
Cohomology and the Brauer group of double covers

Alexei N. Skorobogatov

October 12, 2014

1 Introduction

Let k be a field of characteristic different from 2. Let π : X → S be a finite surjective
morphism of degree 2, where X and S are smooth, projective and geometrically
integral varieties over k. Let i : C → S and j : C → X be the natural closed
embeddings of the branch locus of π, so that i = πj. Assume that C is non-empty
and smooth, but not necessarily connected. In this note we are interested in the
cokernel of the natural map between the 2-torsion subgroups of the Brauer groups
of S and X:

π∗ : Br(S)[2] −→ Br(X)[2].

Consider the Gysin sequence in étale cohomology (or Betti cohomology if k = C):

H0(C,Z/2)
θ

−→ H2(S,Z/2) −→ H2(S \ C,Z/2) −→ H1(C,Z/2)
θ

−→ H3(S,Z/2);

the construction of this sequence is recalled in the remark before Lemma 2.4 below.
Let us write H1(C,Z/2)[θ] for the kernel of the Gysin map θ. We define a canonical
map

Φ : H1(C,Z/2)[θ] −→ Br(X)[2]/π∗(Br(S)[2]),

and obtain results about the kernel and the cokernel of Φ. To construct Φ we
note that the Gysin sequence for the smooth pair (S, i(C)) is linked with a similar
sequence for (X, j(C)) by the maps induced by π. Since π∗ induces the zero map on
H1(C,Z/2), we obtain a map from H1(C,Z/2)[θ] to the quotient of H2(X,Z/2) by
the sum of π∗H2(S,Z/2) and θH0(C,Z/2). The latter subgroup consists of algebraic
classes, so the Kummer sequence gives us our map Φ.

We denote the kernel of π∗ : Pic(X) → Pic(S) by Pic(X)[π∗]. Using diagram
(4) below, it is not hard to see that j∗ maps Pic(X)[π∗] to the 2-torsion subgroup
Pic(C)[2]. A description of Φ in the general case can be read off from the exact
sequence (16) in §2.

Let k̄ be a separable closure of k, and let Γ = Gal(k̄/k). Write S = S ×k k̄. In
Proposition 2.5 we show that if C is geometrically connected and H1(S,Z/2) = 0
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(for example, S is geometrically simply connected), then Φ gives rise to an exact
sequence

0 −→ j∗(Pic(X)[π∗]) −→ Pic(C)[2][θ] −→ Br(X)[2]/π∗(Br(S)[2]).

We also give a description of the cokernel of the last map in this sequence. Note
that Pic(X)[π∗] = 0 when Pic(X) ∼= Z. In the case S = P2

k a description of the
map θ : H1(C,Z/2) → H3(P2

k,Z/2) in terms of corestrictions can be found in [1,
Prop. 5.3].

When S is a surface, we obtain an explicit description of the kernel and the
cokernel of Φ over k̄ under certain simplifying assumptions. Over k̄ the Kummer
sequence gives an isomorphism H1(C,Z/2) = Pic(C)[2].

Theorem 1.1 Let k be a field of characteristic different from 2 with a separable
closure k̄. Let S be a smooth, projective and geometrically integral surface over k

with Pic(S)[2] = Br(S)[2] = 0, for example, a geometrically rational surface. For
any finite surjective morphism π : X → S of degree 2 ramified in a non-empty
smooth curve j : C ↪→ X, the map Φ : Pic(C)[2] → Br(X)[2] gives rise to an exact
sequence of Γ-modules

0 −→ Pic(C)[2]/j∗(Pic(X)[π∗]) −→ Br(X)[2] −→ Pic(S)even/π∗Pic(X) −→ 0, (1)

where Pic(S)even is the subgroup of Pic(S) consisting of the classes that have even
intersection with each connected component of C.

Remarks 1. The class of C in Pic(S) is divisible by 2. Thus if C is geometrically
connected we have Pic(S)even = Pic(S).

2. When k has characteristic zero, the condition Br(S)[2] = 0 follows from Pic(S)[2] =
0 and H2(S,OS) = 0. Indeed, by Hodge theory the latter condition implies the
triviality of the divisible subgroup of Br(S), see formula (8.7) in [8, §III.8]. Then
Br(S)[2] = 0 follows from Pic(S)[2] = 0 by formula (8.12) of loc. cit.

When k = k̄ the 2-torsion subgroup Br(X)[2] was studied by T.J. Ford in [5]. He
used the results of Knus, Parimala and Srinivas [13], in particular, the observation
that for an unramified double cover π : V → U the cokernel of the canonical ad-
junction map (Z/2)U → π∗(Z/2)V is isomorphic to (Z/2)U . Although the methods
used by Ford appear to be rather general, the results of [5] are proved under the as-
sumption that S has Picard rank 1, so they apply to double covers of the projective
plane but not to double covers of more general rational surfaces.

