Algebraic number theory

Test 2, solutions

18 March, 2011

1. 4 marks

d is divisible by 2011, but no other prime, otherwise some other prime will also be ramified. Thus $d= \pm 2011$. But 2011 is congruent to $3 \bmod 4$, so $\mathbb{Q}(\sqrt{2011})$ is ramified at 2 . Thus $\mathbb{Q}(\sqrt{-2011})$ is the only quadratic field ramified exactly at 2011.

2. 4 marks

Use the multiplicativity of the norm of ideals. By inspection of split, inert and ramified cases we see that for every prime ideal P the product $P \bar{P}$ is the principal ideal generated by $\|P\|$. Write $I=P_{1} \ldots P_{n}$, where the P_{i} are prime ideals. Then $I \bar{I}=\|I\| \mathcal{O}_{K}$, hence the result.

3. 8 marks

$N_{K}(7+\sqrt{-5})=54=2 \times 3^{3}$, hence the prime ideals dividing $(7+\sqrt{-5})$ have norms 2 and a power of 3 . There is only one prime ideal over 2 (since 2 is ramified), namely $P=(2,1+\sqrt{-5}),\|P\|=2$. Next, (3) $=Q \bar{Q}$, where $Q=(3,1+\sqrt{-5})$ and $\bar{Q}=(3,1-\sqrt{-5}),\|Q\|=\|\bar{Q}\|=3$. Since 3 does not divide $7+\sqrt{-5}$, the ideals Q and \bar{Q} cannot both divide $(7+\sqrt{-5})$, so we need to decide whether $(7+\sqrt{-5})=P Q^{3}$ or $P \bar{Q}^{3}$. But $(7+\sqrt{-5}) \subset Q$ since $7+\sqrt{-5}$ is an integral linear combination of 3 and $1+\sqrt{5}$. Therefore, $(7+\sqrt{-5})=P Q^{3}$.

4. 4 marks

$\operatorname{Tr}_{K}\left((\sqrt[3]{2})^{n}\right)=0$ unless n is a multiple of 3 , hence $\operatorname{det}\left(\operatorname{Tr}_{K}\left((\sqrt[3]{2})^{i+j}\right)\right)=-108$.

