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Abstract

In his review [F] of our paper [SZ14], Faltings pointed out that he could
not follow the proof of Proposition 2.2. In this corrigendum we rectify this
and other mistakes in [SZ14].

The main results of [SZ14], Theorems A, B and C, are correct as stated. However,
the version of the Künneth formula in degree 2 with coefficients in an arbitrary ring
mentioned on p. 750 of [SZ14], with reference to Proposition 2.2, is not true in this
generality (see Remark 1.2 for a counterexample). A similar correction needs to be
made to Theorem 2.6.

1 Correction to Proposition 2.2

Proposition 1.1 Let X and Y be non-empty path-connected CW-complexes such
that H1(X,Z) and H1(Y,Z) are finitely generated abelian groups (which holds when
X and Y are finite CW-complexes). For any abelian group G we have a canonical
isomorphism

H1(X × Y,G) ∼= H1(X,G)⊕ H1(Y,G).

If G = Z or G = Z/n, where n is a positive integer, then there is a canonical
isomorphism

H2(X × Y,G) ∼= H2(X,G)⊕ H2(Y,G)⊕ Hom
(
H1(X,G)∨,H1(Y,G)

)
,

where for a G-module M we write M∨ = Hom(M,G).

Proof. We write Hn(X) = Hn(X,Z). Since X is non-empty and path-connected
we have H0(X) = Z, see [Hat02, Prop. 2.7]. The Künneth formula for homology
[Hat02, Thm. 3.B.6] gives a split exact sequence of abelian groups

0→
n⊕
i=0

(
Hi(X)⊗ Hn−i(Y )

)
→ Hn(X × Y )→

n−1⊕
i=0

Tor(Hi(X),Hn−1−i(Y ))→ 0.
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Since H0(X) = Z, in degrees 1 and 2 this gives canonical isomorphisms

H1(X × Y ) ∼= H1(X)⊕ H1(Y ) (1)

and
H2(X × Y ) ∼= H2(X)⊕ H2(Y )⊕

(
H1(X)⊗ H1(Y )

)
. (2)

For any abelian group G, the universal coefficients theorem [Hat02, Thm. 3.2] gives
the following (split) exact sequence of abelian groups

0 −→ Ext(Hn−1(X), G) −→ Hn(X,G) −→ Hom(Hn(X), G) −→ 0, (3)

where the third map evaluates a cocycle on a cycle. This gives a canonical isomor-
phism

H1(X,G) ∼= Hom(H1(X), G). (4)

The desired isomorphism for H1 now follows from (1).
Using the functoriality of the universal coefficients formula (3) with respect to

the projections of X × Y to X and Y , together with the isomorphisms (1) and (2),
we obtain a split short exact sequence

0→ H2(X,G)⊕ H2(Y,G)→ H2(X × Y,G)→ Hom(H1(X)⊗ H1(Y ), G)→ 0. (5)

The second map here has a retraction induced by the embedding of X × y0 and
x0× Y , for some base points x0 and y0. The third map in (5) is given by evaluating
a cocycle on X×Y on the product of a cycle on X and a cycle on Y . A similar map
with G = G1 ⊗ G2 fits into the following commutative diagram with the natural
right-hand vertical map:

H2(X × Y,G1 ⊗G2) // Hom(H1(X)⊗ H1(Y ), G1 ⊗G2)

H1(X,G1)⊗ H1(Y,G2) ∼ //

∪

OO

Hom(H1(X), G1)⊗ Hom(H1(Y ), G2)

OO

(6)

Let G = Z. By assumption, H1(X) and H1(Y ) are finitely generated abelian
groups. Let M and N be their respective quotients by the torsion subgroups. The
map induced by multiplication in Z

Hom(H1(X),Z)⊗ Hom(H1(Y ),Z) −→ Hom(H1(X)⊗ H1(Y ),Z)

coincides with Hom(M,Z) ⊗ Hom(N,Z) → Hom(M ⊗ N,Z), which is clearly an
isomorphism, so the displayed map is also an isomorphism. Using (4) we rewrite it
as

H1(X,Z)⊗ H1(Y,Z) ∼= Hom(H1(X)⊗ H1(Y ),Z).