In the last few years there was a renewed interest in constructing elements of
Br(X) motivated in part by the desire to compute the Brauer–Manin obstruction
on X. Van Geemen’s explicit geometric construction [20] of elements of Br(X)[2] as
Azumaya algebras was recently extended in [12] to arbitrary double covers X → P2
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ramified in a smooth curve C. In particular, the exact sequence of [12, Thm. 1.1]
represents Br(X)[2] as the quotient of the 2-torsion subgroup of Pic(C)/KC by
Pic(X)/(Zπ∗O(1) + 2Pic(X)), where KC is the canonical class of C. See [6] for
another recent work on the subject. When S is a rational surface, [20, Thm. 6.2]
says that under some additional assumptions there is an injective map Pic(C)[2] →
Br(X)[2] and calculates the size of its cokernel. Finally, in their recent paper [2]
B. Creutz and B. Viray give a presentation of the elements of Br(X)[2] by central
simple algebras when S is a ruled surface.

The main point of this article is to show that if one is only interested in Φ as
a homomorphism of Galois modules Pic(C)[2] → Br(X)[2], and not in a geometric
construction of resulting Azumaya algebras on X, then fairly general results can
be obtained using only standard cohomological methods without recourse to the
geometry of underlying varieties. Our approach was influenced by the calculations
of Colliot-Thélène and Wittenberg in [1, §5.1], which seems to be the only place in
the literature where the ground field is not assumed to be separably closed.

We set up our cohomological machinery in §2 where we work with a double cover
of a smooth, projective and geometrically integral variety S over an arbitrary field k,
char(k) 6= 2, ramified in a smooth subvariety C of codimension 1. In §3 we assume
that S is a surface such that H1(S,Z/2) = 0. In §3.1 we spell out some useful
exact sequences for the cohomology groups of double covers that are most likely
well known but do not seem to be readily available in the literature. In Proposition
3.1 we obtain the exact sequence

0 −→ H1(C,Z/2) −→ H2(X,Z/2)/π∗H2(S,Z/2)
π∗−→ H2(S,Z/2)⊥C −→ 0,

where H2(S,Z/2)⊥C is the subgroup consisting of the elements orthogonal to the
connected components of C with the respect to the cup-product pairing. In Corollary
3.2 we establish the following amusing fact: if C is geometrically connected, then
for any i ≥ 1 we have a canonical isomorphism of Γ-modules

Hi(Z/2, H2(X,Z/2)) = H1(C,Z/2),

where Z/2 is the automorphism group of the covering π : X → S.

Theorem 1.1 is proved in §3.2. For concrete calculations of the Galois module
structure of Br(X)[2] using (1) we need to have enough information about Pic(S),
Pic(X), Pic(C)[2] and the natural maps between these Galois modules. We sketch
a few applications in §3.3. Corollary 3.5 concerns arbitrary K3 surfaces with a
non-symplectic involution having a non-empty set of fixed points. We also show
that the geometric Brauer group of a diagonal quartic surface defined over any field
of characteristic not equal to 2 contains a Galois-invariant element of order 2, see
Proposition 3.6.

This paper originates from the workshop “Brauer groups and obstruction prob-
lems” at the American Institute of Mathematics, whose hospitality is gratefully
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acknowledged. I would like to thank Bianca Viray for introducing me to the subject
of this note and helpful discussions, Martin Bright for the calculation mentioned in
the end of §3.3, and Jean-Louis Colliot-Thélène and Yuri Zarhin for their interest
in this paper.

2 Cohomology of double covers

Let k be a field of characteristic not equal to 2. In this section we do not assume k

to be algebraically closed.

Let π : X → S, i : C ↪→ S and j : C ↪→ X be as in the first paragraph of
the introduction. Since π and i are finite morphisms, π∗ and i∗ are exact functors
between respective categories of étale sheaves [14, Cor. II.3.6]. In particular, for
any étale sheaf E on X we have Rnπ∗E = 0 for all n > 0, and similarly for i∗. Thus
the spectral sequence Hp(S, Rqπ∗E) ⇒ Hp+q(X, E) degenerates, so that for n ≥ 1 we
have canonical isomorphisms

Hn(S, π∗E) = Hn(X, E), Hn(S, i∗F) = Hn(C,F),

for any étale sheaf E on X and any étale sheaf F on C. We shall use these isomor-
phisms without further comment.

Let OX and OS be the structure sheaves. There is a natural map of coherent
sheaves π∗OX → OS that induces norm on the function fields, see [15, Lecture 10].
The composition of the canonical map OS → π∗OX with π∗OX → OS sends a
function to its square. This gives natural morphisms of étale sheaves

Gm,S −→ π∗Gm,X , π∗Gm,X −→ Gm,S ,

whose composition is [2] : Gm,S → Gm,S . The first of these morphisms is injective
and the second one is surjective.

