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Introduction

These are lecture notes of a course about rational points on surfaces and
higher-dimensional algebraic varieties over number fields, which is an active
topic of research in the last thirty years.

Legendre’s theorem [8, 4.3.2 Thm. 8 (ii)] says that the Hasse principle holds
for smooth plane conics over Q. Iskovskih’s counterexample

x2 + y2 = (t2 − 2)(3− t2)

shows that it does not hold for 1-parameter families of conics over Q. In
this course we give necessary and sufficient conditions for the existence of
points on certain pencils of conics over a number field. This is achieved by a
combination of methods from algebra (quaternion algebras, the Brauer group
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2 ALEXEI SKOROBOGATOV

of a field), number theory (class field theory), algebraic geometry (the Brauer–
Grothendieck group of a variety) and analysis.

Let us call a collection of local points on a projective variety, one over
each completion of the ground number field, an adelic point. The main idea
(due to Manin) is that class field theory gives general conditions on adelic
points which are satisfied by all rational points. These so called Brauer–Manin
conditions come from elements of the Brauer group of the variety, as defined
by Grothendieck. The method of descent, well known in the case of elliptic
curves, can be applied to conic bundles (families of conics parameterised by the
projective line). In certain cases one can prove that any adelic point satisfying
the Brauer–Manin conditions can be approximated by a rational point. One
of the first achievements of this theory and the main result of the course is
a theorem of Colliot-Thélène–Sansuc–Swinnerton-Dyer on rational points on
Châtelet surfaces, a particular type of conic bundles. This method also allows
to deduce results on rational points on general conic bundles over Q with
split discriminant from recent spectacular work of Green, Tao and Ziegler in
additive combinatorics.

1. Conics, quaternion algebras and the Brauer group

1.1. Quaternion algebras. Let k be a field of characteristic not equal to 2.

To elements a, b ∈ k∗ one can attach a non-commutative k-algebra (a ring
containing k). The quaternion algebra Q(a, b) is defined as the 4-dimensional
vector space over k with basis 1, i, j, ij and the multiplication table i2 = a,
j2 = b, ij = −ji.

Example. If k = R and a = b = −1 we obtain Hamilton’s quaternions H.
This is a division algebra: the set of units coincides with the set of non-zero
elements.

Is the same true for Q(a, b)? Define the conjugation and the norm, in the
usual way.

Define a pure quaternion as an element q such that q /∈ k but q2 ∈ k. It
follows that pure quaternions are exactly the elements of the form yi+zj+wij
(just square x+ yi+ zj+wij, then there are some cancellations, and if x 6= 0,
then y = z = w = 0). This gives an intrinsic definition of the conjugation and
the norm because any quaternion z is uniquely written as the sum of a pure
quaternion and a scalar.

Exercise. If q is a pure quaternion such that q2 is not a square in k, then
1, q span a quadratic field which is a maximal subfield of Q.

Lemma 1.1. If c ∈ k∗ is a norm from k(
√
a)∗, then Q(a, b) ∼= Q(a, bc).

Proof. Write c = x2 − ay2, then set J = xj + yij. Then J is a pure
quaternion, so Ji = −iJ and J2 = −N(J) = bc. One checks that 1, i, J, iJ is
a basis, so we are done. �

When a quaternion algebra is a division algebra? Since N(q) = qq̄, if q is a
unit, then N(q) ∈ k∗. If N(q) = 0, then qq̄ = 0, so q is a zero divisor. Thus
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the units are exactly the elements with non-zero norm. The norm on Q(a, b) is
the diagonal quadratic form 〈1,−a,−b, ab〉, and this leads us to the following
criterion.

Proposition 1.2. Let a, b ∈ k∗. Then the following statements are equivalent:

(i) Q(a, b) is not a division algebra;

(ii) Q(a, b) is isomorphic to the matrix algebra M2(k);

(iii) the diagonal quadratic form 〈1,−a,−b〉 represents zero;

(iv) the diagonal quadratic form 〈1,−a,−b, ab〉 represents zero;

(v) b is in the image of the norm homomorphism k(
√
a)∗ → k∗.

Proof. The equivalence of all of these is clear when a ∈ k∗2. Indeed, to
prove the equivalence with (ii) we can assume that a = 1. The matrix algebra
is spanned by

1 = Id =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 b
1 0

)
, ij =

(
0 b
−1 0

)
,

and so is isomorphic to Q(1, b).

Now assume that a is not a square. Then (i) is equivalent to (iv) since
N(q) = qq̄. (iv) implies (v) because the ratio of two non-zero norms is a norm.
(v) implies (iii) which implies (iv). So (iii), (iv) and (v) are equivalent (i). The
previous lemma shows that under the assumption of (v) the algebra Q(a, b) is
isomorphic to Q(a, a2) = Q(a, 1), so we use the result of the beginning of the
proof. �

If the conditions of this theorem are satisfied one says that Q(a, b) is split.
If K is an extension of k such that Q(a, b)⊗k K is split, then one says that K
splits Q(a, b).

We see that the quaternion algebra Q(a, b), where a, b ∈ k∗ is a form of the
2 × 2-matrix algebra, which means that Q(a, b) ⊗k k̄ ∼= M2(k̄). For example,
H⊗R C ∼= M2(C).

Proposition 1.3. Any quaternion algebra Q split by k(
√
a) contains this field

and can be written as Q = (a, c) for some c ∈ k∗. Conversely, if Q contains
k(
√
a), then Q is split by k(

√
a).

Proof. If the algebra Q is split, take c = 1. Assume it is not. Then
N(q0 + q1

√
a) = 0 for some non-zero q0, q1 ∈ Q. Hence

N(q0) + aN(q1) + 2
√
aB(q0, q1) = 0,

where B is the bilinear form associated to the quadratic form N . This implies
that N(q0) + aN(q1) = 0 and 2B(q0, q1) = q0q̄1 + q1q̄0 = 0. Set I = q0/q1. We
have Ī = −I, hence I is a pure quaternion. Therefore, I2 = −N(I) = a. The
conjugation by I has order exactly 2 since I /∈ k (i.e. I is not in the centre
of Q). Hence the −1-eigenspace is non-zero, so we can find J ∈ Q such that
IJ + JI = 0. One then checks that 1, I, J, IJ is a basis, hence Q = (a, c),
where c = J2.
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The converse follows from the fact that k(
√
a)⊗k(

√
a) contains zero devisors

(the norm form x2 − ay2 represents zero over k(
√
a)). Hence the same is true

for Q⊗ k(
√
a). �

Corollary 1.4. The quadratic fields that split Q are exactly the quadratic
subfields of Q.

1.2. Conics. Define the conic attached to the quaternion algebra Q(a, b) as
the plane algebraic curve C(a, b) ⊂ P2

k (a closed subset of the projective plane)
given by the equation

ax2 + by2 = z2.

It has a k-point if and only if Q(a, b) is split. An intrinsic definition is this:
C(a, b) is the conic

−ax2 − by2 + abz2 = 0,

which is just the expression for the norm of pure quaternions.

Facts about conics. 1. Since the characteristic of k is not 2, every conic can
be given by a diagonal quadratic form, and so is attached to some quaternion
algebra.

2. The projective line is isomorphic to a conic xz − y2 = 0 via map
(X : Y ) 7→ (X2 : XY : Y 2).

3. If a conic C has a k-point, then C ∼= P1
k. (The projection from a k-point

gives rise to a rational parameterisation of C, which is a bijection.)

4. Thus the function field k(C) is a purely transcendental extension of k if
and only if C has a k-point.

Exercise. 1. Check that Q(a, 1− a) and Q(a,−a) are split.

2. Check that if k = Fq is a finite field, then all quaternion algebras are
split. (If char(k) is not 2, write ax2 = 1 − by2 and use a counting argument
for x and y to prove the existence of a solution in Fq.)

3. Q(a, b) is split over k if and only if Q(a, b)⊗k k(t) is split over k(t). (Take
a k(t)-point on C(a, b) represented by three polynomials not all divisible by t,
and reduce modulo t.)

4. Q(a, b) is split over k(C(a, b)). (Consider the generic point of the conic.)

Theorem 1.5 (Tsen). If k is algebraically closed, then every quaternion
algebra over k(t) is split.

Proof. We only prove that every quaternion algebra over k(t) is split. For
this it is enough to show that any conic over k(t) has a point. We can assume
that the coefficients of the corresponding quadratic form are polynomials of
degree at most m. We look for a solution (X, Y, Z) where X, Y and Z are
polynomials in t (not all of them zero) of degree n for some large integer n.
The coefficients of these polynomials can be thought of as points of P3n+2.
The solutions bijectively correspond to the points of a closed subset of P3n+2

given by 2n+m+1 homogeneous quadratic equations. Since k is algebraically
closed this set is non-empty when 3n + 2 ≥ 2n + m + 1, by a standard result
from algebraic geometry. (If an irreducible variety X is not contained in a
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hypersurface H, then dim(X ∩ H) = dim(X) − 1. This implies that on
intersecting X with r hypersurfaces the dimension drops at most by r, see
[10, Ch. 1]). �

Theorem 1.6 (Witt). Two quaternions algebras are isomorphic if and only if
the conics attached to them are isomorphic.

Proof. Since CQ is defined intrinsically in terms of Q, it remains to prove
that if CQ

∼= CQ′ then Q ∼= Q′. If Q is split, then CQ
∼= P1

k, hence CQ′ ∼= P1
k.

Thus Q′ is split by the field of functions k(P1
k) ∼= k(t). Then Q′ is split by

Exercise 3 above.

Now assume that neither algebra is split. Write Q = Q(a, b) so that
CQ = C(a, b). The conic CQ

∼= CQ′ has a k(
√
a)-point, hence Q′ is split

by k(
√
a). By Proposition 1.3 we can write Q′ = Q(a, c) for some c ∈ k∗.

By Exercise 4 above Q′ is split by the function field k(CQ′) ∼= k(C(a, b)). By
Proposition 1.2 this implies that c is contained in the image of the norm map

c ∈ Im[k(C(a, b))(
√
a)∗ −→ k(C(a, b))∗].

Let σ ∈ Gal(k(
√
a)/k) ∼= Z/2 be the generator. Then we can write c = fσ(f),

where f is a rational function on the conic C(a, b)×k k(
√
a). One can replace

f with fσ(g)g−1 for any g ∈ k(C(a, b))(
√
a)∗ without changing c. Our aim

is to show that c is a product of a norm from k(
√
a)∗ and a power of b. The

power of b is odd because Q′ is not split over k, so this is enough to prove the
theorem.