Now (5) gives a canonical isomorphism

H2(X × Y,Z) ∼= H2(X,Z)⊕ H2(Y,Z)⊕
(
H1(X,Z)⊗ H1(Y,Z)

)
. (7)
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In view of the diagram (6) the last summand is embedded into H2(X × Y,Z) via
the cup-product map. Since H1(X,Z) is a free abelian group of finite rank, we can
rewrite (7) and obtain the desired isomorphism for H2(X × Y,Z).

Now let G = Z/n. Then Hom(H1(X) ⊗ H1(Y ),Z/n) is canonically isomorphic
to

Hom(H1(X),Hom(H1(Y ),Z/n)) ∼= Hom(H1(X)/n,H1(Y,Z/n)).

Since Hom(H1(X)/n,Z/n) ∼= H1(X,Z/n), we have H1(X,Z/n)∨ ∼= H1(X)/n. Now
(5) produces the required isomorphism for H2(X × Y,Z/n). �

Remark 1.2 For X = Y = RP2 we have H1(X) = Z/2, so in this case the map
induced by multiplication in Z/n with n = 4

Hom(H1(X),Z/n)⊗ Hom(H1(Y ),Z/n) −→ Hom(H1(X)⊗ H1(Y ),Z/n)

is zero. From diagram (6) we see that in this case the cup-product map

H1(X,Z/n)⊗ H1(Y,Z/n) −→ H2(X × Y,Z/n)

is zero.

2 Correction to Theorem 2.6

Let k be a separably closed field. Let G be a finite commutative group k-scheme of
order not divisible by char(k). The Cartier dual ofG is defined as Ĝ = Hom(G,Gm,k)
in the category of commutative group k-schemes.

For a proper and geometrically integral variety X over k, the natural pairing

H1
ét(X,G)× Ĝ −→ H1

ét(X,Gm,X) = Pic(X)

gives rise to a canonical isomorphism

H1
ét(X,G)−̃→Hom(Ĝ,Pic(X)). (8)

The map in (8) associates to a class of a G-torsor T → X its ‘type’, see [Sko01,
Thm. 2.3.6].

Let n be a positive integer not divisible by char(k). Define SX as the finite
commutative group k-scheme whose Cartier dual is

ŜX = H1
ét(X,µn) ∼= Pic(X)[n]. (9)

We shall often consider the Tate twist ŜX(−1). So for a finite commutative group
k-scheme G such that nG = 0 we introduce the notation

G∨ = Hom(G,Z/n).
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In particular, we have S∨X = H1
ét(X,Z/n). The pairing G×G∨ → Z/n gives rise to

a canonical isomorphism G−̃→(G∨)∨.
Let TX → X be an SX-torsor whose type is the natural inclusion

ŜX = Pic(X)[n] ↪→ Pic(X);

it is unique up to isomorphism. The natural pairing

H1
ét(X,SX)× S∨X −→ H1

ét(X,Z/n)

with the class [TX ] ∈ H1
ét(X,SX) induces the identity map on S∨X = H1

ét(X,Z/n). In
other words, the image of [TX ] with respect to the map induced by a : SX → Z/n
equals a ∈ S∨X .

Suppose that Y is also a proper and geometrically integral variety over k. The
image of [TX ]⊗ [TY ] under the map

H1
ét(X,SX)⊗ H1

ét(Y, SY ) −→ H1
ét(X,Z/n)⊗ H1

ét(Y,Z/n)

induced by a : SX → Z/n and b : SY → Z/n, equals a⊗ b ∈ S∨X ⊗ S∨Y .
We refer to [Mil80, Prop. V.1.16] for the existence and properties of the cup-

product. Thus we can consider [TX ] ∪ [TY ] ∈ H2
ét(X ×k Y, SX ⊗ SY ) and

a ∪ b ∈ H2
ét(X ×k Y,Z/n⊗ Z/n) ∼= H2

ét(X ×k Y,Z/n).