The canonical morphism Gm,X → j∗Gm,C gives rise to the morphism

π∗Gm,X −→ π∗j∗Gm,C = i∗Gm,C ,

where the last equality follows from i = πj. An immediate verification on stalks
shows the commutativity of the following diagram of étale sheaves on S:

π∗Gm,X −→ Gm,S

↓ ↓

i∗Gm,C
[2]
−→ i∗Gm,C

(2)

Let T be the kernel of π∗Gm,X → Gm,S . We can extend (2) to a commutative
diagram with exact rows

0 −→ T −→ π∗Gm,X −→ Gm,S −→ 0
↓ ↓ ↓

0 −→ i∗(Z/2)C −→ i∗Gm,C
[2]
−→ i∗Gm,C −→ 0

(3)
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The map T → i∗(Z/2)C is adjoint to the isomorphism i∗T −̃→(Z/2)C .

The map of sheaves π∗Gm,X → Gm,S induces a homomorphism of abelian groups
π∗ : Pic(X) → Pic(S), whose kernel we denoted by Pic(X)[π∗]. We deduce from (2)
a commutative diagram with exact rows, which shows that j∗ maps Pic(X)[π∗] to
Pic(C)[2]:

0 // Pic(X)[π∗] //

j∗

��

Pic(X)
π∗ //

j∗

��

Pic(S)

i∗

��
0 // Pic(C)[2] // Pic(C)

[2] // Pic(C)

(4)

Let U be the complement to i(C) in S, and V be the complement to j(C) in X.
We write ρ : U → S and σ : V → X for the corresponding open embeddings, so
that there is a commutative diagram

V
σ //

π

��

X

π

��
U

ρ // S

By restricting the map of étale sheaves π∗Gm,X → Gm,S to the kernels of [2] we
obtain a map f : π∗(Z/2)X → (Z/2)S.

The following lemma is a variation on the Smith exact sequence in topology.

Lemma 2.1 In the bounded derived category D(S) of étale sheaves on S the cone
of f : π∗(Z/2)X → (Z/2)S is canonically quasi-isomorphic to Rρ∗(Z/2)U [1]. Thus
in D(S) there is a canonical exact triangle

Rρ∗(Z/2)U −→ π∗(Z/2)X −→ (Z/2)S. (5)

The associated exact sequence of cohomology is

0 −→ (Z/2)S −→ π∗(Z/2)X
f

−→ (Z/2)S −→ i∗(Z/2)C −→ 0. (6)

Proof. We have an exact sequence of Knus, Parimala and Srinivas

0 −→ (Z/2)U −→ π∗(Z/2)V −→ (Z/2)U −→ 0. (7)

Indeed, for any geometric point of U the sequence of stalks of (7) is

0 −→ Z/2 −→ (Z/2)2 −→ Z/2 −→ 0,

where the second arrow is the diagonal embedding and the third arrow is the sum.
This sequence is visibly exact, so (7) is exact, too.
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The cohomological purity theorem for the smooth pair (S, i(C)) gives the following
canonical isomorphisms:

ρ∗(Z/2)U = (Z/2)S, R1ρ∗(Z/2)U = i∗(Z/2)C , Rnρ∗(Z/2)U = 0 for n > 1, (8)

and similarly for σ : V → X, see [3, Thm. 3.4, pp. 63–64]. For any étale sheaf F
on S we have a canonical truncation morphism in the derived category D(S)

ρ∗F = τ≤0Rρ∗F −→ Rρ∗F .

Since ρ∗π∗(Z/2)V = π∗σ∗(Z/2)V = π∗(Z/2)X , we get a commutative diagram of
exact triangles in D(S)

π∗(Z/2)X
f //

��

(Z/2)S
//

��

Cone(f)

��
Rρ∗(π∗(Z/2)V ) // Rρ∗(Z/2)U

// Rρ∗(Z/2)U [1]

(9)

where the bottom triangle is obtained by applying the derived functor Rρ∗ to (7)
and shifting by 1.

We claim that the morphism Cone(f) → Rρ∗(Z/2)U [1] defined by diagram (9), is
a quasi-isomorphism. For this we note that the long exact sequence of cohomology
attached to the exact triangle Rρ∗(Z/2)U → Rρ∗(π∗(Z/2)V ) → Rρ∗(Z/2)U gives the
exact sequence (6), provided we can justify the surjectivity of the fourth arrow in
(6). This can be checked on stalks. The stalk of i∗(Z/2)C at x /∈ i(C) is zero, so we
can assume x ∈ i(C). Then the sequence of stalks of (6) is

0 −→ Z/2−̃→Z/2 −→ Z/2−̃→Z/2 −→ 0,

which is exact, because the middle arrow here is the zero map. Hence (6) is exact.

