M2P4 Rings and Fields Answers Sheet 5.

1. If $p = x^2 + 2y^2$ then $p \nmid y$ so $yz \equiv 1 \mod p$ for some z; hence $(xz)^2 \equiv -2 \mod p$ and $p \equiv 1$ or 3 mod 8.

Assume that $p \equiv 1$ or 3 mod 8. Work in the PID $\mathbb{Z}[\sqrt{-2}]$. For some integer x we have $p \mid (x^2+2) = (x+\sqrt{-2})(x-\sqrt{-2})$. But $p \nmid (x+\sqrt{-2})$ and $p \nmid (x-\sqrt{-2})$. Therefore, p is not irreducible. Say $p = (a+b\sqrt{-2})(c+d\sqrt{-2})$. Then $p^2 = (a^2+2b^2)(c^2+2d^2)$, so $p = a^2+2b^2$.

2. (1) x^2+1 is irreducible in $\mathbb{Z}_3[x]$. Therefore, I is a maximal ideal and R/I is a field. The elements of R/I have the form I + a + bx where $a, b \in \mathbb{Z}_3$, so R/I has 9 elements.

(2) The order of an element in F^* divides 8. Now, $(I + 1 + x)^2 = I + 1 + 2x + x^2 = I + 2x$ and $(I + 1 + x)^4 = I + x^2$. Hence I + 1 + x has order 8, and F^* is cyclic.

3. (1) Let $\varphi(a+ib) = a^2 + b^2$. Since $\varphi(3+2i) = 13$, we deduce that 3+2i is irreducible. Also, 3 is irreducible, since $\varphi(3) = 9$ and $\varphi(a+ib)$ is never 3. Therefore, 3R and (3+2i)R are maximal ideals of the PID R.

(2) If I = 3R then every element of R/I can be written uniquely in the form I + a + ib with $0 \le a \le 2$ and $0 \le b \le 2$, so R/I has 9 elements.

If I = (3+2i)R then $13 \in I$ since 13 = (3+2i)(3-2i). Moreover, $(8+i)-7(3+2i) = 13(-1-i) \in I$ so $8+i \in I$. Hence I+(a+bi) = I+(a-8b), and the elements of R/I have the form I+c where $0 \leq c \leq 12$. Therefore, R/I has 13 elements.

4. (1) $1 + x + x^3$, $1 + x^2 + x^3$ (2) $1 + x^2$, $2 + x + x^2$, $2 + 2x + x^2$.

These are the polynomials of the relevant degree without a root in the field.

5. (1) If $rs \in p\mathbb{Z}$ then $p \mid rs$ so $p \mid r$ or $p \mid s$ and $r \in p\mathbb{Z}$ or $s \in p\mathbb{Z}$. Also, $p\mathbb{Z} \neq \mathbb{Z}$.

(2) R/I is an integral domain $\Leftrightarrow (I+r)(I+s) = I$ implies that I+r = Ior $I+s = I \Leftrightarrow I+rs = I$ implies that I+r = I or $I+s = I \Leftrightarrow rs \in I$ implies that I+r = I or $I+s = I \Leftrightarrow rs \in I$ implies that $r \in I$ or $s \in I \Leftrightarrow$ the ideal I is a prime ideal. (We should note, also, that $I+0 \neq I+1 \Leftrightarrow I \neq R$.)