M2P4 Rings and Fields Problem Sheet 1.

1. Let R be the ring of 2×2 matrices over \mathbb{Z} . Which of the following subsets S are subrings of R? If S is a subring, then determine whether or not S is commutative.

(1)
$$\left\{ \begin{pmatrix} r & 0 \\ s & t \end{pmatrix} : r \in 2\mathbb{Z}, \ s \in 3\mathbb{Z}, \ t \in \mathbb{Z} \right\};$$

(2)
$$\left\{ M \in R : \det M \in 2\mathbb{Z} \right\};$$

(3)
$$\left\{ M \in R : \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} M = M \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\};$$

(4) The standard formula to the state stat

(4) The set of $M \in R$ such that the column vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of M.

2. Let $m = 5^6$ and $n = 6^5$.

(1) Which elements of \mathbb{Z}/m are zero divisors?

(2) Do the zero divisors of \mathbb{Z}/m , together with $\overline{0}$, form a subring of \mathbb{Z}/m ?

(3) Do the zero divisors of \mathbb{Z}/n , together with $\overline{0}$, form a subring of \mathbb{Z}/n ?

3. (1) Construct an infinite sequence $p_1, p_2, ...$ in $\mathbb{Q}[x]$ such that for all i we have $p_i \mid p_{i+1}$ but $p_{i+1} \nmid p_i$.

(2) Construct an infinite sequence of distinct elements $p_1, p_2, ...$ in $\mathbb{Q}[x]$ such that for all i we have $p_i \mid p_{i+1}$ and $p_{i+1} \mid p_i$.

(3) Show that there is no infinite sequence $p_1, p_2, ...$ in $\mathbb{Q}[x]$ such that for all i we have $p_{i+1} \mid p_i$ but $p_i \nmid p_{i+1}$.

4. Let $R = \mathbb{Z}/15$. Find explicitly all elements a of R such that aR = R.

5. Find polynomials q(x) and r(x) such that

$$x^{5} - x^{2} + x + 2 = (x^{2} - x + 1)q(x) + r(x)$$

and r(x) has degree less than 2.

6. Prove that the element 1 + 5i of $\mathbb{Z}[i]$ is not irreducible.