Rings and Fields Test 2.

20 February 2008

1. 8 marks, if all details are given.

We proved that any ED is a PID, and any PID is a UFD. 2 is an irreducible element of $\mathbb{Z}[\sqrt{-5}]$, because $2 = (a + b\sqrt{-5})(c + d\sqrt{-5})$, where the factors are non-units, implies $2 = a^2 + 5b^2$ which has no solutions in integers. Now 2 divides $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ but does not divide either factor. Hence $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, hence not a ED.

2. 12 marks, 2 marks for each part.

 $\mathbb R$ is a field, so the zero ideal is maximal.

 $\mathbb{R}[t]$ is a PID, hence the maximal ideals are generated by irreducible polynomials. So the ideals are (x + a), $a \in \mathbb{R}$, and $(x^2 + bx + c)$, $b, c \in \mathbb{R}$, $b^2 - 4c < 0$.

 $\mathbb{C}[t]$ is a PID, hence the maximal ideals are generated by irreducible polynomials. So the ideals are (x + a), $a \in \mathbb{C}$.

In the last three rings the ideals are precisely the additive subgroups which are clearly principal ideals.

The maximal ideals of $\mathbb{Z}/6$ are thus (2) and (3).

 $\mathbb{Z}/17$ is a field, so 0 is the only maximal ideal.

The maximal ideals of $\mathbb{Z}/2008$ are (2) and (251).