The group Div of divisors on C(a, b)×k k(
√
a) ∼= P1

k(
√
a)

is freely generated

by the closed points of C(a, b)×k k(
√
a). This is a module of Z/2 = 〈σ〉 with

a σ-stable basis. The divisors of functions are exactly the divisors of degree 0.
The divisor D = div(f) is an element of Div satisfying (1 + σ)D = 0. Hence
there is G ∈ Div such that D = (1−σ)G. Let P = (1 : 0 :

√
a). If n = deg(G)

the divisor G − nP ∈ Div has degree 0, and thus G − nP = div(g) for some
g ∈ k(

√
a)(C(a, b))∗. We have

div(fσ(g)g−1) = D+σG−G+n(P −σP ) = n(P −σP ) = n div

(
z −
√
ax

y

)
.

It follows that

fσ(g)g−1 = e

(
z −
√
ax

y

)n

,

where e ∈ k(
√
a)∗. Thus

c = fσ(f) = N(e)

(
z2 − ax2

y2

)n

= N(e)bn. �

1.3. Central simple algebras and the Brauer group. A k-algebra A is
called a central simple algebra if and only if A is a form of a matrix algebra,
that is, A⊗k k̄ ∼= Mn(k̄) for some positive integer n. Equivalently, the centre
of A is k (A is “central”) and A has no non-trivial two-sided ideals (A is
“simple”).
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Recall that if V and W are vector spaces over k, then V ⊗k W is the linear
span of vectors v ⊗ w, v ∈ V , w ∈ W , subject to the axioms

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

and
c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) for any c ∈ k.

This turns V ⊗kW into a k-vector space. Note that (V ⊗U)⊗W is canonically
isomorphic to V ⊗ (U ⊗W ).

If (ei) is a basis of V , and (fj) is a basis of W , then (ei ⊗ fj) is a basis of
V ⊗k W . Now, if V and W are k-algebras, then V ⊗k W is a k-algebra with
multiplication (x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′).

Properties. 1. Mn(k) is a c.s.a.

2. Mm(k)⊗k Mn(k) ∼= Mmn(k). Hence the set of c.s.a. is closed under ⊗.

3. Q(a, b)⊗kQ(a, b′) ∼= Q(a, bb′)⊗kM2(k). (Proof: The span of 1⊗ 1, i⊗ 1,
j ⊗ j′, ij ⊗ j′ is A1 = Q(a, bb′). The span of 1⊗ 1, 1⊗ j′, i⊗ i′j′, −b(i⊗ i′) is
A2 = Q(b′,−a2b′) ∼= M2(k). The canonical map A1⊗kA2 → Q(a, b)⊗kQ(a, b′)
defined by the product, is surjective. The kernel of a homomorphism is a
two-sided ideal, hence it is zero so that this map is an isomorphism.)

4. Q(a, b)⊗k Q(a, b) ∼= M4(k). (This follows from parts 2 and 3.)

Two c.s.a. A and B are equivalent if there are n and m such that
A ⊗k Mn(k) ∼= B ⊗k Mm(k). The relation is transitive by Property 2. The
equivalence class of k consists of the matrix algebras of all sizes.

Theorem 1.7. The tensor product turns the set of equivalence classes of c.s.a.
into an abelian group, called the Braeur group Br(k).

Proof. The neutral element is the class of k and the inverse element of A is
the equivalence class of the opposite algebra A◦. Indeed, A ⊗k A

◦ is a c.s.a.,
and there is a non-zero homomorphism A⊗k A

◦ → Endk(A) that sends a⊗ b
to x 7→ axb. It is injective since a c.s.a. has no two-sided ideals, and hence is
an isomorphism by the dimension count. �

We denote by (a, b) ∈ Br(k) the class of the quaternion algebra Q(a, b).

We write the group operation in Br(k) additively. By Property 4 we have
(a, b) ∈ Br(k)[2] and (a, b) + (a, b′) = (a, bb′). We also have (a,−a) =
(a, 1− a) = 0 for any a, b, b′ ∈ k for which these symbols are defined.

Examples. Br(R) = Z/2 and Br(Fq) = 0. (proofs are omitted) The full
version of Tsen’s theorem states (with a similar proof) that if k is algebraically
closed, then Br(k(t)) = 0.

If k ⊂ K is a field extension, then tensoring with K defines a homomorphism

resK/k : Br(k)→ Br(K),

call the restriction from k to K.

Here are some important facts about c.s.a. We don’t prove them because
we won’t use them.
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Wedderburn’s theorem For any c.s.a. A there is a unique division algebra
D such that A ∼= D ⊗k Mn(k) = Mn(D).

Skolem–Noether theorem Let B be a simple algebra and let A be a c.s.a.
Then all non-zero homomorphisms B → A can be obtained from one another
by a conjugation in A.

This generalises the fact that any automorphism of Mn(k) is inner.

1.4. Residue. Let O be a discrete valuation ring (DVR). By definition this is
a principal ideal domain with a unique maximal ideal m = (π). The generator
π is defined up to multiplication by a unit; any such generator is called a
uniformiser. We denote by K the fraction field of O and by κ = O/m the
residue field. The valuation val : K∗ → Z is a homomorphism defined as
follows. For any x ∈ K∗ we have either x ∈ O or x−1 ∈ O. For x ∈ O, we set
val(x) = n if x ∈ mn but x /∈ mn+1, and then extend to K∗ by multiplicativity.
Here are two main examples:

(1) O =
{

a
b
|a, b ∈ Z, (p, b) = 1

}
⊂ Q (the localisation of Z at p), π = p,

K = Q, κ = Fp;

(2) the localisation of k[t] at the prime ideal generated by a monic irreducible
polynomial p(t). Here π = p(t), κ = k[t]/(p(t)), K = k(t).

The ring O is called complete if O = limO/mn. We shall work with two
main examples of complete DVR:

(1) p-adic case: O = Zp, π = p, K = Qp, κ = Fp (or, more generally, K can
be any finite extension of Qp);

(2) the completion of the localisation of k[t] at the prime ideal generated by a
monic irreducible polynomial p(t). Here we have π = p(t) and κ = k[t]/(p(t)).
It can be proved that O ∼= κ[[p(t)]] is the ring of formal power series in p(t)
over κ, and hence K is the ring of Laurent poweer series. See [9].

The crucial fact about complete DVRs is that Hensel’s lemma holds for
them. It says that if a separable polynomial over O has a simple root modulo
m, then it has a root in K.

Lemma 1.8. Let Q be a non-split quaternion algebra over a complete discrete
valuation field K of residual characteristic not equal to 2. There are two
mutually excluding possibilities:

(i) all quadratic subfields of Q are unramified if and only if Q = Q(a, b),
where a, b ∈ O∗;

(ii) Q contains a ramified quadratic subfield, say K(
√
π). Then Q = Q(a, π)

for some a ∈ O∗ \ O∗2. Each unramified quadratic subfield of Q(a, π) is
isomorphic to K(

√
a).

Proof. Since the characteristic of κ is not 2, a quadratic extension F/K
is unramified if and only if F = K(

√
a) for some a ∈ O∗. If all quadratic

subfields of Q are unramified, then a, b ∈ O∗. Conversely, suppose that
Q = Q(a, b), where a, b ∈ O∗. We need to show that Q does not contain
K(
√
π). Indeed, otherwise

√
π ∈ Q is a pure quaternion yi + zj + wij of

norm −π = −ay2 − bz2 + abw2. It follows that there exist Y, Z,W ∈ O not
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all divisible by π such that val(aY 2 + bZ2 − abW 2) is odd. Let ā, b̄ ∈ κ∗ be
the residues of a, b modulo m. We see that the smooth conic C(ā, b̄) contains
a κ-point. By Hensel’s lemma the conic C(a, b) contains a K-point, but this
contradicts the assumption that Q(a, b) is not split over K.

Now suppose that K(
√
π) ⊂ Q. Then Q = Q(a, π) for some a ∈ K∗ by

Proposition 1.3. But we also have Q = Q(−aπ, π). Either a or −aπ has even
valuation, so up to a square we can assume that a ∈ O∗. Since Q is not split,
a /∈ K∗2. It remains to show that if Q contains a pure quaternion of norm
−b ∈ O∗, then a/b ∈ K∗2. Indeed, if −b = −ay2 − πz2 + aπw2, then

bX2 − aY 2 = π(Z2 − aW 2)

has a solution in O such that not all four coordinates are divisible by π. Since
a ∈ O∗ and a /∈ K∗2, we see that ā /∈ κ∗2. Thus the equation Z2 − āW 2 = 0
has only the zero solution in κ. It follows that the valuation val(Z2 − aW 2) is
even, so that the valuation of bX2 − aY 2 is odd, implying that ā = b̄. Then
a/b ∈ 1 + m, and by Hensel’s lemma a/b ∈ K∗2. �

Remark. Using the Skolem–Noether theorem one can prove that all
unramified subfields of Q(a, π) are conjugate.

One defines the residue of (a, b), where a, b ∈ K∗, as an element of κ∗/κ∗2

as follows. If Q(a, b) is split or falls into case (i), then the residue is 1. In case
(ii) the residue is the class of ā. By Lemma 1.8 the residue is well defined.

Remark. It is easy to see that Res(Q(a, b)) is the class of the reduction
modulo m of

(−1)val(a)val(b)aval(b)b−val(a) ∈ O∗ (1.1)

in κ∗/κ∗2. This formula shows that

Res(Q(aa′, b)) = Res(Q(a, b)) ·Res(Q(a′, b)).

Now we generalise the definition of residue to any field K with a discrete
valuation val : K∗ → Z, not necessary complete. Let O ⊂ K be the union of
{0} and the elements x ∈ K such that val(x) ≥ 0. This is a subring of K such
that K is the field of fractions of O. Let Oc be the completion of O, and let
Kc be the field of fractions of Oc. We define the residue of Q(a, b), a, b ∈ K∗,
as the residue of Q(a, b)⊗K Kc.

For example, in the arithmetic case we can take K = Q equipped with the
valuation attached to a prime p. Then O is the ring of rational numbers whose
denominators are not divisible by p, m = (p), κ = Fp. The completion of O is
Oc = Zp, so that Kc = Qp.