By (8) we now conclude from (9) that Cone(f) → Rρ∗(Z/2)U [1] induces an iso-
morphism on all the cohomology groups, so is indeed a quasi-isomorphism. �

The long exact sequence of cohomology associated to (5) has the following form:

−→ Hn−1(S,Z/2)
δ

−→ Hn(U,Z/2)
α

−→ Hn(X,Z/2)
π∗−→ Hn(S,Z/2) −→ (10)

which is the definition of the maps α and δ.

Corollary 2.2 For any n ≥ 0 the following diagram commutes:

Hn(X,Z/2) σ∗
// Hn(V,Z/2)

Hn(S,Z/2)
ρ∗ //

π∗

OO

Hn(U,Z/2)

α
ggPPPPPPPPPPPP

π∗

OO
(11)
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Proof. By Lemma 2.1, after extending (9) to the left we obtain a commutative
diagram

Rρ∗(Z/2)U
//

∼=
��

π∗(Z/2)X

��
Rρ∗(Z/2)U

// Rρ∗(π∗(Z/2)V )

which implies the commutativity of the upper triangle of (11). For the lower triangle
it is enough to note that the truncation map

(Z/2)S = τ≤0Rρ∗(Z/2)U −→ Rρ∗(Z/2)U

composed with the first arrow in (5) is the natural map (Z/2)S → π∗(Z/2)X . �

Lemma 2.1 implies that the obvious commutative diagram of exact triangles

T //

[2]

��

π∗Gm,X
//

[2]

��

Gm,S

[2]
��

T // π∗Gm,X
// Gm,S

gives rise to a commutative diagram in D(S) with exact rows and columns:

Rρ∗(Z/2)U
//

��

π∗(Z/2)X
//

��

(Z/2)S

��
T //

[2]

��

π∗Gm,X
//

[2]

��

Gm,S

[2]

��
T // π∗Gm,X

// Gm,S

(12)

Lemma 2.3 The map T → i∗(Z/2)C from (3) coincides with the composition of
the differential T → Rρ∗(Z/2)U [1] attached to the left hand column of (12) and the
truncation map Rρ∗(Z/2)U [1] →

(
τ≥1Rρ∗(Z/2)U

)
[1] = i∗(Z/2)C.

Proof. This can be checked by a direct calculation on stalks. For this we note that
the composed map T → Rρ∗(Z/2)U [1] → i∗(Z/2)C can be viewed as provided by the
snake lemma applied to the middle and right hand columns of (12). If a geometric
point x ∈ S is not in i(C), then the stalk of i∗(Z/2)C at x is zero, so there is nothing
to check. The stalk of T at x ∈ i(C) is an invertible element of the strictly local
ring Ox,X with norm 1. We can write Ox,X = Ox,S[

√
t], where t ∈ Ox,S is a local

equation of C. Extracting a square root we write our element as (a+ b
√

t)2 for some
a, b ∈ Ox,S such that (a2 − b2t)2 = 1, that is, a2 − b2t = s where s = ±1. We need
to check that (a + b

√
t)2 is congruent to s modulo the maximal ideal (

√
t), which is

immediate. �
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From diagram (12) we obtain a commutative diagram of abelian groups with exact
rows and columns

k∗ //

[2]

��

H1(S, T ) //

[2]

��

Pic(X)
π∗ //

[2]

��

Pic(S)

[2]

��
k∗ //

��

H1(S, T ) //

��

Pic(X)
π∗ //

cl
��

Pic(S)

cl
��

H1(S,Z/2)
δ // H2(U,Z/2)

α // H2(X,Z/2)
π∗ //

��

H2(S,Z/2)

��
Br(X)[2]

π∗ //

��

Br(S)[2]

��
0 0

(13)

where cl is the cycle class map. From (13) we cut out the following commutative
diagram with exact rows:

0 // Pic(X)[π∗] //

β
��

Pic(X)
π∗ //

cl
��

π∗Pic(X)

cl
��

// 0

0 // H2(U,Z/2)/δH1(S,Z/2) // H2(X,Z/2)
π∗ // H2(S,Z/2)[δ] // 0

(14)

where H2(S,Z/2)[δ] is the kernel of δ, and the map β is defined by the diagram.

Remark. The spectral sequence Hp(S, Rqρ∗(Z/2)U ) ⇒ Hp+q(U,Z/2) combined with
the purity theorem (8) gives rise to the Gysin exact sequence:

0 −→ H1(S,Z/2)
ρ∗

−→ H1(U,Z/2) −→ H0(C,Z/2)
θ

−→ H2(S,Z/2)
ρ∗

−→ H2(U,Z/2) −→

H1(C,Z/2)
θ

−→ H3(S,Z/2)
ρ∗

−→ H3(U,Z/2) −→ H2(C,Z/2)
θ

−→ H4(S,Z/2)

The maps marked with θ are called the Gysin maps; we denote by Hn(C,Z/2)[θ]
the kernel of the corresponding Gysin map.

