γ-submodule such that

H2
ét(X,Qq(1)) = (NS (X) ⊗ Qq) ⊕ W.
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Our condition implies that WΓ = {0}. If M ⊂ H2
ét(X,Qq(1)) is a vector

subspace that is also a simple Γ-submodule, and if M → Qq is a non-zero
Γ-invariant linear form, then M is the trivial Γ-module Qq. It follows that
the trivial Γ-module NS (X)⊗Qq is orthogonal to W with respect to ρq. Now
the non-degeneracy of ρq implies that its restriction

ψq : NS (X) ⊗ Qq × NS (X) ⊗ Qq → Qq, x, y �→ x · y · Ld−2,

is also non-degenerate. By the compatibility of the cohomology class of the in-
tersection of algebraic cycles and the cup-product of their cohomology classes
[19, Ch. VI, Prop. 9.5 and Sect. 10], the bilinear form ψq is obtained from
ψ0 by tensoring it with Qq. To finish the proof we note that the kernel of
NS (X) → NS (X) ⊗ Qq is NS (X)tors. �

Remark 2.4. (i) Since NS (X) is a finitely generated abelian group, there
exists a finite extension k′/k with k′ ⊂ k, such that Gal (k/k′) acts trivially
on NS (X).

(ii) Recall that V := H2
ét(X,Q�(1)) is a finite-dimensional Q�-vector space.

Let G�,k be the image of Γ = Gal (k/k) in Aut Q�
(V ); it is a compact subgroup

of Aut Q�
(V ) and, by the �-adic version of Cartan’s theorem [24], is an �-adic

Lie subgroup of Aut Q�
(V ). If k′/k is a finite extension with k′ ⊂ k, then

Γ′ = Gal (k/k′) is an open subgroup of finite index in Γ; hence the image
G�,k′ of Γ′ is an open subgroup of finite index in G�,k. In particular, G�,k and
G�,k′ have the same Lie algebra, which is a Q�-Lie subalgebra of EndQ�

(V ).
Applying Prop. 1 of [25], we conclude that V is semisimple as a G�,k′-module
if and only if it is semisimple as a G�,k-module. It follows that H2

ét(X,Q�(1))
is semisimple as a Γ′-module if and only if it is semisimple as a Γ-module.

The following statement was inspired by [11, III, Sect. 8, pp. 143–147] and
[31, Sect. 5].

Proposition 2.5. Let X be a smooth projective geometrically integral va-
riety over a field k. Assume that one of the following conditions holds.

(a) X is a curve or a surface.
(b) char(k) = 0.
(c) There exist a finite extension k′/k with k′ ⊂ k and a prime q �=

char(k) such that Gal (k/k′) acts trivially on NS (X), the Gal (k/k′)-
module H2

ét(X,Qq(1)) is semisimple, and H2
ét(X,Qq(1))Gal (k/k′) =

NS (X) ⊗ Qq.

Then for almost all primes � the Γ-module NS (X) ⊗ Z� is a direct summand
of the Γ-module H2

ét(X,Z�(1)). If (c) is satisfied, then Br (X)Γ(q) is finite.
Proof. (a) If X is a curve, then H2

ét(X,Z�(1)) = NS (X) ⊗ Z�
∼= Z�, and

there is nothing to prove. Note that in this case Br (X) = 0 [11, III, Cor. 5.8].
Thus from now on we assume that dim(X) ≥ 2.
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Let X be a surface, n = |NS (X)tors|. The cycle map defines the commuta-
tive diagram of pairings given by the intersection index and the cup-product:

(6)
H2

ét(X,Z�(1)) × H2
ét(X,Z�(1)) → Z�

↑ ↑ ↑
NS (X) × NS (X) → Z

The diagram commutes by the compatibility of the cohomology class of the in-
tersection of algebraic cycles and the cup-product of their cohomology classes
[19, Ch. VI, Prop. 9.5 and Sect. 10]. The kernel of the pairing on the Néron–
Severi group is its torsion subgroup. Let δ be the discriminant of the induced
bilinear form on NS (X)/tors. Let H be the Γ-module ψ2

ét(X,Z�(1))/tors, and
let ψ be the Galois-invariant Z�-bilinear form on H coming from the top pair-
ing of (6). Let N be the Γ-submodule NS (X)/tors ⊗ Z� ⊂ H. It is clear that
N is a free Z�-submodule of H, and δ is the discriminant of the restriction of
ψ to N . Let N⊥ be the orthogonal complement to N in H with respect to ψ;
N⊥ is obviously a Γ-submodule of H.

