
Mainz lectures

Alexei N. Skorobogatov

October 13, 2017

1 Kuga–Satake variety

Setting the scene: preliminaries on K3 surfaces

A complex (algebraic) K3 surface X is a smooth, projective, irreducible surface
with Ω2

X
∼= OX and H1(X,OX) = 0. Using Serre duality and Riemann–Roch one

finds that the classical (Betti) cohomology group H2(X,Z) is a free abelian group
of rank 22. We have the cup-product

∪ : H2(X,Z)× H2(X,Z) −→ H4(X,Z) ∼= Z,

where the last isomorphism is due to the fact that dim(X) = 2. This is a symmetric
bilinear pairing. The Poincaré duality implies that this pairing is a perfect duality,
that is, it induces an isomorphism

H2(X,Z)−̃→Hom(H2(X,Z),Z).

In other words, the matrix of this bilinear form with respect to a Z-basis of H2(X,Z)
has determinant in Z× = {±1}. Topological arguments (Wu’s formula, Thom–
Hirzebruch index theorem) give that the associated integral quadratic form is even,
i.e. (x2) ∈ 2Z for any x ∈ H2(X,Z), and of signature (3, 19). By the classification of
even integral quadratic forms, this implies that H2(X,Z) can written as the orthog-
onal direct sum L = E8(−1)⊕2 ⊕ U⊕3. Here E8 is the (positive definite) root lattice
of the root system E8; the lattice E8(−1) is obtained by multiplication of the form
on E8 by −1, and U is the hyperbolic lattice of rank 2 (with quadratic form 2x1x2).

Complex tori and their Hodge structures

Let M be a finitely generated free abelian group. Following Deligne, an integral
HS on M is a representation of the 2-dimensional real torus S = ResC/R(Gm,C) in
GL(MR). Then we have a Hodge decomposition MC = ⊕p,qMp,q such that z ∈
S(R) = C× acts on Mp,q by zpz̄q. The space M q,p is the complex conjugate of Mp,q.
If p+ q = n for all terms in the decomposition, the HS is said to have weight n.

1



A complex torus is Cg/Λ, where Λ ∼= Z2g is a full lattice, i.e. Λ ⊗Z R = Cg.
To give a complex torus is the same as to give an integral Hodge structure of type
{(1, 0), (0, 1)} on Λ. An abelian variety is a complex torus with a polarisation, which
is an integral skew-symmetric form on Λ satisfying some conditions. (This can be
also rephrased by saying that the integral HS is polarisable.) For a curve C of genus
g the spaces H1,0 ∼= H0(C,Ω1

C) and H0,1 ∼= H1(C,OC) have dimension g, so the
Hodge decomposition

H1(C,Z)C = H1(C,C) = H1,0 ⊕ H0,1

gives rise to a complex torus. Explicitly, integrating g linearly independent holo-
morphic 1-forms over 2g elements of a Z-basis of H1(C,Z) produces a full lattice
Λ ⊂ Cg (defined up to a non-zero multiple). Then one shows that the complex torus
Cg/Λ has a polarisation, so is an abelian variety.

Hodge structures of K3 type

In a very rough analogy to the Jacobian of a curve, one would like to associate to
a complex K3 surface an abelian variety. So let us look at the Hodge structure of a
K3 surface with a polarisation. The Hodge decomposition is

H2(X,Z)C = H2(X,C) = H2,0 ⊕ H1,1 ⊕ H0,2,

where H2,0 ∼= H0(X,Ω2
X) and H0,2 ∼= H2(X,OX) are both 1-dimensional vector spaces

over C. Choose a non-zero ω ∈ H2,0. Since H4,0 = 0 we have (ω2) = 0. The complex
conjugate ω is a non-zero element of H0,2. Since the pairing

H2,0 × H0,2 −→ H2,2 = H4(X,C) ∼= C

is non-degenerate and the cup-product is symmetric, (ω.ω) is a positive real number.
Since H3,1 = 0 we have H2,0 ⊥ H1,1.

It is convenient to twist the HS on H2(X,Z) by 1:

H2(X,Z(1))C = H1,−1 ⊕ H0,0 ⊕ H−1,1.