In the geometric case take K = k(t), O is the ring of rational functions such
that the denominator is not divisible by an irreducible monic polynomial p(t),
κ = k[t]/(p(t)).

Exercise. For any field k of char(k) 6= 2 prove that (x, y) is a non-zero
element of Br(k(x, y)).
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1.5. Reciprocity. For a general discretely valued complete field k we have
three cases: split, non-split unramified, non-split ramified. In the first two
cases the residue is zero.

Now we consider the case when the residue field is finite. Let K be a p-adic
field, that is, a finite extension of Qp. Let Fq = Ok/m be the residue field.
For a, b ∈ K∗ we define the Hilbert symbol (a, b)K = 1 if Q(a, b) is split, and
(a, b)K = −1 otherwise.

Proposition 1.9. When p 6= 2, the Hilbert symbol (a, b)K = 1 if and only if
Q(a, b) is unramified. In particular, if K = Qp, then the Hilbert symbol (a, b)p
is the Legendre symbol of the residue of Q(a, b):

(a, b)p =

(
Resp(Q(a, b))

p

)
.

Proof. Using Hensel’s lemma it is easy to see that the quadratic form
〈1,−a,−π〉 represents zero if and only if ā is a square in F∗q. For any a, b ∈ O∗
the form 〈1,−a,−b〉 represents zero in K, since a smooth conic over Fq has an
Fq-point that can be lifted to a Qp-point by Hensel’s lemma. �

Exercises. 1. Calculate (a, b)2 when K = Q2. (If a and b are odd, then
(a, b)2 = −1 if and only if a ≡ b ≡ −1 mod 4. The full answer is this: in the
basis 2,−1, 5 the Hilbert symbol equals 1 except for the entries on the skew
diagonal when it equals −1. See [8].)

2. For p 6= 2 it follows from Proposition 1.9 that Q(a, p), where a is a p-adic
unit which is not a square, is the unique non-split quoternion algebra over Qp,
up to isomorphism. Prove that all non-split quoternion algebras over Q2 are
isomorphic, too.

Theorem 1.10 (Product formula). For a, b ∈ Q∗ we have
∏

p(a, b)p = 1,

where p = 0 is included in the product with (a, b)0 defined as (a, b)R.

Proof. By bimultiplicativity of the Hilber symbol it is enough to prove
the product formula for (−1,−1), (−1, p) and (p, q), where p 6= q are prime
numbers. In all cases it follows from quadratic reciprocity. �

There is a similar product formula for a general number field:
∏

v(a, b)v = 1
where kv rages over all completions of k. Note that it is not enough to consider
only the discrete valuations of k, i.e. functions val : k∗ → Z such that
val(ab) = val(a) + val(b) and val(a+ b) ≥ min{val(a), val(b)} (it is convenient
to set val(0) = ∞). The discrete valuations are given by the prime ideals of
Ok (called the finite places of k) and give rise to non-archimedean completions
of k. Ostrowski’s theorem classifies all completions of Q. The real completion
can be described in terms in a non-discrete valuation, which means that val(k∗)
is any subgroup of R∗ (i.e. val(x) = − log |x| for x ∈ Q). So to get a product
formula we need to consider all completions of k, including real and complex
completions, sometimes called the infinite places of k.

Now let k be again an arbitrary field.
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Exercise The discrete valuations of k(t) that are trivial on k are of the
following two kinds: (a) those given by monic irreducible polynomials p(t)
(then the residue field is kp = k[t]/(p(t))), and (b) val(f(t)) = −deg(f(t))
(the residue field is k).

Let Resp denote the residue at p(t).

We shall refer to the elements in the image of resk(t)/k as constant elements.
The residue of any constant element is trivial.

The norm Nkp/k : kp → k defines a homomorphism

Nkp/k : k∗p/k
∗2
p → k∗/k∗2.

Lemma 1.11. Let a, b ∈ k[t]∗ be polynomials of degree m and n, respectively.
Then the product of Nkp/k(Resp(Q(a, b))), where p(t) rages over all monic
irreducible polynomials in k[t], is

(−1)mnanmb
m
n ∈ k∗/k∗2.

Proof. The product is finite (from the definition of residue). By bimul-
tiplicativity of residue it is enough to calculate the product for (c, b(t)) and
(a(t), b(t)), where c ∈ k∗, and a(t) and b(t) are monic irreducible. For the first
one we get cn, which agrees with our formula. For the second one the relevant
terms in the product correspond to p = a and p = b. Assume p = a. Then the
residue is the class modulo squares of a(θ) ∈ kp, where θ is the image of x in
kp. The norm of an element of kp is the product of its images under all [kp : k]
embeddings of kp into k̄. In our case these are a(θi), where θj ∈ k̄ are the roots
of b(t) =

∏
(t − θj). Hence the norm Nkp/k(a(θ)) is the product of a(θj), but

this equals the resultant R(b(t), a(t)), which is defined as
∏

i,j(ξi − θj) where

a(t) =
∏

(t− ξi). Swapping a and b multiplies the resultant by (−1)mn. �

The reason why the product is not 1 is that we have forgotten to include
the “infinite place” with valuation function is −deg(f(t)). The ring of this
discrete valuation is O = k[t−1], m = (t−1), κ = k. We refer to this discrete
valuation as the point at infinity because it is defined by the order of vanishing
of rational functions at the point ∞ ∈ P1.

Theorem 1.12 (Faddeev’s reciprocity law). For any a, b ∈ k(t)∗ we have∏
pNkp/k(Q(Resp(a, b))) = 1 ∈ k∗/k∗2, where we include into this product

p =∞ with k∞ = k.

Proof. It is enough to prove this for polynomials a(t) and b(t), say of degrees
m and n, respectively. By Lemma 1.11 it remains to prove that the residue
at infinity equals (−1)mnanmb

m
n . By multiplicativity it is enough to consider

(c, b(t)) and (a(t), b(t)), where a(t) and b(t) are monic. In the first case we get
cn, as required. In the second case if one of the degrees is even we get 1, as
required. If m and n are both odd, then (a(t), b(t)) = (−a(t)b(t), b(t)) and this
element has residue the class of −1 in k∗/k∗2, as required. �
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2. Brauer–Grothendieck group and the Brauer–Manin
obstruction

2.1. The Hasse principle and weak approximation. Let k be a number
field. We denote the completions of k by kv.

Theorem 2.1 (Hasse–Minkowski). If a smooth projective quadric of dimension
at least 1 has a kv-point for each completion kv, then it has a k-point.

If a variety X has kv-point for each completion kv but no k-point, then one
says that X is a counterexample to the Hasse principle. It would be nice to
have a tool to prove that X(k) = ∅ in this case.

The topology of kv (p-adic or Euclidean) turns the set of kv-points X(kv)
into a topological space. On each affine piece of X this is the topology induced
from knv = An(kv), so that two kv-points are close if their coordinates are close.
If X is smooth, it follows from the implicit function theorem that every kv-
point of X is contained in a small neighbourhood homeomorphic to a disc
(p-adic or Euclidean). This has the important consequence that by a small
deformation we can move a local point away from a Zariski closed subset.

Suppose that for every place v of k we have a kv-point Pv ∈ X(kv). The
collection (Pv) will be called an adèle of X or an adelic point of X. The space
of adèles

∏
vX(kv) is then equipped with the product topology: two adèles

are close if their components for finitely many places v are close. Suppose
that X(k) 6= ∅. One can wonder if we can approximate adèles by k-points, in
other words, whether or not for any finite set S of places and any Pv ∈ X(kv)
for v ∈ S there exists a k-point P ∈ X(k) sufficiently close to each Pv in the
topology of kv. If this holds, X is said to satisfy weak approximation.

By the independence of valuations this is true for A1: for any finite set S of
places and any av ∈ kv for v ∈ S there exists a ∈ k sufficiently close to each
av in the topology of kv. Thus the same is true if X is a rational variety, that
is, if k(X) is a purely transcendental extension of X. Indeed, in this case X
contains an open subset which is also an open subset of some Am, so after a
small deformation the approximation problem reduces to the affine line. Since
a smooth projective quadric of dimension at least 1 is rational over k if and
only if it has a k-point, this argument applies, so that such quadrics satisfy
weak approximation.

We want to have an instrument to control the closure of k-points in the
topological space of adelic points on X. This can be done using Azumaya
algebras.

2.2. Azumaya algebras and Brauer group of an algebraic variety. In
this section k is any field and X is an irreducible smooth variety. The structure
sheaf of X is the sheaf of rings OX such that for any open subset U ⊂ X,
OX(U) is the ring of regular functions k[U ]. A sheaf of OX-modules F is a
sheaf on X such that for any open subset U ⊂ X, F(U) is a module over
OX(U). For an open subset U the restriction OX |U is the structure sheaf OU .
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A sheaf of OX-modules F is locally free if X can be covered by open subsets
U such that F|U is a free OU -module.

There is an equivalent definition of a c.s.a. over a field k: it is a k-algebra A
such that the canonical homomorphism A⊗kA

◦ → End(A) is an isomorphism.
(As we know, any c.s.a. has this property. Conversely, Z(A) ⊗k Z(A◦) is
contained in the centre of the matrix algebra, so Z(A) = k. Also, the tensor
product of two non-zero 2-sided ideals is a non-zero 2-sided ideal of the matrix
algebra, so it is the whole thing. Thus A is a c.s.a.)

This definition is more convenient in case of OX-algebras. We define an
Azumaya algebra A on X as a locally free sheaf of OX-algebras such that the
natural homomorphism

A⊗OX
A◦ −→ EndOX

(A)

is an isomorphism. Here EndOX
is a sheaf of homomorphisms of OX-modules.

There is an equivalent definition of an Azumaya algebra in terms of local
rings of subvarieties. Let Y ⊂ X be an irreducible subvariety. The local ring
OY is the subring of k(X) consisting of the rational functions that are regular
on some open set U ⊂ X such that U ∩Y 6= ∅. In a slightly different language
OY is the inductive limit of k[U ] for such open sets U . If U is affine then OY

consists of the ratios of functions from k[U ] such that the denominator does
not identically vanish on U ∩Y . The ring OY is local, which means that it has
a unique maximal ideal mY . It consists of the functions vanishing on Y . We
have OY /mY = k(Y ).