Applying Lemma 2.1 (with Λ = Z�) we conclude that

N ∩ N⊥ = {0} and δ2H ⊂ N ⊕ N⊥.

Now let M̃ be the preimage of N⊥ in H2
ét(X,Z�(1)). Clearly, M̃ is a Galois

submodule, and M̃ ∩ (NS (X) ⊗ Z�) is the torsion subgroup of NS (X) ⊗ Z�

and therefore coincides with NS (X)(�). It is also clear that

δ2 H2
ét(X,Z�(1)) ⊂ (NS (X) ⊗ Z�) + M̃.

Let us put M = nM̃ ⊂ M̃ . We have

M ∩ (NS (X) ⊗ Z�) = {0} and nδ2 H2
ét(X,Z�(1)) ⊂ (NS (X) ⊗ Z�) ⊕ M.

Since H2
ét(X,Z�(1)) is a finitely generated Z�-module, (NS (X)⊗Z�)⊕M is a

subgroup of finite index in H2
ét(X,Z�(1)). This index is 1 if � does not divide

nδ.
(b) and (c). Let us choose a Γ-invariant hyperplane section class

L ∈ NS (X)Γ. By Lemma 2.3 the symmetric bilinear form on NS (X)/tors

induced by ψ0 is non-degenerate. Let δ ∈ Z be the discriminant of this form,
δ �= 0. Let us consider the Galois-invariant symmetric Z�-bilinear form

ψ1 : H2
ét(X,Z�(1)) × H2

ét(X,Z�(1)) → Z�, x, y �→ x ∪ y ∪ Ld−2.

The compatibility of (the cohomology class of) the intersection of algebraic
cycles and the cup-product of their cohomology classes [19, Ch. VI, Prop.
9.5 and Sect. 10] implies that the restriction of ψ1 to NS (X) ⊗ Z� coincides
with the form induced by ψ0. It follows from the hard Lefschetz theorem and
Poincaré duality that ker(ψ1) = H2

ét(X,Z�(1))tors.
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Let H be the Γ-module H2
ét(X,Z�(1))/tors, and let ψ be the Galois-invariant

Z�-bilinear form on H defined by ψ1. Let N be the Γ-submodule
NS (X)/tors ⊗ Z� ⊂ H. It is clear that N is a free Z�-submodule of H,
and the discriminant of the restriction of ψ to N is δ. The rest of the proof
is the same as in case (a).

Now suppose that under the condition of (c) the group Br (X)Γ(q) is infi-
nite. Since Br (X)Γ ⊂ Br (X)Gal(k/k′), we can extend the ground field from
k to k′. For any n the group Br (X)qn is finite; thus there is an element of
order qn in Br (X)Γqn for every n; i.e., the set S(n) of elements of order qn in
Br (X)Γqn is non-empty for all n. Since the projective limit of non-empty finite
sets S(n) is a non-empty subset of Tq(Br (X)Γ) \ {0}, we conclude that

Tq(Br (X))Γ = Tq(Br (X)Γ) �= {0}.

It follows that Vq(Br (X))Γ �= {0}. However, the semisimplicity of
H2

ét(X,Qq(1)) implies that the exact sequence of Galois modules (3) splits;
that is,

H2
ét(X,Qq(1)) ∼= (NS (X) ⊗ Qq) ⊕ Vq(Br (X)).

By condition (c) we have Vq(Br (X))Γ = {0}. This contradiction proves the
finiteness of Br (X)Γ(q). �

Corollary 2.6. Let X be a smooth projective geometrically integral variety
over a field k. Assume that X/k satisfies one of the conditions (a), (b), (c)
of Proposition 2.5. Then the map H1(k, NS (X) ⊗ Z/�) → H1(k, H2

ét(X, µ�))
in (5) is injective for almost all �.