This has the advantage that the image of S lies in SO(H2(X,Z))R. (This also means
rescaling the image of the integral cohomology inside the complex cohomology by
2πi, but we shall ignore this.)

The Picard group of a complex K3 surface is a free abelian gropup. Its rank ρ is
called the Picard number. The cycle class map gives an embedding

Pic(X) ↪→ H2(X,Z(1)).

By the Lefschetz theorem Pic(X) = H2(X,Z(1)) ∩ H(0,0). Hence 1 ≤ ρ ≤ 20. The
orthogonal complement to Pic(X) in H2(X,Z(1)) is called the transcendental lattice
and is denoted by T (X).
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Definition 1.1 Let M be a finitely generated free abelian group with a non-degenerate
integral symmetric bilinear form. An integral HS on M is called a Hodge structure
of K3 type, if the Hodge decomposition is

MC = M1,−1 ⊕M0,0 ⊕M−1,1,

where dim(M1,−1) = 1, M1,−1 ⊥ M0,0, and for a non-zero ω ∈ M1,−1 we have
(ω2) = 0, (ω.ω) > 0.

Take a primitive element λ ∈ L, (λ2) = 2d > 0. It can be proved that the set of
such elements is an orbit of Aut(L), hence the isomorphism class of the orthogonal
complement λ⊥ ⊂ L depends only on d, e.g. λ⊥ is isomorphic to

Ld = E8(−1)⊕2 ⊕ U⊕2 ⊕ (−2d).

Ld has signature (2, 19). We thus associate to a K3 surface X with a primitive
polarisation of degree 2d an integral HS of K3 type on Ld.

Associating to an integral HS on Ld of K3 type the 1-dimensional space H1,−1

defines a point in the period domain

Ωd = {x ∈ P(Ld,C) | (x2) = 0, (x, x̄) > 0} = SO(2, 19)(R)/SO(2)(R)× SO(19)(R).

The second formula identifies Ωd with the Grassmannian of positive definite oriented
2-dimensional real subspaces of Ld ⊗ R ' R21, by sending x to the plane spanned
by Re(x), Im(x) in this order. Ωd has two isomorphic connected components that
are interchanged by the complex conjugation (or reversing the orientation).

Although the difference between HS of curves and K3 surfaces prevents us from
constructing an analogue of the Jacobian for K3 surfaces without more work, we
nevertheless have the following very important result. The classical Torelli theorem
says that the isometry class of the integral HS on H1(C,Z) uniquely determines the
curve C. Piatetskii-Shapiro and Shafarevich proved that the isometry class of the
integral HS on H2(X,Z) uniquely determines the K3 surface X.

Another obstacle is that the cup-product pairing on H2(X,Z) is symmetric, whereas
for an abelian variety one would need a skew-symmetric pairing, such as the one
given by the cup-product on H1(C,Z). Is there a way to go from the special orthog-
onal group SO(21) to a simplectic group Sp(m) for some m? In the representation
theory of Lie algebras one shows that the Lie algebra o(2n + 1) has a remarkable
irreducible representation of dimension 2n, called the spinor representation. It has
a unique invariant bilinear form which is skew-symmetric when n is 1 or 2 mod 4,
so there is a way get a simplectic Lie algebra from o(2n+ 1).

Clifford algebra and spinor group

For Lie groups this is a bit more subtle: one needs to replace SO(21) (which is not
simply connected) by its unramified double cover Spin(21) → SO(21). The spinor
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group is constructed using the Clifford algebra associated to our quadratic form. Let
M be a finitely generated free abelian group with a non-degenerate quadratic form q.
Define the Clifford algebra C(M) as the quotient of the full tensor algebra ⊕n≥0M

⊗n

by the two-sided ideal I generated by the elements of the form x⊗x−q(x), for x ∈M .