For any locally free sheaf of OX-modules F the inductive limit of F(U) is an
OY -module, denoted by FY . Define A(Y ) := AY ⊗OY

k(Y ). Here is the second
definition of an Azumaya algebra: a locally free sheaf of OX-algebras A is an
Azumaya algebra if for every irreducible subvariety Y ⊂ X the k(Y )-algebra
A(Y ) is a c.s.a. over the field k(Y ).

Two Azumaya algebras A and B are equivalent if there exist locally free
sheaves of OX-modules E and F such that

A⊗OX
EndOX

(E) ∼= B ⊗OX
EndOX

(F).

In the same way as before one checks that this is indeed an equivalence relation.
The group of equivalence classes of Azumaya algebras on X is called the
Brauer–Grothendieck group Br(X).

If X is one k-point, then an Azumaya algebra is the same as a c.s.a. over k.

From the definition we obtain that the Brauer group Br(X) is functorial: if
f : X → Y is a morphism of algebraic varieties, then we have an induced
homomorphism of Brauer groups f ∗ : Br(Y ) → Br(X). In particular,
if f is an embedding of a k-point P into X, we have the induced map
Br(X)→ Br(k) also written as A 7→ A(P ), called the “evaluation” at P . (This
is the c.s.a. from the second definition of the Azumaya algebra.) Similarly,
for any field extension k ⊂ K if there is a K-point on X, then we can
evaluate the elements of Br(X) at K-points of X by considering the map
Br(X) → Br(XK) → Br(K). (Here XK = X ×k K is the variety obtained
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from X by increasing the ground field from k to K.) The evaluation at the
generic point Spec(k(X)) of X gives rise to a natural map Br(X)→ Br(k(X)).

It turns out that the image of this map can be characterised in terms of
residues.

Each (irreducible) divisor D ⊂ X, that is, an irreducible subvariety of
codimension 1, in some non-empty open neighbourhood of any point x ∈ D is
given by one equation fD, see [10, Ch. 1]. It follows that the maximal ideal
mD = (fD) is principal, and so OD is a DVR. In other words, D defines a
discrete valuation valD : k(X)∗ → Z such that valD(fD) = 1 and valD(g) = 0
if D is not contained in the support of the divisor of g. Then

OD = {0} ∪ {x ∈ k(X)|valD(x) ≥ 0}, mD = {0} ∪ {x ∈ k(X)|valD(x) ≥ 1}.

Let Q be a quaternion algebra over k(X). We have the residue ResD(Q) ∈
k(D)∗/k(D)∗2 induced by the discrete valuation valD. If ResD(Q) = 1, the
algebra Q is called unramified at D. If Q is unramified at every irreducible
divisor of X, it is called unramified on X.

Grothendieck proved the following important results using étale cohomology
[7], so we accept them without proof.

Theorem 2.2 (Grothendieck). Let X be smooth and irreducible. Then

(i) the natural map Br(X)→ Br(k(X)) is injective;

(ii) its image consists precisely of the classes of unramified c.s.a. over k(X).

In the definition of an unramified algebra one could take all discrete
valuations of k(X) that are trivial on k (which in higher dimension are
not necessarily given by the divisors on X). Grothendieck shows that un
unramified algebra in the previous sense is also unramified in this stronger
sense.

Let us have a closer look at quoternion Azumaya algebras, that is, Azumaya
alagebras of rank 4.

Proposition 2.3. Let X be a variety over a field k, char(k) 6= 2. For any
quaternion Azumaya algebra A on X there exists a finite covering of X by
open subsets U such that for each U there is an isomorphism of OU -algebras

A|U ∼= Q(fU , gU) := OU ⊕ iOU ⊕ jOU ⊕ ijOU ,

where i2 = fU , j2 = gU , ij = −ji, and fU , gU ∈ k[U ]∗.

Sketch of proof. Any quasi-projective variety is quasi-compact, so any open
covering contains a finite sub-covering. It is enough to establish the displayed
isomorphism over the local ring OP , for any closed point P . Indeed, then it
extends to some open neighbourhood of P , and in this way we obtain an open
covering of X.

Write R = OP , m = mP , κ = k(P ), K = k(X), A = A. So we have an
R-algebra A, isomorphic to R4 as an R-module, such that

A = A⊗R κ = A/(A⊗R m) = Q(a, b) = κ⊕ iκ⊕ jκ⊕ ijκ
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is a quaternion algebra over κ for some a, b ∈ κ∗. Let I ∈ A be any element
that reduces to i modulo A⊗R m. It can be proved that I2 = αI + β for some
α, β ∈ R (this proof goes by defining an analogue of the Cayley–Hamilton
characteristic polynomial for any element of A; this is a bit delicate so we omit
this proof). Then α ∈ m and β reduces to a modulo m. We can modify I by
1
2
α ∈ m and hence assume that I2 = f ∈ R, where f reduces to a modulo m,

so f ∈ R∗, as required.

Recall that AK = A ⊗R K is a quaternion algebra that contains A. Let
A+ ⊂ A be the set of elements that commute with I, and A− be the set of
elements that anti-commute with I. Since

x =
x+ a−1IxI

2
+
x− a−1IxI

2
∈ A+ ⊕ A−,

we have A = A+ ⊕ A− as R-modules. The reduction modulo m gives a
surjection from A+ to κ⊕ iκ, so by Nakayama’s lemma A+ = R⊕ IR = R[I].
Next, the reduction modulo m gives a surjective map from A− to the vector
subspace of Q(a, b) consisiting of the elements that anti-commute with i, i.e.
to jκ ⊕ ijκ. Let J be an element of A− that reduces to j. Since any nono-
zero element of AK that anti-commutes with I is a pure quaternion, we have
J2 ∈ A∩K = R. As J2 = g ∈ R is congruent to b modulo m, we have g ∈ R∗.
By Nakayama’s lemma A− = JR⊕ IJR, so A = R⊕ IR⊕ JR⊕ IJR and we
are done. �

Conversely, suppose that for some open covering of X we are given a
compatible system of OU -algebras Q(fU , gU) as above. This means that for
each pair of open sets U , V we have isomorphisms of OU∩V -algebras

ϕU,V : Q(fU , gU)|U∩V −̃→Q(fV , gV )|U∩V
such that these isomorphisms agree on triple intersections U ∩ V ∩W , that is,
we have ϕU,W = ϕV,WϕU,V . This defines a locally free sheaf of OX-modules,
which is also a sheaf of c.s.a., so it is an Azumaya algebra.

Example. Let X be a projective curve over a field k of characteristic not
equal to 2 with the affine equation y2 = p(x)q(x), where p(x) and q(x) are
separable coprime polynomials of degrees m and n over k. Assume that m is
even. Let us construct some Azumaya algebras on X from compatible systems
of quaternion algebras. We cover X by three open subsets, X = U1 ∪U2 ∪U3,
where U1 ⊂ A1 is the complement to the closed subset given by p(x) = 0,
U2 ⊂ A1 is the complement to the closed subset given by q(x) = 0, and
U3 ⊂ P1 is the complement to the support of the divisor of the rational function
p(x)/xm. For any a ∈ k∗ the algebras Q(a, p(x)), Q(a, q(x)), Q(a, x−mp(x))
form a compatible system giving rise to an Azumaya algebra on X.

2.3. Brauer–Manin obstruction. For a completion kv of k and a quaternion
algebra Q over kv we define invv(Q) ∈ 1

2
Z/Z as follows: invv(Q) = 0 if the

Hilbert symbol of Q is 1 (i.e. Q is split) and invv(Q) = 1
2

if the Hilbert symbol
of Q is −1 (i.e. Q is non-split). This includes the archimedean and 2-adic
completions.
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Theorem 2.4. Let X be a smooth projective irreducible variety over a number
field k, and let A be a quaternion Azumaya algebra on X.

(1) The evaluation map A 7→ A(Pv) defines a locally constant function
X(kv)→ 1

2
Z/Z;

(2) for almost all places v we have invvA(Pv) = 0 for any Pv ∈ X(kv);

(3) for each k-point P we have
∑

v invvA(P ) = 0.

Proof. Property (3) immediately follows from the product formula for the
Hilbert symbol of A(P ).

To prove (1) choose an open subset U as Proposition 2.3 that contains our kv-
point, so that we can write A|U = Q(fU , gU). The function fU (and similarly,
gU) is regular and invertible on U , so it gives a function U(kv)→ k∗v . Regular
functions are continuous in local topology. The value of the Hilbert symbol
of Q(fU , gU) depends only on the composition of fU and gU with the natural
map k∗v → k∗v/k

∗2
v . This composition is locally constant, hence we get (1).

Let us prove (2). The variety X is a closed subvariety of a projective space,
X ⊂ Pn

k . Let (x0 : . . . : xn) be homogeneous coordinates in Pn
k . Then Pn

k is
covered by n+ 1 affine spaces An

i given by xi 6= 0. Fix an open covering of X
as in Proposition 2.3. We can refine it and assume that each Uj is contained
in some affine space An

i . We have Uj = X \ Zj, where Zj is a closed subset of
X. The intersection of these closed subsets is empty, hence, by the projective
version of Hilbert’s Nullstellensatz, the sum of the corresponding homogeneous
ideals contains a power of the ideal (x0, . . . , xn), i.e. the ideal generated by all
monomials of degree m for some m ≥ 1.

Let O be the ring of integers of k. If S is a finite set of primes of k we denote
by OS the localisation of O at S. We are going to build a model over OS for
some finite set S. There is a finite set of places S such that the equations of
X and of each Zj have coefficients in OS. We then obtain a closed subscheme
X ⊂ Pn

OS
and also closed subschemes Zj ⊂ X . Every monomial of degree m is

a linear combination of the equations of Zj with coefficients in k[x0, . . . , xn].
By enlarging S we can assume that the coefficients are in OS[x0, . . . , xn]. Thus
the ideal of the intersection of all the Zj in Pn

OS
contains (x0, . . . , xn)m, hence

this intersection is empty. Therefore, the open subschemes Uj = X \ Zj form
an open covering of X .

Let f be a function fU or gU associated to some U = Uj. By assumption the
support of div(f) does not meet U . Write f as F/G, where F and G are in
k[x0, . . . , xn]. By enlarging S we can assume that F,G ∈ OS[x0, . . . , xn]. The
closed subscheme of Pn

OS
given by F = 0 is the union of a finite number of

irreducible components. If an irreducible component Y is such that Y ×OS
k

is not empty, then Y is the Zariski closure of Y ×OS
k ⊂ Pn

k in Pn
OS

. If an
irreducible component Y is such that Y×OS

k = ∅, then already Y×OS
OS′ = ∅

for a finite set S ′ containing S. Thus, after increasing S if necessary, we
can assume that the closed subscheme of Pn

OS
given by F = 0 is the Zariski

closure of the closed subscheme of Pn
k given by the same equation. (Think of

a polynomial in one variable, then we need to localise at the primes dividing
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the leading coefficient.) Thus we can assume without loss of generality that
the zeros of F and G do not meet U .