Proof. By Proposition 2.5, the Γ-module NS (X)/� = (NS (X)⊗Z�)/� is a
direct summand of the Γ-module H2

ét(X,Z�(1))/� for almost all �. We have
an exact sequence

0 → H2
ét(X,Z�(1))/� → H2

ét(X, µ�) → H3
ét(X,Z�(1))� → 0.

By a theorem of Gabber [10], for almost all � the Z�-module H3
ét(X,Z�) has

no torsion. Since H3
ét(X,Z�) and H3

ét(X,Z�(1)) are isomorphic as abelian
groups, for almost all � we have H3

ét(X,Z�(1))� = {0}; hence H2
ét(X, µ�) =

H2
ét(X,Z�(1))/�. Thus NS (X)/� is a direct summand of H2

ét(X, µ�). This
proves the corollary. �

Corollary 2.7. Suppose that k is finitely generated over its prime subfield,
and char(k) �= 2. Let A be an abelian variety over k. Then for all � �= char(k)
the subgroup Br (A)Γ(�) is finite.

Proof. Let � be a prime different from char(k). The Tate conjecture for
divisors (4) is true for any abelian variety A over such a field; in addition,
the natural Galois action on the �-adic cohomology groups of A is semisimple.
(These assertions were proved by the second named author [37, 38] in finite
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characteristic not equal to 2, and by Faltings [8, 9] in characteristic zero.) This
implies that A satisfies condition (c) of Proposition 2.5 for every prime q �=
char(k). Now the result follows from the last assertion of Proposition 2.5. �

3. Proof of Theorem 1.1

Let A and A′ be abelian varieties over an arbitrary field k. We write
Hom(A, A′) for the group of homomorphisms A → A′. We have

Hom(A, A′) = HomΓ(A, A
′
) = Hom(A, A

′
)Γ.

Since Hom(A, A
′
) has no torsion, we have that Hom(A, A′)/n is a subgroup

of Hom(A, A
′
)/n.

Let At be the dual abelian variety of A. We have (At)t = A ([16, Ch.
V, Sect. 2, Prop. 9], [21, p. 132]). Every divisor D on A defines the ho-
momorphism A → A

t
sending a ∈ A(k) to the linear equivalence class of

T ∗
a (D) − D in Pic 0(A), where Ta is the translation by a in A. If L is the

algebraic equivalence class of D in NS (A), then this map depends only on L,
and is denoted by φL : A → A

t
[21, Sect. 8]. For α ∈ Hom(A, A

t
) we denote

by αt ∈ Hom(A, A
t
) the transpose of α. Note that φt

L = φL. Moreover, if we
set

Hom(A, A
t
)sym := {u ∈ Hom(A, A

t
) | u = ut},

then the group homomorphism

NS (A) → Hom(A, A
t
)sym, L �→ φL,

is an isomorphism [16], [21, Sect. 20, formula (I) and Thm. 1 on p. 186,
Thm. 2 on p. 188 and Remark on p. 189]. For any α ∈ Hom(A, A

t
) we have

(αt)t = α, and thus

(7) α + αt ∈ Hom(A, A
t
)sym.

3.1. Let � be a prime different from the characteristic of k, i a positive
integer, and n = �i. The kernel An of the multiplication by n in A(k) is a
Galois submodule, isomorphic to (Z/n)2 dim(A) as an abelian group.

The natural map Hom(A, A
′
)/n → Hom(An, A′

n) is injective [20, p. 124].
It commutes with the Galois action on both sides; in particular, the image of
Hom(A, A′)/n ⊂ Hom(A, A

′
)/n lies in HomΓ(An, A′

n).
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For any α ∈ Hom(A, A
t
) and any x, y ∈ An we have ([16, Ch. VII, Sect.

2, Thm. 4], [21, p. 186])

en,At(αx, y) = en,A(x, αty).