It is clear that there is an isomorphism of abelian groups C(M) ' ⊕rk(M)
n=0 ∧nM , so

the rank of C(M) is 2rk(M). The multiplication by −1 on M acts on ⊕n≥0M
⊗n. Let

us denote by plus the invariant elements and by minus the anti-invariant elements.
Since x⊗ x− q(x) is invariant, we have I = I+ ⊕ I−. Thus we can define

C+(M) = (⊕n≥0M
⊗2n)/I+, C−(M) = (⊕n≥0M

⊗2n+1)/I−,

where the first equality is the quotient of a ring by an ideal, whereas the second one
is the quotient of a (left or right) ⊕n≥0M

⊗2n-module ⊕n≥0M
⊗2n+1 by the submodule

I−. We have a natural homomorphism M → C−(M). Over an algebraically closed
field the structure of the Clifford algebra is easy: if rk(M) is odd, then C+(MC)
is isomorphic to a matrix algebra EndC(W ), where W is the spinor representation
of GSpin(MC). (Exercise: Prove that C(MC) is isomorphic to a matrix algebra if
rk(M) is even. For this assume that q is the orthogonal direct sum of the hyperbolic
forms (e2

i ) = (f 2
i ) = 0, (ei, fi) = 1, for i = 1, . . . , n, and show that W can be the full

exterior algebra of the linear span of e1, . . . , en. Deduce that C+(MC) is isomorphic
to a matrix algebra if rk(M) is odd.)

Define the spinor group as

GSpin(M) = {g ∈ C+(M)×|gMg−1 = M}.

It acts by conjugation on M preserving the quadratic form. This gives an exact
sequence of algebraic groups over Q:

1 −→ Gm,Q −→ GSpin(M)Q −→ SO(M)Q −→ 1.

Next, consider the adjoint action of GSpin(M) on C+(M), i.e. the action by conju-
gations. This representation of GSpin(M)Q is isomorphic to the direct sum of ∧2nM
for n ≥ 0.

Kuga–Satake construction I

Let us apply this to the second cohomology of a K3 surface X. Fix a primitive
ample class λ ∈ H2(X,Z(1)) and define P as the orthogonal complement to λ in
H2(X,Z(1)), in particular rk(P ) = 21. We have

PC = P 1,−1 ⊕ P 0,0 ⊕ P−1,1.

Kuga and Satake showed how to define a canonical complex structure on the real
vector space C+(PR). We can normalise ω ∈ P 1,−1 so that (ω.ω) = 2. Write
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ω = ω1 + iω2, where ω1, ω2 ∈ H2(X,R). Then (ω2
1) = (ω2

2) = 1 and (ω1, ω2) = 0. By
the definition of the Clifford algebra, the following holds in C(PR):

ω2
1 = ω2

2 = 1, ω1ω2 = −ω2ω1.

Let I = ω1ω2 ∈ C+(PR). (Check that I does not depend on ω.) Then I2 = −1,
so the left multiplication by I defines a complex structure on the real vector space
C+(PR), thus making C+(PR)/C+(P ) a complex torus.

In Deligne’s version one equips C+(P ) with an integral HS of type {(1, 0), (0, 1)}
as follows. Since S preserves the quadratic form on PR, we have a homomorphism
h : S → SO(P )R whose kernel is {±1}. For any a, b ∈ R, not both equal to 0, we
have a + bI ∈ GSpin(P )(R). Deligne points out that this is a canonical lifting of
h : S → SO(P )R to h̃ : S ↪→ GSpin(P )R. (Exercise. Write z = a + bi. Check that
a+ bI ∈ C+(PR) and x 7→ (a+ bI)x(a+ bI)−1 acts on ω via multiplication by zz̄−1,
on ω via multiplication by z̄z−1, and fixes P 0,0 ∩ PR.) This means that the adjoint
action of GSpin(PQ) on P induces our original HS on P , so it is a HS of K3 type.

Lemma 1.2 The left action of GSpin(P )Q on C+(PQ) induces an integral HS of
type {(1, 0), (0, 1)} on C+(PQ).