Lemma 2.4 The composition of δ : Hn−1(S,Z/2) → Hn(U,Z/2) with the map
Hn(U,Z/2) → Hn−1(C,Z/2) from the Gysin sequence is the restriction map i∗.

Proof. The composition of the differential (Z/2)S → Rρ∗(Z/2)U [1] defined by (5)
with the truncation map Rρ∗(Z/2)U [1] → i∗(Z/2)C is the map (Z/2)S → i∗(Z/2)C

given by the restriction to C. �

We would like to trim (14) a bit more. By Corollary 2.2 the map π∗ : H2(S,Z/2) →
H2(X,Z/2) factors through H2(U,Z/2). Since π∗π

∗ = [2], the subgroup π∗H2(S,Z/2)
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of H2(X,Z/2) is in the kernel of the map π∗ to H2(S,Z/2). The Gysin sequence shows
that the quotient of H2(U,Z/2) by ρ∗H2(S,Z/2) is H1(C,Z/2)[θ]. Taking quotients
by the images of H2(S,Z/2) we obtain from (14) the following commutative diagram
with exact rows, where we have also used Lemma 2.4:

0 // Pic(X)[π∗] //

β
��

Pic(X)
π∗ //

cl
��

π∗Pic(X)

cl

��

// 0

0 // H1(C,Z/2)[θ]
i∗H1(S,Z/2)

// H2(X,Z/2)
π∗H2(S,Z/2)

π∗ // H2(S,Z/2)[δ] // 0

(15)

The composition π∗π
∗ : Pic(S) → Pic(S) is [2], hence 2Pic(S) ⊂ π∗Pic(X). In

other words, π∗Pic(X) contains 2Pic(S), which is the kernel of the cycle class map
Pic(S) → H2(S,Z/2). Since 2Pic(S) is the surjective image of π∗Pic(S) ⊂ Pic(X),
which is in the kernel of the middle vertical map in (15), an application of the snake
lemma to (15) gives rise to the following exact sequence

0 −→
H1(C,Z/2)[θ]/i∗H1(S,Z/2)

β(Pic(X)[π∗])
−→

Br(X)[2]

π∗(Br(S)[2])
−→

H2(S,Z/2)[δ]

cl(π∗Pic(X))
−→ 0 (16)

From construction it is clear that the map H1(C,Z/2)[θ] −→ Br(X)[2]/π∗(Br(S)[2])
given by (16) is the map Φ defined in the introduction. To say more about Φ we
need to make some simplifying assumptions. The case when the ground field k is
algebraically closed will be considered in the next section.

Proposition 2.5 If C is geometrically connected and H1(S,Z/2) = 0, then the
Gysin map θ : H1(C,Z/2) → H3(S,Z/2) factors through Pic(C)[2]. Let us denote by
Pic(C)[2][θ] the kernel of the resulting map Pic(C)[2] → H3(S,Z/2). Then Φ gives
rise to the exact sequence

0 −→
Pic(C)[2][θ]

j∗(Pic(X)[π∗])
−→

Br(X)[2]

π∗(Br(S)[2])
−→

H2(S,Z/2)[δ]

cl(π∗Pic(X))
−→ 0.

Proof. The spectral sequence Hp(k, Hq(S,Z/2)) ⇒ Hp+q(S,Z/2) shows that in
our assumptions the structure morphism S → Spec(k) induces an isomorphism
H1(k,Z/2)−̃→H1(S,Z/2). Since C is geometrically connected, we have H0(C,Gm) =
k∗. The Kummer sequence then gives an exact sequence

0 −→ k∗/k∗2 −→ H1(C,Z/2) −→ Pic(C)[2] −→ 0

The second arrow here is the map H1(k,Z/2) → H1(C,Z/2) induced by the structure
morphism C → Spec(k), hence its image is i∗H1(S,Z/2).

The composed map H1(S, T ) → H2(U,Z/2) → H1(C,Z/2), after passing to the
quotients by the image of H1(k,Z/2), becomes

Pic(X)[π∗]
β

−→ H2(U,Z/2)/δH1(S,Z/2) −→ Pic(C)[2].
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By Lemma 2.3 this composition is the restriction map j∗. �

Remarks. 1. If S = P2
k, then C is a geometrically irreducible curve. We have

Pic(S) = Z and Br(S) = Br(k).

2. If Pic(X) = Z, then Pic(S) = Z and Pic(X)[π∗] = 0.

3. If we assume that S = P2
k and Pic(X) = Z, then Φ is an injective map from

Pic(C)[2][θ] to the cokernel of the natural map Br(k)[2] → Br(X)[2].

3 Surfaces

3.1 Cohomology of double covers of surfaces

In this section we describe H2(X,Z/2), where X → S is a double covering of a geo-
metrically simply connected surface. This material is related to the classical Smith
theory and is probably well known to the experts. We spell out these descriptions
here as they do not seem to be readily available in this form in the literature.