Thus Hom(A, A
t
)sym/n is a subgroup of

Hom(An, At
n)sym := {u ∈ Hom(An, At

n) | en,At(ux, y) = en,A(x, uy),

∀x, y ∈ An}.

Moreover, if � is odd, then, by (7), we have

(8) Hom(A, A
t
)sym/n = Hom(A, A

t
)/n ∩ Hom(An, At

n)sym.

Remark 3.2. The two (non-degenerate, Galois-equivariant) Weil pairings

en,A : An × At
n → µn and en,At : At

n × An → µn

differ by −1 [16, Ch. VII, Sect. 2, Thm. 5(iii) on p. 193]; that is,

en,At(y, x) = −en,A(x, y)

for all x ∈ An, y ∈ At
n. Since for each u ∈ Hom(An, At

n) we have

en,A(x, uy) = −en,At(uy, x) = −en,A(y, utx),

we conclude that u lies in Hom(An, At
n)sym if and only if the bilinear form

en,A(x, uy) is skew-symmetric; that is, for any x, y ∈ An we have

en,A(x, uy) = −en,A(y, ux).

3.3. For a module M over a commutative ring Λ we denote by S2
ΛM the

submodule of M ⊗Λ M generated by x ⊗ x for all x ∈ M . Let ∧2
ΛM =

(M ⊗Λ M)/S2
ΛM . We have x ⊗ y + y ⊗ x ∈ S2

ΛM ; these elements generate
S2

ΛM if 2 is invertible in Λ.
From the Kummer sequence one obtains the well-known canonical isomor-

phism H1
ét(A, µn) = Pic (A)n = At

n. Thus we have canonical isomorphisms of
Galois modules (cf. [1, Sect. 2], [19], [20]):

H2
ét(A, µn) = ∧2

Z/nAt
n(−1) = Hom(∧2

Z/nAn, µn).

Clearly, there is a canonical embedding of Galois modules

Hom(∧2
Z/nAn, µn) ↪→ Hom(An, At

n),

whose image coincides with the set of u : An → At
n such that the bilinear form

en,A(x, uy) is alternating, i.e., en,A(x, ux) = 0 for all x ∈ An. Combining it
with Remark 3.2, we conclude that if � is odd, then there is a canonical
isomorphism of Galois modules

(9) H2
ét(A, µn) ∼= Hom(An, At

n)sym.
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Let us recall a variant of the Tate conjecture on homomorphisms that first
appeared in [39].

Proposition 3.4. Let k be a field finitely generated over its prime sub-
field, char(k) �= 2. If A and A′ are abelian varieties over k, then the natural
injection

(10) Hom(A, A′)/� ↪→ HomΓ(A�, A
′
�)

is an isomorphism for almost all �.
Proof. In the finite characteristic case this is proved in [39, Thm. 1.1].

When A = A′ and k is a number field, Cor. 5.4.5 of [41] (based on the results
of Faltings [8]) says that for almost all � we have

(11) End(A)/� = EndΓ(A�).

The same proof works over arbitrary fields that are finitely generated over Q,
provided one replaces the reference to Prop. 3.1 of [41] by the reference to
the corollary on p. 211 of Faltings [9]. Applying (11) to the abelian variety
A × A′, we deduce that (10) is a bijection. �

Lemma 3.5. Let k be a field finitely generated over its prime subfield,
char(k) �= 2, and let A be an abelian variety over k. Then for almost all � we
have the following statements:

(i) the injective map (NS (A)/�)Γ ↪→ H2
ét(A, µ�)Γ in (5) is an isomor-

phism;
(ii) Br (A)Γ(�) = {0}.

Proof. Suppose that � is odd. By (8) we have

Hom(A, A
t
)sym/� = Hom(A, A

t
)/� ∩ Hom(A�, A

t
�)sym.

Proposition 3.4 implies that for almost all � we have

Hom(A, At)/� = Hom(A�, A
t
�)

Γ = HomΓ(A�, A
t
�).

We thus obtain an isomorphism

(12) Hom(A, At)sym/� = HomΓ(A�, A
t
�)sym.