Let Ov be the ring of integers of kv, where v /∈ S. Since OS ⊂ Ov we
can consider the Ov-schemes obtained from X and Uj by the same equations
and inequalities. Since X ⊂ Pn

OS
, any kv-point of X can be written as

P = (a0 : . . . : an), where all ai ∈ Ov and ar ∈ O∗v for some r. To
fix ideas, suppose that a0 ∈ O∗v. Then P = (a1/a0, . . . , an/a0) ∈ An

0 (Ov).
More precisely, P ∈ Uj(Ov) for some j. Since the zeros of F and G do not
meet U we have F (P ), G(P ) ∈ O∗v. It follows that fU(P ), gU(P ) ∈ O∗v hence
invv(fU(P ), gU(P )) = 0. The proof of (3) is finished. �

Given (Pv) and A, we obtain a collection A(Pv) of quaternion algebras
over kv for all v. By Theorem 2.4 (2) we have a well defined element∑

v invvA(Pv) ∈ {0, 1
2
}. Let

(∏
vX(kv)

)A ⊂ ∏vX(kv) be the set of adèles
(Pv) for which this sum is zero. It is called the Brauer–Manin set of A. By
Thereom 2.4 (1) this is a closed subset of the space of adèles. Its complement
is also closed, so the Brauer–Manin set of A is both open and closed. The
product formula implies that the image of X(k) in

∏
vX(kv) is contained in(∏

vX(kv)
)A

. If follows that if the intersection of one or many of the Brauer–
Manin sets is empty, then X(k) = ∅. The closure of X(k) in the space of adèles
is contained in the Brauer–Manin set of A. In particular, no adèle outside of
the Brauer–Manin set of A can be approximated by a k-point on X.

The above definitions and properties can be carried over to arbitrary
Azumaya algebras. The intersection of the Brauer–Manin sets attached to
all Azumaya algebras on X is called the Brauer–Manin set of X.

Conjecture (Colliot-Thélène–Sansuc) Let X be a smooth and projective
surface over a number field with a surjective morphism X → P1

k such that the
fibres are conics. Then the Brauer–Manin set of X is the closure of X(k) in
the adelic space

∏
vX(kv).

The point of this conjecture is that the Brauer–Manin set of a conic bundle
can be explicitly determined, and in many cases quaternion Azumaya algebras
are enough for this. This is the subject of the next section.

3. Arithmetic of conic bundles

3.1. Standard smooth proper models. Consider a conic over the field k(t),
where char(k) is not 2. We can diagonalise a quadratic form that defines it,

a0(t)x2
0 + a1(t)x2

1 + a2(t)x2
2 = 0, a0, a1, a2 ∈ k(t), (3.1)

and multiply the coefficients by a common multiple so that a0(t), a1(t), a2(t) ∈
k[t] and a0(t)a1(t)a2(t) is a separable polynomial. Let us treat (x0 : x1 : x2)
as homogeneous coordinates in the projective plane and define the surface
X ′ ⊂ A1 × P2 by the above equation.

Exercise. X ′ is smooth. (Can be done over k̄ in local coordinates.)
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We would like to build a projective surface, with a morphism to P1
k. First

consider the case when the degrees di = deg(ai) have the same parity. The
coefficients of the equation

T d0a0(1/T )X2
0 + T d1a1(1/T )X2

1 + T d2a2(1/T )X2
2 = 0 (3.2)

are polynomials in T . Let X ′′ ⊂ A1×P2 be the closed subset it defines, where
T is a coordinate in A1, and (X0 : X1 : X2) are homogeneous coordinates in
the plane. Note that X ′′ is smooth since the product of three coefficients is a
separable polynomial in T . We think of these two affine lines as affine pieces of
P1, so that the coordinates are related by T = 1/t. Let ni be the integer such
that 2ni = di or 2ni = di + 1, where i = 0, 1, 2. This substitution tranforms
(3.1) in (3.2). Hence the restrictions of X ′ and X ′′ to the intersection of two
affine pieces of P1 are isomorphic and we can glue X ′ and X ′′ to define a smooth
surface X. It comes equipped with the morphism π : X → P1 that extends
the first projections X ′ → A1 and X ′′ → A1. The fibres of π are projective
conics.

Now we consider the case when the degrees of coefficients have different
parities. Permuting the variables we can assume that either d0, d1 are even
and d2 is odd, or d0, d1 are odd, and d2 is even. Consider take the equation

T d0a0(1/T )X2
0 + T d1a1(1/T )X2

1 + T d2+1a2(1/T )X2
2 = 0.

A similar gluing process as above gives rise to a variety X equipped with a
surjective morphism π : X → P1 whose fibres are plane conics.

This is sometimes called a standard model, in these notes a conic bundle is
always assumed to be a standard model. (A standard model is not unique.)

The conic a0(t)x2
0 + a1(t)x2

1 + a2(t)x2
2 = 0 over the field k(t) is called the

generic fibre of π.

Proposition 3.1 (Corollary of Tsen’s theorem). Any conic bundle π : X → P1

over k̄ has a section, that is, there is a morphism σ : P1
k̄
→ X ×k k̄ such that

the composition πσ is the identity map.

Proof. By Theorem 1.5 the generic fibre has a k̄(t)-point. We need to show
that any k̄(t)-point on the generic fibre extends to a section. Taking x, y, z to
be polynomials in k̄[t] not divisible by a common factor defines a section of
X ′ → A1

k̄
. Similarly for X ′′. �

Structure of bad fibres. 1. The degenerate fibres are the fibres over the
roots of a0(t)a1(t)a2(t) and, when the parities of the degrees of coefficients are
not the same, over t =∞.

2. Each degenerate fibre is geometrically a pair of transversal lines meeting
at one point.

3. If p(t) is a monic irreducible factor of a0(t), then the components of
the fibre of π at the closed point p(t) = 0 are defined over the extension
of kp = k[t]/(p(t)) given by the square root of the image of −a1(t)a2(t) in
k[t]/(p(t)). Similarly for the prime factors of a1 and a2, and, in the unequal
parity case, for the fibre at infinity. We denote this image by αp.
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4. Without loss of generality we can assume that the fibre at ∞ is smooth.
Indeed, replacing t by t − c for some c ∈ k we can assume that the fibre at
t = 0 is smooth. Now let t = 1/T .

Note that the generic fibre of π is the conic attached to the quaternion
algebra

Q = Q(−a0a1,−a0a2) = Q(−a0a1,−a1a2).

Lemma 3.2. The class of αp in k∗p/k
∗2
p equals the residue Resp(Q).

This is clear from (1.1).

Corollary 3.3 (of Faddeev reciprocity law). We have
∏

pNkp/k(αp) ∈ k∗2.

This is an immediate consequence of Theorem 1.12. In the unequal parity
case this product includes p =∞ for which we have k∞ = k.

Definition. A standard smooth conic bundle X given by the equation

x2 − ay2 = b(t)z2,

where a ∈ k∗ \ k∗2 and b(t) is a separable polynomial, is called a (generalised)
Châtelet surface.

Exercise. 1. Check that a standard model of a Châtelet surface always has
an even number of bad fibres, equal to deg(b) or deg(b) + 1. If deg(b) is odd,
then X has a k-point (check the fibre at infinity).

2. If b(t) is a norm from k(t,
√
a), then the generic fibre has a k(t)-point, and

so is a rational curve over k(t). Thus k(X) is a purely transcendental extension
of k, i.e. X is rational over k. Arithmetic properties of such varieties are of no
interest, so we can exclude this case.

3. Check that π : X → P1 has two disjoint sections σ± corresponding to the
k̄(t)-points of the generic fibre with coordinates (±

√
a : 1 : 0).

We now assume that the quaternion algebra Q(a, b(t)) over k(t) is not split.
Let C± = σ±(P1).Then C = C+ ∪ C− is a k-curve on X. Define X0 = X \ C
and X ′0 = X ′ ∩X0.

Lemma 3.4. Let X be a Châtelet surface. For each factor p(t) of b(t) there is
a quaternion Azumaya algebra Ap on X ′0 such that Ap|U = Q(a, p(t)), where
U ⊂ X ′0 is the complement to the zero set of p(t). If deg(p(t)) is even, then
Ap extends to a quaternion Azumaya algebra on X0.

Proof. Let us use the converse to Proposition 2.3. The open set X ′0 = X ′∩X0

of X ′ is given by z 6= 0, so X ′0 is a closed subset of A3 with equation

x2 − ay2 = b(t).

Let V ⊂ X ′0 be the complement to the zero set of the polynomial b(t)/p(t).
Then b(t) ∈ k[U ∩ V ]∗ is the norm of x +

√
ay ∈ k(

√
a)[U ∩ V ]∗. Thus

the OU -algebra Q(a, p(t)) and the OV -algebra Q(a, b(t)/p(t)) have isomorphic
restrictions to U ∩V , so they form a compatible system and hence give rise to
a quaternion Azumaya algebra Ap on X ′0.
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The last claim will follow if we set W ⊂ X0 to be the complement to the zero
set of tb(t). Then the OW -algebra Q(a, p(t)/t2n) and Ap restrict to isomorphic
algebras over W ∩X ′0, so we are done. �

We note that ResC(Ap) = 1 since a and b(t) belong to the group of units of
the local ring of C. Thus Ap is unramified on X ′.

A standard calculation shows that Res∞(Ap) is the image of the class of a
under the map k∗/k∗2 → k(X∞)∗/k(X∞)∗2. Assume first that X∞ is smooth.
This image is trivial if and only if a = h2 for some h ∈ k(X∞)∗ \ k∗. Then
h ∈ k[X∞]∗, and since h is not constant it must take both values

√
a and −

√
a

on k̄-points of X. This implies that X is a union of two closed subsets, hence
is not irreducible, which is a contradiction. Thus a defines a non-trivial class
in k(X∞)∗/k(X∞)∗2. This is the case when the degree of b(t) is even and the
degree of p(t) is odd.