Proposition 3.1 Let S be a smooth, projective and geometrically integral surface
over k with H1(S,Z/2) = 0, for example, a geometrically simply connected surface.
For any finite surjective morphism π : X → C of degree 2 ramified in a non-empty
smooth curve C we have an exact sequence of Γ-modules

0 −→ H1(C,Z/2) −→ H2(X,Z/2)/π∗H2(S,Z/2)
π∗−→ H2(S,Z/2)⊥C −→ 0, (17)

where H2(S,Z/2)⊥C is the subgroup consisting of the elements orthogonal to the
connected components of C with the respect to the cup-product pairing.

Proof. We obtain (17) from the bottom exact sequence of (15) considered over k̄.
By the Poincaré duality we have H3(S,Z/2) = 0. This implies that H1(C,Z/2)[θ]
is all of H1(C,Z/2). It remains to identify H2(S,Z/2)[δ] with H2(S,Z/2)⊥C . As
H3(S,Z/2) = 0 the Gysin sequence gives the injectivity of the map H3(U,Z/2) →
H2(C,Z/2). By Lemma 2.4 we now obtain that H2(S,Z/2)[δ] is the kernel of the
restriction map

i∗ : H2(S,Z/2) −→ H2(C,Z/2) =
n⊕

i=1

H2(C i,Z/2) = (Z/2)n,

where C1, . . . , Cn are the connected components of C. Each restriction map

H2(S,Z/2) −→ H2(C i,Z/2) = Z/2

coincides with the cup-product with the class of C i in H2(S,Z/2), and the proposi-
tion follows. �
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Corollary 3.2 In the assumptions of Proposition 3.1 assume further that C is ge-
ometrically connected. Then we have the following properties:

(i) the map π∗ : H2(S,Z/2) → H2(X,Z/2) is injective;

(ii) the map π∗ : H2(X,Z/2) → H2(S,Z/2) is surjective;

(iii) there is an exact sequence of Γ-modules

0 −→ H1(C,Z/2) −→ H2(X,Z/2)/π∗H2(S,Z/2)
π∗−→ H2(S,Z/2) −→ 0; (18)

(iv) The automorphism group of the double covering π : X → S defines an action
of Z/2 on H2(X,Z/2). For each i ≥ 1 there is a canonical isomorphism of Γ-modules

Hi(Z/2, H2(X,Z/2)) = H1(C,Z/2).

Proof. (i) In the commutative diagram (11) the map α : H2(U,Z/2) → H2(X,Z/2)
is injective because its kernel is the image of H1(S,Z/2) = 0. Since C is connected we
have H0(C,Z/2) = Z/2. The class of the connected unramified double covering π :
V → U is a non-zero element of H1(U,Z/2). As H1(S,Z/2) = 0 the Gysin sequence
shows that ρ∗ : H2(S,Z/2) → H2(U,Z/2) is injective. By the commutativity of the
diagram (11) we conclude that π∗ : H2(S,Z/2) → H2(X,Z/2) is injective.

(ii) By Proposition 3.1 we need to show that the class of C in H2(S,Z/2) is zero.
This class comes from the class [C] ∈ Pic(S) under the cycle map. But C is the
ramification divisor of π : X → S, so [C] is divisible by 2 in Pic(S).

(iii) This follows from (ii) and the exact sequence (17).

(iv) Let ι : X → X be the involution defined by the double covering π : X → S.
It is well known that for even i ≥ 2 the group Hi(Z/2, H2(X,Z/2)) is canonically
isomorphic to Ker(Id − ι∗)/Im(Id + ι∗). For odd i ≥ 1 the same is true once we
replace ι∗ by −ι∗. Since the coefficient group is Z/2, the sign plays no role and hence
the answer is the same for even and odd i. The map Id + ι∗ can be written as the
composition

H2(X,Z/2)
π∗−→ H2(S,Z/2)

π∗

−→ H2(X,Z/2).

By (i) the second map here is injective, hence Ker(Id + ι∗) = H2(X,Z/2)[π∗]. By
(ii) the first map here is surjective, hence Im(Id + ι∗) = π∗H2(S,Z/2). �

The case when C is a curve of degree 4 in S = P2
k, so that X is a del Pezzo surface

of degree 2, was discussed in [4, Section IX.1], see also [21, Lemma 1.1].

The exact sequence (18) is the analogue of a similar sequence for double coverings
of curves. Let π : C → D be a double covering of smooth, projective and geo-
metrically integral curves ramified in a non-empty 0-dimensional closed subscheme
B ⊂ D. Let us denote by (Z/2)B the permutation Γ-module whose generators
bijectively correspond to the k̄-points of B. Let (Z/2)B

0 ⊂ (Z/2)B be the submod-
ule of vectors with the zero sum of coordinates. Since |B(k̄)| is even, the diagonal
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Z/2 ⊂ (Z/2)B is contained in (Z/2)B
0 . Using the same methods as above, that is, the

Gysin sequence and (10), one obtains the well known exact sequence of Γ-modules

0 −→ (Z/2)B
0 /Z/2 −→ H1(C,Z/2)/π∗H1(D,Z/2)

π∗−→ H1(D,Z/2) −→ 0 (19)

and the injectivity of π∗ : H1(D,Z/2) → H1(C,Z/2). The proof is left to the reader.