The left hand side of (12) is HomΓ(A, A
t
)sym/� ∼= NS (A)Γ/�; see the beginning

of this section. The right hand side of (12) is isomorphic to H2
ét(A, µ�)Γ by (9).

It follows that NS (A)Γ/� and H2
ét(A, µ�)Γ have the same number of elements.

Since NS (A) has no torsion, NS (A)Γ/� is a subgroup of (NS (A)/�)Γ, and
hence the injective map in (i) is bijective. Statement (ii) follows from (i),
Corollary 2.6 and the exact sequence (5). �
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End of proof of Theorem 1.1. Let A be an abelian variety over k, and X a
principal homogeneous space of A. In characteristic 0 (resp. in characteristic
p) it suffices to show that Br (X)Γ (resp. Br (X)Γ(non−p)) is finite. For this
we can go over to a finite extension k′/k such that X ×k k′ � A ×k k′, and
so assume that X = A. The theorem now follows from Lemma 3.5 (ii) and
Corollary 2.7. �

4. Proof of Theorem 1.2

4.1. In this subsection we recall some well-known results which will be
used later in this section.

Let A be an abelian variety over a field k, � a prime different from char(k),
n = �i. Let πét

1 (A, 0)(�) be the maximal abelian �-quotient of the Grothendieck
étale fundamental group πét

1 (A, 0). Let us consider the Tate �-module T�(A) :=
T�(A(k)). It is well known [16, 21] that T�(A) is a free Z�-module of rank
2 dim(A) equipped with a natural structure of a Γ-module, and the natu-
ral map T�(A)/n → An is an isomorphism of Galois modules. Recall [20,
pp. 129–130] that the isogeny A

n→ A is a Galois étale covering with the
Galois group An acting by translations. This defines a canonical surjection
fn : πét

1 (A, 0)(�) � An. The fn glue together into a canonical isomorphism
of Galois modules πét

1 (A, 0)(�) → T�(A), which induces the canonical isomor-
phisms of Galois modules

H1
ét(A,Z�) = HomZ�

(πét
1 (A, 0)(�),Z�) = HomZ�

(T�(A),Z�).

Since Hj
ét(A,Z�) is torsion-free for any j [20, Thm. 15.1(b) on p. 129], the

reduction modulo n gives rise to natural isomorphisms of Galois modules

H1
ét(A,Z/n) = H1

ét(A,Z�)/n = Hom(An,Z/n).

Now suppose that we are given a field embedding k ↪→ C. Let us consider
the complex abelian variety B = A(C). The exponential map establishes a
canonical isomorphism of compact Lie groups Lie(B)/Π → B [21, Sect. 1].
Here Lie(B) ∼= Cdim(B) is the tangent space to B at the origin, Π is a discrete
lattice of rank 2 dim(B), and the natural map H1(B,Z) ⊗ R → Lie(B) is an
isomorphism of real vector spaces. Clearly, V is the universal covering space
of B, and the fundamental group π1(B, 0) = H1(B,Z) = Π acts on V by
translations. We have

Bn =
1
n

Π/Π ⊂ V/Π = B.
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The isogeny B
n→ B is an unramified Galois covering of connected spaces (in

the classical topology) with the Galois group Bn, corresponding to the sub-
group nΠ ⊂ Π. It is identified with V/nΠ → V/Π, and the corresponding
homomorphism ϕn : Π � Bn = 1

nΠ/Π sends c to 1
nc + Π. The comparison

theorem for fundamental groups implies that ϕn coincides with the composi-
tion

π1(B, 0) → πét
1 (B, 0) → πét

1 (B, 0)(�)
fn−→ Bn.

We obtain the following sequence of homomorphisms:

(13)
Hom(Bn,Z/n) ↪→ Hom(πét

1 (B, 0)(�),Z/n)
= Hom(πét

1 (B, 0),Z/n) → Hom(π1(B, 0),Z/n).

The same comparison theorem implies that the last map in (13) is bijective.
It follows easily that all the homomorphisms in (13) are isomorphisms. Recall
that

Hom(πét
1 (B, 0)(�),Z/n) = H1

ét(B,Z/n), Hom(π1(B, 0),Z/n) = H1(B,Z/n).