If the degree of b(t) is odd, the same computation shows that the residue at
infinity is trivial because on the singular conic x2 − ay2 = 0 we have a = h2,
where h = x/y.

Recall that a quaternion algebra over k(X) is called unramified if it has
trivial residue at each irreducible divisor ofX. We conclude that the unramified
quaternion algebras of the form Ap form a finite abelian group (Z/2)r if all
r irreducible factors of b(t) have even degree, and (Z/2)r−1 otherwise. By
Grothendieck’s purity theorem unramified k(X)-algebras are equivalent to
Azumaya algebras, and so define a class in Br(X), and not just in the bigger
group Br(k(X)).

The structure of Br(X). 1. We know that he k(t)-algebra Q(a, b(t)) is split
over the field of functions of the k(t)-conic C(a, b(t)), that is, over the field
k(X).

2. If a is a square in kp = k[t]/(p(t)), then the k(t)-algebra Q(a, p(t)) is
split. (Proof: Since k(

√
a) ⊂ kp, the degree of p(t) is even. All residues of this

algebra are trivial, hence, by Faddeev’s exact sequence, it comes from Br(k).
Since p(t) is monic, the algebra specialises at infinity to the k-algebra Q(a, 1)
which is split.)

3. It is a fact that the algebras Ap, where p(t) is a monic irreducible factor
of b(t) such that a is not a square in kp, generate Br(X ′) modulo the image
of Br(k). Let n be the number of such factors. By Fact 1 the product of all
these algebras comes from Br(k).

4. The arguments above show that if the degree of b(t) is even, then Br(X)
is the kernel of the map Br(X ′) → Z/2 that sends Ap to deg(p(t)) mod 2.
Therefore, in this case the cokernel of Br(k)→ Br(X) is isomorphic to (Z/2)n−1

if all the degrees of p(t) are even, and to (Z/2)n−2 otherwise. If the degree of
b(t) is odd, then Br(X) = Br(X ′), and modulo the image of Br(k) this group
is isomorphic to (Z/2)n−1.

These facts will not be used in what follows (though they are not too hard
to prove).
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3.2. Conic bundles over number fields: main theorems and examples.
We can now state the first main theorem of this course. It was proved in [2].

Theorem 3.5 (Colliot-Thélène, Sansuc, Swinnerton-Dyer). Let k be a number
field, and let X be a Châtelet surface with deg(b(t)) ≤ 4. Then the closure of
X(k) in the space of adèles of X is the Brauer–Manin set of X.

If deg(b(t)) is 1 or 2, then X is birationally equivalent to a quadric, and then
the theorem follows from the Hasse–Minkowski theorem. If deg(b(t)) = 3, the
Brauer–Manin set of X is the intersection of the Brauer–Manin sets attached
to all Ap. The case when deg(b(t)) = 4 and b(t) has a linear factor can be
reduced to this case. If b(t) = p(t)q(t), where p(t) and q(t) are irreducible, then
the Brauer–Manin set of X is the Brauer–Manin set of Ap. Finally, if b(t) is
irreducible of degree 4, then the Hasse principle and weak approximation hold
(the same is true if b(t) is irreducible of degree 3).

The proof of Theorem 3.5 will be sketched in Section 3.5.

Theorem 3.5 has a curious corollary. An integer n = 2rm, where m is odd,
can be written as

n = a2 + b2 + c4, a, b, c ∈ Q
if and only if we are not in any of the following cases: 4|r and m ≡ 7 mod 8,
or 2||r and m ≡ 3 mod 4. This is an application of the Hasse principle in the
case when b(t) = n− t4 is irreducible, which is the case when n is not a square.
Local solubility is easy for p 6= 2, and is easy but tedious for p = 2.

Example (Iskovskikh, Sansuc) Consider the Châtelet surface Xc over k = Q

x2 + 3y2 = (c− t2)(t2 − c+ 1) (3.3)

where c ∈ Z, c 6= 0, c 6= 1. One sees immediately that Xc(R) 6= ∅ if and only if
c > 1. The local solubility of (3.3) in Qp for any prime p imposes no restriction
on c. This is easily seen for p 6= 3 by setting t = p−1 and using the fact that a
unit is a norm for an unramified extension. For p = 3 the solubility of (3.3) is
established by a case by case computation.

Consider the quaternion algebra A = Ac−t2 = At2−c+1. As was discussed
above, this algebra defines a class in Br(Xc) and this class generates this group
modulo the image of Br(Q), so to compute the Brauer–Manin obstruction we
only need to compute the sum

∑
v invv(A(Pv)), Pv ∈ Xc(Qv).

Statement 1: If v 6= 3, then invv(A(Pv)) = 0 for any point Pv ∈ Xc(Qv).
This value is locally constant in the v-adic topology, hence we may assume
that Pv is not contained in the fibre at infinity or in any of the singular fibres,
that is, (c− t2)(t2− c+ 1) 6= 0. We must prove that c− t2 is locally a norm for
the extension Q(

√
−3)/Q. For Qv = R this easily follows since c− t2 > 0. For

a finite v 6= 3 we only have to consider the case when p is inert for Q(
√
−3)/Q.

We have two possibilities: v(t) < 0 and v(t) ≥ 0. In the first case v(c− t2) is
even, hence this is the product of a unit, which is a norm for the unramified
extension Qv(

√
−3), and an even power of a uniformizer, which is trivially a

norm for any quadratic extension. Since (c − t2) + (t2 − c + 1) = 1, in the
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second case either v(c − t2) = 0, then c − t2 is a norm, or v(t2 − c + 1) = 0.
Then from the equation of Xc it follows that c− t2 is a norm multiplied by a
unit, hence is a norm.

Statement 2: For v = 3 and c = 32n+1(3m+ 2) we have inv3(A(P3)) = 1
2

for
any point P3 ∈ Xc(Q3), whereas for other values of c the local invariant takes
both values 0 and 1

2
. This purely local computation is omitted here.

Conclusion. When the sum of local invariants is never 0, the Manin
obstruction tells us that no Q-point can exist on Xc. This happens for
c = 32n+1(3m + 2), whereas Xc has adelic points for any c > 1. Theorem
3.5 implies that in all the other cases for c ∈ Z, c > 1, the surface Xc contains
a Q-point.

Here is the second main theorem. This and more general results were proved
in [1].

Theorem 3.6 (Browning, Matthiesen, AS, based on Green, Tao, Ziegler). Let
X be a Châtelet surface over Q such that b(t) is totally split over Q. Then the
closure of X(k) in the space of adèles of X is the Brauer–Manin set of X.

By a change of variables we can assume that deg(b(t)) is odd. Then the
Brauer–Manin set of X is the intersection of the Brauer–Manin sets attached
to the classes of At−e in Br(X), where e is a root of b(t).

The proof of Theorem 3.6 is given in Sections 3.3 and 3.4.

This result is interesting because it implies the existence of many (in fact, a
Zariski dense set of) solutions in Q besides the obvious ones for which b(t) = 0.

3.3. Descent. Let us first assume that k = Q and all the singular fibres of
X → P1

Q are above Q-points of P1
Q. We can choose the point at infinity in P1

Q
in such a way that the corresponding Q-fibre is singular. Then our Châtelet
surface X contains an open subset X ′0 ⊂ A3

Q given by the equation

x2 − ay2 = b

n∏
i=1

(t− ei), (3.4)

where n is odd, a, b ∈ Q∗, and e1, . . . , en are pairwise different elements of
Q. Recall that X0 ⊂ X is given by x2 − ay2 6= 0. By Lemma 3.4 for each
i = 1, . . . , n we have a quaternion Azumaya algebras Ai on X0, which restricts
to Q(a, t − ei) on the open subset

∏n
i=1(t − ei) 6= 0. We checked that these

algebras are unramified on X.

Suppose we are given an adèle (Mp) on X, where we include a real point
M0 ∈ X(R), such that∑

p

invp(Ai(Mp)) = 0 ∈ 1

2
Z/Z, i = 1, . . . , n.

By a small deformation that does not change invp(Ai(Mp)) we can assume
that Mp lies in X ′0(Qp), and, moreover, the t-coordinate of Mp, call it tp, is
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such that tp 6= ei, i = 1, . . . , n. Then∑
p

invp ((a, tp − ei)) = 0 ∈ 1

2
Z/Z, i = 1, . . . , n.

or, in terms of the Hilbert symbol, we have∏
p

(a, tp − ei)p = 1, i = 1, . . . , n.

Lemma 3.7. Let a ∈ Q∗. Let τp ∈ Q∗p for all primes p, and τ0 ∈ R∗ be such
that (a, τp)p = 1 for almost all p and

∏
p(a, τp)p = 1. Then there exists c ∈ Q∗

such that (a, τp)p = (a, c)p for all p.

Proof. (cf. [8, Ch. III, Thm. 4]) We can assume that a ∈ Z. Using weak
approximation in Q we find d ∈ Q∗ such that dτp ∈ Q∗2p for all p|2a, and
dτ0 > 0. After replacing τp by dτp we obtain that (a, τp)p = 1 for each p|2a,
and (a, τ0)0 = 1. Let b be the product of all primes p such that (a, τp)p = −1.
(By construction b is odd.) By Dirichlet’s theorem on primes in an arithmetic
progression we can find a prime q = b+ 8am for some large integer m, so that
q does not divide 2ab. We claim that c = bq will work. We need to check that
(a, τp)p = (a, bq)p for all p, including p = 0.

If Qv = R, then 1 = (a, τ0)0 = (a, bq)0 because bq > 0.

If p = 2, then (a, τ2)2 = 1. But bq ≡ b2 mod 8, but this implies that bq ∈ Q∗22 .
Thus (a, bq)2 = 1.

If p is an odd prime factor of a, then (a, τp)p = 1. But bq ≡ b2 mod p, and
hence bq ∈ Q∗2p . Thus (a, bq)p = 1.

For the remaining primes p we have a ∈ Z∗p. If p is coprime to bq, then
(a, τp)p = 1 but we also have (a, bq)p = 1.

If p|b, then since (a, τp)p = −1 and a is a unit, valp(τp) must be odd and a
not a square modulo p. Since valp(bq) = 1 we then have (a, bq)p = −1.

Finally, we are left with checking that at the last remaining prime q we have
(a, τq)q = (a, bq)q, but by the previous cases this follows from the condition∏

p(a, τp)p = 1 and the product formula
∏

p(a, bq)p = 1. �

Corollary 3.8. In the assumptions of Lemma 3.7 there exists c ∈ Q∗ such
that for each prime p we have cτp = x2

p − ay2
p, where xp, yp ∈ Qp.