Remarks. 1. Let us return to the situation of Proposition 3.1. In this case the proof
of Corollary 3.2 shows that the kernel of the map π∗ : H2(S,Z/2) → H2(X,Z/2) is
the subgroup LC generated by the classes of the connected curves C i, for i = 1, . . . , n.
Thus the non-degenerate cup-product pairing

H2(S,Z/2) × H2(S,Z/2) −→ Z/2

induces an isomorphism of Γ-modules

π∗H2(S,Z/2) = H2(S,Z/2)/LC = Hom(H2(S,Z/2)⊥C ,Z/2).

2. The cup-product pairing satisfies the property (π∗(x), π∗(y)) = 2(x, y) for any
x, y ∈ H2(S,Z/2). Therefore, π∗H2(S,Z/2) is a hyperbolic subspace of H2(X,Z/2)
with respect to the intersection pairing. In the particular case when C is a disjoint
union of projective lines, so that H1(C,Z/2) = 0, we obtain that π∗H2(S,Z/2) is a
maximal hyperbolic subspace of H2(X,Z/2). This situation arises when X is the
blowing-up of the eight fixed points of a symplectic involution on a K3 surface, and
S is the K3 surface which is the quotient of X by this involution. Likewise, it arises
when X is the blowing-up of the sixteen fixed points of the antipodal involution of
an abelian surface, and S is the associated Kummer surface.

3.2 Proof of Theorem 1.1

Let k be an algebraically closed field of characteristic not equal to 2. We now assume
that S is a surface such that Pic(S)[2] = Br(S)[2] = 0. Since S is projective, the
Kummer sequence gives H1(S,Z/2) = 0. The vanishing of Br(S)[2] implies the
surjectivity of the class map Pic(S)/2−̃→H2(S,Z/2). The Kummer sequence for C

gives an isomorphism H1(C,Z/2) = Pic(C)[2]. By Poincaré duality H1(S,Z/2) = 0
implies H3(S,Z/2) = 0.

Lemma 3.3 The composition Pic(X)[π∗]
β

−→ H2(U,Z/2) → Pic(C)[2] is the re-
striction map j∗.

Proof. Since k is algebraically closed, and both S and X are connected varieties,
from the definition of T we obtain H1(S, T ) = Pic(X)[π∗]. By Lemma 2.3 the map
j∗ : H1(S, T ) = Pic(X)[π∗] → Pic(C)[2] factors through H2(U,Z/2), as required. �
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Therefore, in our situation, (16) takes the form

0 −→
Pic(C)[2]

j∗Pic(X)[π∗]
−→ Br(X)[2] −→

H2(S,Z/2)[δ]

cl(π∗Pic(X))
−→ 0. (20)

To complete the proof of Theorem 1.1 we use the following lemma.

Lemma 3.4 The kernel of δ : H2(S,Z/2) → H3(U,Z/2) is Pic(S)even/2Pic(S).

Proof. By Lemma 2.4 the composition of δ : H2(S,Z/2) → H3(U,Z/2) with the map
H3(U,Z/2) → H2(C,Z/2) from the Gysin sequence is the restriction map i∗. Since
H3(S,Z/2) = 0, we obtain from the Gysin sequence that H2(S,Z/2)[δ] is the kernel
of the restriction map

H2(S,Z/2) → H2(C,Z/2) = (Z/2)π0(C).

If C ′ is a connected component of C, the corresponding restriction map Pic(S)/2 →
Z/2 is the cup-product modulo 2 with the class of C ′ in Pic(S). �

Remark. If U is affine, we have H3(U,Z/2) = 0 by the affine Lefschetz theorem.

3.3 Surfaces to which the theorem can be applied

A K3 surface X that is a double cover of a rational surface S has an involution σ

such that S = X/σ. This involution is non-symplectic, that is, it acts on H0(X, Ω2)
by −1. Furthermore, the set of fixed points Xσ is a non-empty smooth curve which
is not necessarily connected [17, Section 4].

Corollary 3.5 Let X be a smooth K3 surface over C with a non-symplectic involu-
tion σ such that Xσ 6= ∅. Let π : X → X/σ be the quotient map, and let j : Xσ → X

be the natural closed embedding. Then there is an exact sequence

0 −→ Pic(Xσ)[2]/j∗(Pic(X)[π∗]) −→ Br(X)[2] → Pic(X/σ)even/π∗Pic(X) → 0.