Note also that ϕn establishes a canonical isomorphism

Π/n = π1(B, 0)/n → Bn, c �→ 1
n

c + Π,

which gives us the canonical isomorphisms

H1(B,Z/n) = H1(B,Z)/n = Hom(Bn,Z/n) = H1
ét(B,Z/n).

Taking the projective limits with respect to i (recall that n = �i), we get the
canonical isomorphisms

H1(B,Z) ⊗ Z� = HomZ�
(T�(B),Z�) = H1

ét(B,Z�).

On the other hand, taking the projective limit of the ϕn, we get the natural
map [21, p. 237]

H1(B,Z) = Π → T�(B), x �→ {x/�i}∞i=1,

which extends by Z�-linearity to the natural isomorphism of Z�-modules

ϕ(�) : H1(B,Z) ⊗ Z� = Π ⊗ Z�
∼= T�(B).

We have

(14) An = Bn = H1(B,Z)/n.
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The comparison theorem for étale and classical cohomology implies that
H1

ét(A,Z/n) = H1(B,Z/n); thus we obtain

H1
ét(A,Z/n) = Hom(An,Z/n) =(15)

Hom(Bn,Z/n) = Hom(H1(B,Z)/n,Z/n),

T�(A) = T�(B) = H1(B,Z) ⊗ Z�,

HomZ�
(T�(A),Z�) = H1

ét(A,Z�) = H1
ét(B,Z�) = HomZ�

(T�(B),Z�).

Lemma 4.2. Let M and N be subgroups of Zn such that M ∩ N = 0.
Then for almost all � the natural maps M/� → (Z/�)n and N/� → (Z/�)n are
injective, and the intersection of their images is {0}.

Proof. There is a subgroup L ⊂ Zn such that L∩(M⊕N) = 0, and L⊕M⊕
N is of finite index in Zn. For all � not dividing this index, the canonical map
M/� → (Z/�)n and the similar map for N are injective. Moreover, (Z/�)n is
the direct sum of L/�, M/� and N/�. This proves the lemma. �

Lemma 4.3. Let X be a K3 surface over a field k finitely generated over Q.
Then the injective map (NS (X)/�)Γ → H2

ét(X, µ�)Γ in (5) is an isomorphism
for almost all primes �.

Proof. It suffices to prove the lemma for a finite extension k′/k, k′ ⊂ k,
and Γ′ = Gal (k/k′) ⊂ Γ. Indeed, for any Γ-module M the composition of
the natural inclusion MΓ ↪→ MΓ′

and the norm map MΓ′ → MΓ is the mul-
tiplication by the degree [k′ : k]. Hence if (NS (X)/�)Γ

′ → H2
ét(X, µ�)Γ

′

is surjective for all primes � not dividing a certain integer N , then so is
the original map (NS (X)/�)Γ → H2

ét(X, µ�)Γ for all primes � not dividing
N [k′ : k]. In particular, we can assume without loss of generality that Γ acts
trivially on NS (X).

Now let us fix an embedding k ↪→ C and identify k with its image in C.
The group H2(X(C),Z(1)) � Z22 has a natural Z-valued bilinear form

ψ given by the intersection index. By Poincaré duality ψ is unimodular,
i.e., the map H2(X(C),Z(1)) → Hom(H2(X(C),Z(1)),Z) induced by ψ is
an isomorphism. Since X(C) is simply connected we have H1(X(C),Z) =
{0}, and by Poincaré duality this implies H3(X(C),Z) = {0}. Recall that
NS (X) = NS (XC) (see the beginning of the proof of Lemma 2.3). Since
X(C) is simply connected we have

Pic (XC) = NS (XC) = NS (X) = Pic (X).

We define the lattice of transcendental cycles TX as the orthogonal com-
plement to the injective image of NS (X) in H2(X(C),Z(1)). The restriction
of ψ to NS (X) is non-degenerate, and we write δ for the absolute value of the
corresponding discriminant. Then NS (X) ∩ TX = 0, and NS (X) ⊕ TX is a
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subgroup of H2(X(C),Z(1)) of finite index δ. Let � be a prime not dividing
δ. Then we have

H2(X(C),Z(1))/� = (NS (X)/�) ⊕ (TX/�).