Proof. If a ∈ Q∗2p there is nothing to prove. Otherwise Qp(
√
a) is a quadratic

extension of Qp. The condition (a, cτp)p = 1 means that the quaternion algebra
Q(a, cτp) over Qp is split, and then cτp is a norm from Qp(

√
a) by Proposition

1.2. �

By Corollary 3.8 there exist ci ∈ Q∗, i = 1, . . . , n, such that

ci(tp − ei) = x2
i,p − ay2

i,p

for all i and p (including p = 0). Consider the variety W ′ ⊂ A2n+1
Q given by

the equations
ci(t− ei) = x2

i − ay2
i , i = 1, . . . , n. (3.5)
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We have proved that tp ∈ A1
Q(Qp) is the image of a Qp-point on W ′ under the

projection W ′ → A1
Q. But then tp ∈ A1

Q(Qp) lifts to a Qp-point on the variety
given by

x2 − ay2 = b
n∏

i=1

(t− ei), ci(t− ei) = x2
i − ay2

i , i = 1, . . . , n

which is none other but the fibred product X ′0 ×A1
Q
W ′. An obvious change

of variables shows that this fibred product is birationally equivalent to the
product of W ′ and the conic C with the equation

x2 − ay2 = b/c1 . . . cn.

Let us rewrite the equations of W ′ in a slightly different form. We introduce
two independent variables x0, y0 and write v = x2

0−ay2
0, u = tv. Then an easy

change of variables shows that A2
Q×W ′ is birationally equivalent to the closed

subvariety W ⊂ A2n+2
Q given by

v = x2
0 − ay2

0, ci(u− eiv) = x2
i − ay2

i , i = 0, . . . , n. (3.6)

Conclusion of the descent argument: If the intersection of the Brauer–
Manin sets attached to Ai is non-empty, then C ×W has points everywhere
locally. In particular, if W satisfies the Hasse principle and weak approxima-
tion, then X(Q) is dense in the intersection of the Brauer–Manin sets attached
to Ai, i = 1, . . . , n.

This follows from Legendre’s theorem and weak approximation in the affine
space. It is an amazing fact that W does satisfy the Hasse principle and
weak approximation. This is a consequence of recent spectacular advances in
additive combinatorics, see Theorem 3.11 below.

3.4. Corollary of the Green–Tao–Ziegler theorem. In a series of papers
Green–Tao [4, 5] and Green–Tao–Ziegler [6] proved the generalized Hardy–
Littlewood conjecture in the finite complexity case. The following qualitative
statement is [4, Cor. 1.9].

Theorem 3.9 (Green, Tao, Ziegler). Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y] be
pairwise non-proportional linear forms, and let c1, . . . , cr ∈ Z. Assume that for
each prime p, there exists (m,n) ∈ Z2 such that p does not divide Li(m,n)+ ci
for any i = 1, . . . , r. Let K ⊂ R2 be an open convex cone containing a point
(m,n) ∈ Z2 such that Li(m,n) > 0 for i = 1, . . . , r. Then there exist infinitely
many pairs (m,n) ∈ K ∩ Z2 such that Li(m,n) + ci are all prime.

A famous particular case is the system of linear forms x, x+y, . . . , x+(r−1)y.
In this case the result is the existence of arithmetic progressions in primes of
arbitrary length r.

We shall use the following easy corollary of Theorem 3.9. For a finite set of
rational primes S we write ZS = Z[S−1].
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Proposition 3.10. Suppose that we are given (λp, µp) ∈ Q2
p for p in a finite

set of primes S, and a positive real constant C. Let e1, . . . , er be pairwise
different elements of ZS. Then there exist infinitely many pairs (λ, µ) ∈ Z2

S

and pairwise different primes p1, . . . , pr not in S such that

(1) λ > Cµ > 0;
(2) (λ, µ) is close to (λp, µp) in the p-adic topology for p ∈ S;
(3) λ− eiµ = piui, where ui ∈ Z∗S, for i = 1, . . . , r.

Proof. (The proof follows [12].) We can multiply λ, µ and all λp, µp by a
product of powers of primes from S, and so assume without loss of generality
that (λp, µp) ∈ Z2

p for p ∈ S.

Using the Chinese remainder theorem, we find λ0 ∈ Z such that λ0 − λp is
divisible by a sufficiently high power pnp for all p ∈ S, and similarly for µ0 ∈ Z.
In doing so we can assume that λ0 > Cµ0 > 0 and that λ0− eiµ0 6= 0 for all i.

Let d be the product of denominators of e1, . . . , er. So d is only divisible
by primes from S. Let us write d(λ0 − eiµ0) = Mici, where Mi is a product
of powers of primes from S, and ci ∈ Z is coprime to the primes in S. Let
N be a product of primes in S such that N > |ci ± cj| for any i and j. Let
M =

∏
p∈S p

mp where

mp ≥ max{np, valp(N) + valp(Mi)}, i = 1, . . . , r.

Then N divides M/Mi for each i. We now look for λ and µ of the form

λ = λ0 +Mm, µ = µ0 +Mn, (m,n) ∈ Z2. (3.7)

Write Li(x, y) = M−1
i Md(x− eiy), then

λ− eiµ = d−1Mi(Li(m,n) + ci) (3.8)

for each i = 1, . . . , r. Let us check that the linear functions Li(x, y) + ci satisfy
the condition of Theorem 3.9. For p ∈ S, the integer Li(0, 0) + ci is non-zero
modulo p for each i. Now let p be a prime not in S. Since the determinant
of the homogeneous part of the affine transformation (3.7) is in Z∗S and each
M−1

i d(x − eiy) equals M−1
i d ∈ Z∗S at the point (1, 0), we see that there is

(m,n) ∈ Z2 such that
∏r

i=1(Li(m,n) + ci) is not divisible by p.

We now choose an open convex cone K. Take (m0, n0) ∈ Z2, m0 > Cn0 > 0,
for which the integers |Li(m0, n0)| are pairwise different and non-zero. Let
εi = ±1 be the sign of Li(m0, n0). After re-ordering the subscripts, we have

ε1L1(m0, n0) > . . . > εrLr(m0, n0) > 0.

Define K ⊂ R2 by the inequalities

x > Cy > 0, ε1L1(x, y) > . . . > εrLr(x, y) > 0.

We can apply Theorem 3.9 to the linear functions εi(Li(x, y) + ci) and the
cone K. Thus there exist infinitely many pairs (m,n) ∈ K ∩ Z2 such that
εi(Li(m,n) + ci) = pi, where pi is a prime not in S, for i = 1, . . . , r. The
coefficients of each Li(x, y) are divisible by N , hence

εiLi(m,n)− εi+1Li+1(m,n) ≥ N > εi+1ci+1 − εici.
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Thus pi > pi+1 for each i = 1, . . . , r − 1, so all the primes pi are pairwise
different. Since n > 0 and m > Cn we see that µ = µ0 + Mn > 0 and
λ = λ0 +Mm > Cµ.

By (3.8) we see that λ − eiµ differs from εi(Li(x, y) + ci) by an element of
Z∗S, so the proof is now complete. �

Theorem 3.11. Let ai ∈ Q∗, ci ∈ Q∗ and ei ∈ Q, for i = 1, . . . , r, be such
that ei 6= ej for i 6= j. Then the variety W ⊂ A2r+2

Q defined by

ci(u− eiv) = x2
i − aiy2

i 6= 0, i = 1, . . . , r, (3.9)

satisfies the Hasse principle and weak approximation.

Proof. (The proof follows [12].) We are given Mp ∈ W (Qp) for each prime
p, and M0 ∈ W (R). Let S be the set of places of Q where we need to
approximate. We include the real place in S. Note that the set of real points
(u, v, x1, . . . , xr, y1, . . . , yr) ∈ W (R) for which (u, v) ∈ Q2 is dense in W (R),
and so it will be enough to prove the claim in the case when the coordinates
u and v of M0 are in Q. By a Q-linear change of variables we can assume
without loss of generality that M0 has coordinates (u, v) = (1, 0). Then we
have ci > 0 whenever ai < 0.

We enlarge S so that ci ∈ Z∗S, ei ∈ ZS and all the primes dividing ai are in
S, for all i = 1, . . . , r. For these new primes we take (λp, µp) defined by some
Qp-point on W . Thus for each p ∈ S we now have a pair (λp, µp) ∈ Q2

p such
that

ci(λp − eiµp) = x2
i,p − aiy2

i,p 6= 0, i = 1, . . . , r,

for some xi,p, yi,p ∈ Qp. Applying Proposition 3.10 we produce (λ, µ) ∈ Z2
S

such that λ > Cµ > 0, where C is a large positive constant to be specified
later. Moreover, for each i the number ci(λ− eiµ) = piui, where ui ∈ Z∗S and
pi is a prime not in S, is a local norm for Q(

√
ai)/Q for any finite place in

S. This is also true for the real place because bi > 0 whenever ai < 0, and
λ− eiµ > 0 for all i.

Consider the class of the quaternion algebra Q(ai, ci(λ − eiµ)) in Br(Q).
By continuity we have invp(ai, ci(λ − eiµ)) = 0 for any p ∈ S, and also
invR(ai, ci(λ−eiµ)) = 0. Next, ci(λ−eiµ) is a unit at every prime p 6∈ S∪{pi},
hence we obtain

invp(ai, ci(λ− eiµ)) = 0

for any p 6= pi. The global reciprocity law now implies

invpi(ai, ci(λ− eiµ)) = invpi(ai, pi) = 0,

and since the prime factors of ai are in S, the prime pi splits completely
in Q(

√
ai). In particular, ci(λ − eiµ) is a local norm at every place of Q.

By Legendre’s theorem ci(λ − eiµ) is a global norm. This proves the Hasse
principle for W .

Let us now prove weak approximation. Using weak approximation in Q we
find a positive rational number ρ that is p-adically close to 1 for each prime
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p ∈ S, and ρ2 is close to λ > 0 in the real topology. We now make the change
of variables

λ = ρ2λ′, µ = ρ2µ′, i = 1, . . . , r.

