
M2P4 Rings and Fields
Answers Sheet 2.

1. Let p be a prime number. Then
{
a
pk
: a, k ∈ Z

}
is a subring of Q

which is an integral domain. (Recall that an integral domain contains 1, so
mZ, for example, is not an integral domain if m > 1.)

2. We have f(x) = (x − α)q(x) + r where r ∈ C. Put x = α to obtain
r = f(α).
(1) We need a0 − 3− 2− 1 = 0, so a0 = 6.
(2) Note that x2 + 1 divides xn − 1 if and only if i and −i are roots of

xn − 1. Hence the relevant values of n are the multiples of 4.

3. It is straightforward to prove that H is a subring of the ring of 2 × 2
matrices over C, containing the identity matrix.

If

(
z w

−w̄ z̄

)

6=

(
0 0
0 0

)

then |z|2 + |w|2 6= 0 and

1

|z|2 + |w|2

(
z̄ −w
w̄ z

)

∈ H

is the required inverse.

If α ∈ C and |α| = 1 and r =

(
0 α
−ᾱ 0

)

, then r ∈ H and r2 + 1 = 0.

We have no contradiction, since H is not commutative, so H is not a field.

4. If 3 = (a + ib)(c+ id) then 9 = (a2 + b2)(c2 + d2). But 3 is not a sum
of two squares; hence a2 + b2 = 1 or c2 + d2 = 1 and one of a+ ib and c+ id
is a unit.

On the other hand, 13 is not irreducible, since 13 = (3 + 2i)(3− 2i).

5. If α is algebraic over Q then f(α) = 0 for some f(x) ∈ Q [x]. Multiply
by the product of the denominators of the coefficients in f(x) to obtain
g(x) ∈ Z[x] such that g(α) = 0. The converse is easy.

6. It is reasonably straightforward to prove that θ is a bijection. Since Q
is countable, so is Z[x]. But each f(x) ∈ Z[x] has finitely many roots. Also,
the union of countably many finite sets is countable. Thus, the set of α ∈ C
such that f(α) = 0 for some f(x) ∈ Z[x] is countable. As we have seen, this
is the set of algebraic numbers over Q.
Since C is uncountable, some (indeed, uncountably many) complex num-

bers are not algebraic over Q.
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