The restriction of the Z/�-valued pairing induced by ψ to NS (X)/� is a
non-degenerate Z/�-bilinear form, so that TX/� is the orthogonal comple-
ment to NS (X)/�. Since H3(X(C),Z) = {0}, we have H2(X(C),Z(1))/� =
H2(X(C), µ�). The comparison theorem gives an isomorphism of Z�-modules

(16) H2
ét(X,Z�(1)) = H2(X(C),Z(1))⊗ Z�,

which is compatible with cup-products [7, Prop. 6.1, p. 197], [6, Example
2.1(b), pp. 28–29]. Reducing modulo � we get an isomorphism of Z/�-vector
spaces H2

ét(X, µ�) = H2(X(C),Z(1))/�, compatible with cup-products. Thus
for � not dividing δ we have an orthogonal direct sum

H2
ét(X, µ�) = (NS (X)/�) ⊕ (TX/�),

so that for these � the abelian group TX/� carries a natural Γ-(sub)module
structure. (Here we use the compatibility of the cycle maps Pic (X) →
H2

ét(X, µ�) and Pic (X) → H2(X(C), µ�); see [13, Prop. 3.8.5, pp. 296–297].)
Let L ∈ Pic (X) = NS (X) be a Γ-invariant hyperplane section class, and

P ⊂ H2(X(C),Z(1)) the orthogonal complement to L with respect to ψ.
Then (16) implies that P� = P ⊗ Z� is both a Galois and a Z�-submodule
of H2

ét(X,Z�(1)). It is clear that P� is the orthogonal complement to L in
H2

ét(X,Z�(1)) with respect to the Galois-invariant intersection pairing

ψ� : H2
ét(X,Z�(1)) × H2

ét(X,Z�(1)) → Z�.

Similarly, TX ⊗ Z� is the orthogonal complement to NS (X) ⊗ Z� in
H2

ét(X,Z�(1)) with respect to ψ�, and so is a Galois submodule.
Let C+(P ) be the even Clifford Z-algebra of (P, ψ). The complex vector

space PC := P ⊗ C inherits from H2(X(C),C(1)) the Hodge decomposi-
tion of type {(−1, 1), (0, 0), (1,−1)} with Hodge numbers h1,−1 = h−1,1 = 1.
By the Lefschetz theorem, TX intersects trivially with the (0, 0)-subspace.
The Z-algebra C+(P ) naturally carries a weight zero Hodge structure of
type {(−1, 1), (0, 0), (1,−1)} induced by the Hodge structure on P (via the
identification C+(P ) =

⊕
i ∧2iP ); see [3, Lemma 4.4]. On the other hand,

C+(P ) ⊗ Z� coincides with the even Clifford Z�-algebra C+(P�) of (P�, ψ�).
Clearly, C+(P�) carries a natural Γ-module structure induced by the Galois
action on P� (via the identification C+(P�) =

⊕
i ∧2i

Z�
P�). In his adaptation of

the Kuga–Satake construction, Deligne ([3], pp. 219–223, in particular Prop.
5.7 and Lemma 6.5.1; see also [22] and [7], pp. 218–219) shows that after
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replacing k by a finite extension, there exists an abelian variety A over k and
an injective ring homomorphism

u : C+(P ) ↪→ End(H1(A(C),Z))

satisfying the following properties.

(a) u : C+(P ) ↪→ End(H1(A(C),Z)) is a morphism of weight zero Hodge
structures.

(b) The Z�-algebra homomorphism

u� : C+(P�) ↪→ EndZ(H1(A(C),Z))⊗ Z� = EndZ�
(H1

ét(A,Z�))

obtained from u by tensoring it with Z�, and then applying the com-
parison isomorphism H1(A(C),Z) ⊗ Z� = H1

ét(A,Z�), is an injective
homomorphism of Galois modules.

Replacing, if necessary, k by a finite extension we may and will assume that
all the endomorphisms of A are defined over k, that is, End(A) = End(A).