The cup-product is functorial, so the image of [TX ] ∪ [TY ] under the map induced
by a⊗ b is a ∪ b. This can be rephrased by saying that the natural pairing

H2
ét(X ×k Y, SX ⊗ SY ) × S∨X ⊗ S∨Y −→ H2

ét(X ×k Y,Z/n) (10)

with [TX ] ∪ [TY ] gives rise to the cup-product map

S∨X ⊗ S∨Y = H1
ét(X,Z/n)⊗ H1

ét(Y,Z/n) −→ H2
ét(X × Y,Z/n).

It is important to note that (10) factors through the pairing

H2
ét(X ×k Y, SX ⊗ SY ) × Hom(SX ⊗ SY ,Z/n) −→ H2

ét(X ×k Y,Z/n). (11)

The pairing (11) with [TX ] ∪ [TY ] induces a map

ε : Hom(SX ⊗ SY ,Z/n) −→ H2
ét(X ×k Y,Z/n).

We thus have a commutative diagram, where ξ is induced by multiplication in Z/n:

S∨X ⊗ S∨Y
ξ //

∼=
��

Hom(SX ⊗ SY ,Z/n)

ε
��

H1
ét(X,Z/n)⊗ H1

ét(Y,Z/n) ∪ // H2
ét(X ×k Y,Z/n)

(12)
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The canonical isomorphism Hom(SX⊗SY ,Z/n) ∼= Hom(SX , S
∨
Y ) allows us to rewrite

ε as the map sending ϕ ∈ Hom(SX , S
∨
Y ) to ε(ϕ) = ϕ∗[TX ]∪ [TY ], where ∪ stands for

the cup-product pairing

H1
ét(X,S

∨
Y )× H1

ét(Y, SY ) −→ H2
ét(X × Y, S∨Y ⊗ SY ) −→ H2

ét(X ×k Y,Z/n).

We write pX : X ×k Y → X and pY : X ×k Y → Y for the natural projections.
Since X and Y are geometrically integral over the separably closed field k, we can
choose base points x0 ∈ X(k) and y0 ∈ Y (k). We have the induced map

(idX , y0)∗ : Hi
ét(X ×k Y,Z/n) −→ Hi

ét(X,Z/n)

and a similar map for Y . Using these maps we see that

(p∗X , p
∗
Y ) : Hi

ét(X,Z/n)⊕ Hi
ét(Y,Z/n) −→ Hi

ét(X ×k Y,Z/n) (13)

is split injective, so we have an isomorphism

Hi
ét(X ×k Y,Z/n) ∼= Hi

ét(X,Z/n)⊕ Hi
ét(Y,Z/n)⊕ Hi

ét(X ×k Y,Z/n)prim, (14)

where Hi
ét(X ×k Y,Z/n)prim is the intersection of kernels of (idX , y0)∗ and (x0, idY )∗.

Since k is separably closed, we have Hi(k,M) = 0 for any abelian group M and any
i ≥ 1. Thus [TX ] ∪ [TY ] goes to zero under the maps induced by the restrictions to
x0 × Y and to X × y0. This implies that Im(ε) ⊂ H2

ét(X ×k Y,Z/n)prim.

The following is a corrected version of [SZ14, Thm. 2.6].

Theorem 2.1 Let X and Y be proper and geometrically integral varieties over a
separably closed field k. Let n be a positive integer not divisible by char(k). Then
we have the following statements.

(i) Write H1
ét(X,Z/n)∨ = Hom(H1

ét(X,Z/n),Z/n) and similarly for Y . The maps
ε and ξ defined above fit into the following commutative diagram

H1
ét(X,Z/n)⊗ H1

ét(Y,Z/n)
ξ //

∪
��

Hom(H1
ét(X,Z/n)∨,H1

ét(Y,Z/n))

ε∼=
��

H2
ét(X × Y,Z/n) H2

ét(X ×k Y,Z/n)prim
? _oo

(15)

where ε is an isomorphism.

