M2P4 Rings and Fields Test 3, solutions.

15 March 2007

1. 8 marks

By Gauss's lemma $f(x) = x^3 + nx - 9$ is reducible if and only if f(m) = 0 for some $m \in \mathbb{Z}$. Then m|9 so that $m = \pm 1, \pm 3, \pm 9$. By substituting x = m into f(x) = 0 we get the following values of n:

$$8, -10, -6, -12, -80, -82.$$

2. 12 marks

Note that x = 1 is a root of $x^3 + \omega x + \omega^2 = 0$ since $1 + \omega + \omega^2 = 0$ in F. Thus we can write

$$x^{3} + \omega x + \omega^{2} = (x+1)(x^{2} + ax + b),$$

for some $a, b \in F$ (recall that F has characteristic 2 so that -1 = 1 in F). It follows that a = 1 and $b = \omega^2$. The polynomial $x^2 + x + \omega^2$ has no roots in F by inspection (use that $\omega^3 = 1$), and so is irreducible in F[x].