Using the compatible isomorphisms (see Subsection 4.1)

H1(A(C),Z) = Hom(H1(A(C),Z),Z),

H1
ét(A,Z�) = HomZ�

(T�(A),Z�), T�(A) = H1(A(C),Z) ⊗ Z�,

we obtain the compatible ring anti-isomorphisms

t : End(H1(A(C),Z)) ∼= End(H1(A(C),Z)),

t� : EndZ�
(H1

ét(A,Z�)) ∼= EndZ�
(T�(A))

of weight zero Hodge structures and Galois modules, respectively. Taking
the compositions, we get an injective homomorphism of weight zero Hodge
structures

t u : C+(P ) ↪→ End(H1(A(C),Z)),

which, extended by Z�-linearity, coincides with the injective homomorphism
of Galois modules

t� u� : C+(P�) ↪→ EndZ�
(T�(A)).

We shall identify C+(P ) and End(A) with their images in End(H1(A(C),Z)).
Note that all the elements of End(A) ⊂ End(H1(A(C),Z)) have pure Hodge
type (0, 0).
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Let us first consider the case when rkNS (X) ≥ 2. Then there exists a
non-zero element m ∈ NS (X)Γ ∩ P . Then

m ∧ TX ⊂ ∧2P ⊂ C+(P ) ⊂ End(H1(A(C),Z)).

Since m ∧ TX does not contain non-zero elements of type (0, 0), we have

(m ∧ TX) ∩ End(A) = 0.

Using (14) and (15), we observe that for all but finitely many � the Γ-module
TX/� is isomorphic to

(m ∧ TX)/� ⊂ EndZ�
(T�(A))/� = EndF�

(A�).

Lemma 4.2 implies that (m ∧ TX)/� intersects trivially with End(A)/� for
almost all �. By the variant of the Tate conjecture (Proposition 3.4), for
almost all � we have EndF�

(A�)Γ = EndΓ(A�) = End(A)/�; thus every Γ-
invariant element of m∧ (TX/�) is contained in End(A)/�, and hence must be
zero. It follows that (TX/�)Γ = 0 for almost all �. Therefore, H2

ét(X, µ�)Γ =
(NS (X)/�)Γ for almost all �.

It remains to consider the case rkNS (X) = 1. Then TX = P � Z21, and
so ∧20TX is the dual lattice of TX . We have

∧20TX = ∧20P ⊂ C+(P ) ⊂ End(H1(A(C),Z)).

Since TX does not contain non-zero elements of type (0, 0), the same is true
for the dual Hodge structure ∧20TX . Thus ∧20TX ∩ End(A) = 0, and the
same arguments as before show that (∧20TX/�)Γ = 0 for almost all �. The
bilinear Z/�-valued form induced by the cup-product on TX/� ⊂ H2

ét(X, µ�) is
non-degenerate for almost all �, so that this Galois module is self-dual. Thus
the Galois modules TX/� and ∧20TX/� are isomorphic, and we conclude that
(TX/�)Γ = 0. This finishes the proof. �

Lemma 4.4. Let X be a K3 surface over a field k finitely generated over
Q. Then Br (X)Γ(�) is finite for all �.

Proof. By Proposition 2.5, it suffices to check the validity of the Tate con-
jecture for divisors and the semisimplicity of the Galois module H2

ét(X,Q�(1)).
Both these assertions follow from the corresponding results on abelian vari-
eties, proved by Faltings in [8, 9]. The latter follows from the semisimplicity
of the Galois action on the �-adic cohomology groups of abelian varieties com-
bined with Proposition 6.26(d) of [7]. The former follows from the validity of
the Tate conjecture for divisors on abelian varieties, as explained on p. 80 of
[34]. �
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End of proof of Theorem 1.2. By Remark 1.3, it suffices to show that
Br (X)Γ is finite. By the exact sequence (5), Corollary 2.6 and Lemma 4.3 we
have Br (X)Γ� = 0 for almost all �. Now the finiteness of Br (X)Γ follows from
Lemma 4.4. �
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