(ii) If H1
ét(X,Z/n) is a free Z/n-module (which holds if NS (X)[n] = 0), then ξ is

an isomorphism, so we have

H2
ét(X×Y,Z/n) ∼= H2

ét(X,Z/n)⊕H2
ét(Y,Z/n)⊕

(
H1

ét(X,Z/n)⊗ H1
ét(Y,Z/n)

)
.
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Proof. Part (ii) is the degree 2 case of [Mil80, Cor. VI.8.13].
Let us prove (i). Diagram (15) is obtained from diagram (12) since Im(ε) is a

subset of H2
ét(X ×k Y,Z/n)prim, as explained above. It remains to show that ε is an

isomorphism. From the spectral sequence

Ep,q
2 = Hp

ét(X,H
q
ét(Y,Z/n))⇒ Hp+q

ét (X ×k Y,Z/n)

we get an isomorphism H2
ét(X×k Y,Z/n)prim

∼= H1
ét(X,H

1
ét(Y,Z/n)). As a particular

case of (8) we get an isomorphism

H1
ét(X,H

1
ét(Y,Z/n)) ∼= Hom(SY , S

∨
X) ∼= Hom(SX , S

∨
Y ).

Thus the source and the target of ε are isomorphic finite abelian groups. One can
finish the proof following the original arguments in [SZ14] with small adjustments;
see [CTS21, pp. 161–162] for this revised proof.

Here we give a short proof communicated to us by Yang Cao. Since the source
and the target of ε have the same cardinality, it is enough to show that

ε : Hom(SX ⊗ SY ,Z/n) −→ H2
ét(X ×k Y,Z/n)prim

is injective. More generally, for an integer m|n consider the map

εm : Hom(SX ⊗ SY ,Z/m) −→ H2
ét(X ×k Y,Z/m)prim

defined via pairing with [TX ] ∪ [TY ]. We prove that εm is injective by induction on
m|n. If p is a prime, the usual Künneth formula [Mil80, Cor. VI.8.13] for the field
Fp implies that the cup-product map

∪ : H1
ét(X,Fp)⊗ H1

ét(Y,Fp) −→ H2
ét(X ×k Y,Fp)prim

is an isomorphism. We have a commutative diagram

Hom(SX ,Fp)⊗ Hom(SY ,Fp)
ξ //

∼=
��

Hom(SX ⊗ SY ,Fp)
εp

��
H1

ét(X,Z/p)⊗ H1
ét(Y,Z/p)

∪ // H2
ét(X ×k Y,Z/p)prim

(16)

In this case ξ is an isomorphism, hence εp is also an isomorphism.
Now for a positive integer m|n assume that εa is injective for all a|m, a 6= m.

Write m = ab. The exact sequence of abelian groups

0 −→ Z/a −→ Z/m −→ Z/b −→ 0

gives rise to the long exact sequences of étale cohomology groups of X, Y and X×Y ,
which are linked by the split injective maps (13). Using (14) and the well-known
fact that H1

ét(X×Y,Z/b)prim = 0 (see [SZ14, Cor. 1.8] or [CTS21, Thm. 5.7.7 (i)]) we
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obtain that the top row of the following commutative diagram is exact (see [CTS21,
p. 160] for an alternative argument):

0 // H2
ét(X × Y,Z/a)prim

// H2
ét(X × Y,Z/m)prim

// H2
ét(X × Y,Z/b)prim

0 // Hom(SX ⊗ SY ,Z/a) //
?�

εa

OO

Hom(SX ⊗ SY ,Z/m) //

εm

OO

Hom(SX ⊗ SY ,Z/b)
?�

εb

OO

The bottom row is obviously exact. The diagram implies that the middle map is
injective too. We conclude that ε = εn is injective, hence an isomorphism.
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