Then (λ′, µ′) is still close to (λp, µp) in the p-adic topology for each prime
p ∈ S. In the real topology (λ′, µ′) is close to (1, µ/λ). Since 0 < µ/λ < C−1,
by choosing a large enough C we ensure that (λ′, µ′) is close to (1, 0). We can
conclude by using weak approximation for the variety x2 − aiy2 = 1, which is
an open subset of P1

Q. �

This finishes the proof of Theorem 3.6.

3.5. Geometry of certain intersections of quadrics. In the remaining
part of these notes we sketch the proof of Theorem 3.5. The details can be
found in Chapter 7 of [11].

If degb(t) ≤ 2, the Châtelet surface is birationally equivalent to a quadric, so
the Hasse principle is a consequence of the Hasse–Minkowski theorem. Smooth
quadrics with a rational point are rational, so weak approximation holds too.

Let us now assume that degb(t) = 3 or degb(t) = 4 and b(t) has a root in
Q. The second case reduces to the first one by a change of variable t. We
have points Mv ∈ X ′0(kv) for each place v of k, where the t-coordinates tv of
Mv are such that b(tv) 6= 0. All algebras Aq, where q(t) is a monic irreducible
factor of b(t), are unramified and so give rise to Brauer–Manin conditions. The
Brauer–Manin condition given by Aq is∏

v

(a, q(tv))v = 1,

where v ranges over all places of k. Let K = k[t]/(q(t)) and let θ be the image
of t in K. Under the [K : k] distinct embeddings of K into k̄ the element θ goes
to [K : k] different roots of q(t) = 0. We have q(t) = NK/k(t−θ). Consider the
primes of the number field K = k[t]/(q(t)) over v. We have kv⊗kK = ⊕w|vKw.
Then

(a, q(tv))v = (a,NK/k(tv − θ))v =

(a,
∏
w|v

NKw/kv(tv − θ))v =
∏
w|v

(a,NKw/kv(tv − θ))v =
∏
w|v

(a, tv − θ)w.

(The last equality follows from the relation between corestriction and residue,
see [9, Prop. XI.2.1 (ii)].) Thus the Brauer–Manin condition can be rewritten
as ∏

w

(a, tv − θ)w = 1,

where w ranges over all places of K. As in Lemma 3.7 one proves that there
exists c(θ) ∈ K∗ such that the quaternion algebra Q(a, c(θ)(tv − θ)) over Kw

is split for each w. Thus we can write c(θ)(tv − θ) = x2
w − ay2

w for some
xw, yw ∈ Kw. Define the variety W ′ by equations c(θ)(t− θ) = x(θ)2− ay(θ)2,
one equation for each monic irreducible factor q(t) of b(t). This equation with
coefficients in K is equivalent to [K : k] equations with coefficient in k. Over
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k̄ all these equations together become three equations (3.5) where ci are the
images of c(θ) under all different embeddings of K into k̄. We see, as before,
that each tv lifts to a kv-point on W ′ and hence to a kv-point on the fibred
product of W ′ and X ′0 over the affine line. This fibred product is birationally
equivalent to the product of W ′ and a conic. As above, we can work with the
variety W defined by equations c(θ)(u − θv) = x(θ)2 − ay(θ)2, one equation
for each monic irreducible factor q(t) of b(t), together with u = x2

0 − ay2
0.

Let us now deal with the case when degb(t) = 4 and b(t) is either irreducible
or a product of two irreducible quadratics. Then the Brauer–Manin condition
given by Aq, where q(t) is any monic irreducible factor of b(t), is∏

v

(a, q(tv))v = 1.

Since degq(t) is even, we can rewrite this as∏
v

(a, q(uv, vv))v = 1,

where tv = uv/vv, and q(u, v) = vdegq(t)(u/v). The same calculation as above
shows that this implies ∏

w

(a, uv − θvv)w = 1,

where w ranges over all places of K. Let W be the variety defined by the
equations c(θ)(u−θv) = x(θ)2−ay(θ)2, one equation for each monic irreducible
factor q(t) of b(t). Any collection of local points (Mv) on X ′0 that satisfies all
Brauer–Manin conditions, lifts to a collection of local points on the fibred
product of W and X ′0. This variety is birationally equivalent to the product
of W and a conic, so we reach the same conclusion as in the previous case.

To establish Theorem 3.5 it is enough to prove that W satisfies the Hasse
principle and weak approximation. In both cases considered above, on
eliminating variables u and v we obtain a complete intersection of two quadrics
Y ⊂ P7

k. It is enough to prove that Y satisfies the Hasse principle and weak
approximation. The closed subset of Y given by u = v = 0 contains two
disjoint P3’s conjugate over k(

√
a). Let us call them Π+ and Π−. The following

technical lemma allows us to find a “convenient” pair of disjoint conjugate lines
on Y .

Lemma 3.12. At least one of the two following statements is true:

(a) There is a projective line L+ ⊂ Π+ defined over k(
√
a) such that the

span of L+ and its conjugate L− ⊂ Π− intersects Y in a skew quadrilateral (a
cycle of 4 lines) contained in the smooth locus of Y ; or

(b) Y contains P1
k, in this case Y is k-rational.

Proof. See [11, Lemma 7.2.2]. �

In case (b) the theorem is obvious, so that we assume that we are in case
(a), and we fix L+ and L− from now on. Let Π = 〈L+, L−〉. Fibering Y by
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P4’s passing through Π we see that Y is birationally equivalent to a projective
variety Y ′ equipped with a surjective morphism f : Y ′ → P3

k whose k-fibres are
2-dimensional intersections of two quadrics in P4

k containing a pair of disjoint
conjugate lines. At this point we make a few observations, see [11] for proofs.

(1) The generic fibre of f is smooth.

(2) There is a closed subset V ⊂ P3
k of dimension at most 1 such that the

restriction of f to U = P3
k \ V has geometrically integral fibres.

(3) Smooth intersections of two quadrics in P4
k containing a pair of disjoint

conjugate lines satisfy the Hasse principle and weak approximation.

Facts (1) and (2) are established by direct calculations. Fact (3) is proved as
follows. Any smooth intersection of two quadrics in P4

k is a del Pezzo surface
of degree 4 (a k/k-form of P2 with 5 points in general position blown-up; “the
general position” here means that no 3 points are on a line, and all 5 points
are not on a conic). Therefore, blowing down a pair of disjoint conjugate lines
defines a birational morphism to a del Pezzo surface of degree 6 (a k/k-form of
P2 with 3 non-collinear points blown-up). Any del Pezzo surface of degree 6 is
a compactification of a principal homogeneous space of a 2-dimensional torus.
The Hasse principle and weak approximation are known to hold for principal
homogeneous spaces of tori of dimension at most 2 because all such tori are
rational, which is proved by classifying these tori and then directly checking
the rationality by an explicit construction is each particular case.

It remains to show how the Hasse principle and weak approximation for the
smooth locus of Y follow from (1), (2) and (3).

In the course of the proof one uses the following theorem of Lang and
Weil. Let Fq be a finite field with q elements, and let X be a geometrically
integral subvariety of Pn

Fq
of dimension r and degree d. Then there exists a

positive constant C(n, r, d) such that the number of Fq-points on X satisfies
the following inequality

|#X(Fq)− qr| < C(n, r, d)qr−
1
2

One can apply these estimates to reductions of a geometrically integral variety
defined over a number field. They imply that provided q is big enough so that
the reduction is also geometrically integral, we can always find an Fq-point
in the reduction (even in the reduction of a given dense open subset) of our
variety. Since the constant depends only on n, r and d the estimates can be
also applied to families of closed subvarieties of Pn of the same degree and
dimension. (Such are flat families; in a flat family of projective varieties the
Hilbert polynomial is constant, hence so are the dimension and the degree, see
Hartshorne, Ch. III, 9.9, 9.10).

We have to find a smooth k-point on Y ′ which is close to a given finite
collection of smooth local points Qv ∈ Y ′(kv), v ∈ Σ. In the course of the proof
we can enlarge Σ, and move Qv in a small neighbourhood in the corresponding
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local topology. For example, we can assume that Qv do not belong to some
Zariski closed subset.

Choose an auxiliary k-point P ∈ U(k) such that the fibre YP = f−1(P ) is
smooth. Every geometrically integral smooth k-variety X has kv-points for all
but finitely many places of v. (For almost all primes of k the reduction of X
is a well defined geometrically integral smooth variety, thus we can apply the
Lang–Weil estimates to X to conclude that for almost all primes the reduction
of X has a smooth point over the residue field. To such a point we apply
Hensel’s lemma to get a local point.) Now we enlarge Σ and our collection of
local points Qv ∈ Y ′smooth(kv), v ∈ Σ, by adding local points for all the places
v such that YP (kv) = ∅. Using weak approximation in P3

k we find a k-point
R which is close to f(Qv), v ∈ Σ, and such that the line PR ' P1

k does not
meet V , and such that that the generic fibre of the restriction of f to PR
is smooth. This is possible since dim(V ) ≤ 1, whereas the space of lines in
P3
k passing through P is isomorphic to P2

k. We note that H = f−1(PR) has
smooth local points for all places of k. It is enough now to find a k-point in
H close to a given finite collection of kv-points for v ∈ Σ. Note that all the
fibres of H → P1

k are geometrically integral, and only finitely many fibres are
singular. Comparing the Lang–Weil estimates for the fibres and their singular
loci we find a finite set of primes with the property that if the reduction of
a fibre of H → P1

k at any other prime is geometrically integral, then it has a
smooth point over the residue field.

Enlarging Σ again we can find a model H → P1
Ok,Σ

of H → P1
k with all the

closed geometric fibres being geometrically integral. (Indeed, the subscheme
of P1

Ok,Σ
corresponding to geometrically reducible or non-reduced fibres does

not intersect P1
k – the generic fibre of the structure morphism to Spec(Ok,Σ),

– hence is contained in a finite number of fibres of P1
Ok,Σ
→ Spec(Ok,Σ). We

only have to include the corresponding primes into Σ.)

Using weak approximation on the base PR ' P1
k we find a k-point M on

this line such that YM is smooth and has kv-points close to the given kv-points
for v ∈ Σ. Note that we included into Σ all “small” primes, so that now
the reduction of YM at any place not in Σ is geometrically integral and has
a smooth point over the residue field. Using Hensel’s lemma we can lift it
to a smooth kv-point of YM , v /∈ Σ. Summing up, we have a k-fibre with
points everywhere locally. By (3) it has a k-point which is close to our initial
collection of local points on Y ′. This finishes the proof of Theorem 3.5. �
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