Proof. By [17, Section 4] S = X/σ is a smooth rational surface and C = Xσ is a
non-empty smooth curve in S. Thus the corollary follows from Theorem 1.1. �

Below we list examples of del Pezzo surfaces S doubly covered by K3 (or more
general) surfaces. Here k is a field of characteristic different from 2.

(1) Let S = P2
k and let π : X → P2

k be a double covering ramified in a smooth
curve of even degree C. If Pic(X) is generated by π∗O(1), the exact sequence (1)
takes the form

0 −→ Pic(C)[2]
Φ

−→ Br(X)[2] −→ Z/2 −→ 0.
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This is the exact sequence of [5, Thm. 2.4] or [20, Thm. 6.2]. Without assuming
that the Picard rank of X is 1, with some extra work one can deduce from (1) the
exact sequence of [12, Thm. 1.1] mentioned in the introduction.

(2) See [20, Examples 5.6, 6.3] for K3 surfaces that are double covers of the quadric
P1

k × P
1
k or the ruled surface F1.

(3) A del Pezzo surface S of degree 4 is a smooth complete intersection of two
quadrics in P4

k. A smooth complete intersection of the projective cone over S and a
quadric in P5

k that does not pass through its vertex is a K3 surface doubly covering
S. According to [19, Cor. 3.3] for any del Pezzo surface S of degree 4 over k there
exists a curve D of genus 2 and a 2-covering Jλ of the Jacobian J of D with the
following property. Let Kλ be the Kummer surface associated to Jλ. Then J [2]
acts on Kλ and on S and there is a J [2]-equivariant finite morphism π : Kλ → S

of degree 2 ramified in a canonical curve C of genus 5. This morphism maps the
sixteen rational curves of Kλ (corresponding to the J [2]-torsor in Jλ which is the
inverse image of 0 under the canonical map Jλ → J) to the sixteen lines in S. See
[19, §3.2] for details; see also [16] and [7]. Since the classes of lines on S generate
Pic(S), we see that in this case we have π∗Pic(X) = Pic(S).

(4) A del Pezzo surface S of degree 3 is a smooth cubic surface in P3
k. A smooth

complete intersection of the projective cone over S and a quadric in P4
k not passing

through the vertex of the cone is a K3 surface that is a double cover of S.

(5) Finally, a del Pezzo surface S of degree 2 is a double cover of P2
k ramified

in a smooth quartic curve C. The class of C in Pic(S) is divisible by 2, so there
is a double cover X → S ramified exactly in C. If C is given by a quartic form
f(x, y, z) = 0, then X is a quartic K3 surface with equation t4 = cf(x, y, z) for some
c ∈ k∗. In the particular case when f(x, y, z) is a diagonal quartic form we obtain
the following statement.

Proposition 3.6 Let k be a field of characteristic different from 2, and let X ⊂ P3
k

be the surface given by
ax4 + by4 + cz4 + dw4 = 0,

where a, b, c, d ∈ k∗. The group Br(X)Γ contains an element of order 2.

Proof. The branch curve C is isomorphic to the Fermat quartic curve, so we may
assume f(x, y, z) = x4 + y4 + z4. It is well known that Pic(X) ' Z20, so that
Br(X)[2] ' (Z/2)2. The group Pic(S) is generated by the (−1)-curves in S that
map to the 28 bitangents to C in P2

k̄
. On the other hand, Pic(X) is generated by

the obvious 48 lines on X, see [18, Lemma 1]. The morphism π : X → S maps
these 48 lines to those (−1)-curves in S that lie above the lines in P2

k̄
which meet C

in exactly one point with multiplicity 4. Hence π∗Pic(X) is the subgroup of Pic(S)
generated by the (−1)-curves above such lines in P2

k̄
. A calculation performed by

Martin Bright shows that π∗Pic(X) is a subgroup of Pic(S) of index 2. Now (1)
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shows that j∗(Pic(X)[π∗]) has index 2 in Pic(C)[2]. We conclude from Theorem 1.1
that Φ : Pic(C)[2] → Br(X)[2] factors through an injective map of Galois modules
Z/2 → Br(X)[2]. �

Questions. 1. When is the non-zero element of Br(X)[2]Γ from Proposition 3.6
contained in the image of the natural map Br(X) → Br(X)?

2. How does the Galois group Γ act on Br(X)[2]?

For k = Q a theorem of Evis Ieronymou [9, Thm. 5.2] says that if 2 is not
in the subgroup of Q∗ generated by −1, 4, b/a, c/a, d/a and Q∗4, then the map
Br(X){2} → Br(X) is zero, where Br(X){2} is the 2-primary subgroup of Br(X).
Thus in this case no non-zero element of Br(X)[2]Γ comes from Br(X). I do not
know what happens if this condition is not fulfilled. See [9, 10, 11] and references in
these papers for known facts about the Brauer group of diagonal quartic surfaces.
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