Proof. The adjoint representation of GSpin(P )Q on C+(PQ) is isomorphic to the
direct sum of ∧2nPQ for n ≥ 0. This implies that the induced HS on ∧2nPQ is
of type {(1,−1), (0, 0), (−1, 1)}. Hence the adjoint HS on C+(PQ) is also of type
{(1,−1), (0, 0), (−1, 1)}. Over C the adjoint representation of GSpin(P )C on the
matrix algebra C+(PC) is identified with EndC(W ) = W ⊗C W

∗, where W is the
spinor representation. Thus the action of GSpin(P )C on C+(PC) by left multipli-
cation is isomorphic to W dim(W ) as a representation of GSpin(P )C. Therefore, the
action of S ⊂ GSpin(P )R by left multiplication induces an integral HS on C+(P ); its
type must be {(1, 0), (0, 1)} or {(−1, 0), (0,−1)} otherwise the HS on W ⊗CW

∗ can-
not be of type {(1,−1), (0, 0), (−1, 1)}. But R× ⊂ C× acts on C+(P ) tautologically,
so the weight of W is 1 and the type is {(1, 0), (0, 1)}. �

It can be shown that this HS is polarisable, so we actually obtain an abelian
variety and not just a complex torus. It is called the Kuga–Satake variety attached
to (X,λ). Let us denote it by KSX . Here is a crucial property of KSX .

Lemma 1.3 We have a natural isomorphism of abelian groups H1(KSX ,Z) = C+(P ).
The left action of C+(P ) on C+(P ) commutes with the right action of the opposite
algebra C = C+(P )op. This gives an isomorphism of algebras

C+(P ) = EndC(H1(KSX ,Z)),

which is also an isomorphism of Hodge structures of weight 0. This is also an
isomorphism of GSpin(P )-modules (with respect to the adjoint action on C+(P )
and the standard action on the endomorphisms), and it is a unique isomorphism
with this property.
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Proof The left multiplication gives an injective map C+(P )→ End(C+(P )) because
C+(P ) contains 1. Its image lies in EndC(C+(P )) and coincides with it, because an
element of EndC(C+(P )) is determined by the image of 1. It remains to show that
any automorphism of C+(P ) commuting with the adjoint action of GSpin(P ) must
be the identity. This can be proved over C. Since C+(PC) is a matrix algebra, by
the Skolem–Noether theorem any automorphism is x→ axa−1, where a ∈ C+(PC).
This implies that the commutator aga−1g−1 is in the centre of the matrix algebra
C+(PC). Since det(aga−1g−1) = 1, this commutator is a root of 1. But GSpin(P )C
is connected, and aga−1g−1 = 1 for g = 1, so aga−1g−1 = 1 for any g ∈ GSpin(P )C.
Hence a commutes with GSpin(P )C, so a is scalar, but then axa−1 = x. �

2 Moduli spaces as Shimura varieties

Moduli space of polarised K3 surfaces

Let O(Ld) be the orthogonal group of Ld. Define

Õ(Ld) = {g ∈ O(Ld) | g acts trivially on the discriminant group L∗d/Ld ' Z/2d}.

This is the stabiliser of λ in O(L). The key (difficult) facts are:

(1) Õ(Ld)\Ωd is a quasi-projective irreducible variety over C;

(2) there is a coarse moduli space Md of K3 surfaces with a primitive polarisation
of degree 2d;

(3) Md is a Zariski open subset of Õ(Ld)\Ωd.

Note that Md is not smooth, though it is smooth as an orbifold (or Deligne–Mumford
stack). This description is a K3 analogue of the coarse moduli space of elliptic curves
SL(2,Z)\H or the moduli space of dimension g ppav’s Ag = Sp(2g,Z)\Hg, where H
is the usual upper half-plane and Hg is the Siegel upper half-plane. (In fact, Ωd, H,
Hg are Hermitian symmetric domains, so property (1) follows from the Baily–Borel
theorem about quotients of Hermitian symmetric domains by torsion-free arithmetic
sugroups of their automorphism groups.)

Replacing O(Ld) by the index 2 subgroup SO(Ld) replaces Md by an unramified

double cover M̃d →Md.

In modern language Ag and M̃d are the sets of C-points of Shimura varieties.
We have seen that a point in Ωd is a homomorphism S → SO(Ld)R. The action
of SO(Ld)(R) on Ωd is transitive, so Ωd can be identified with the conjugacy class
of h in Hom(S, SO(Ld)(R)). This is similar to the classical identification of H =
SL(2)(R)/SO(2)(R) with the conjugacy class of S ⊂ GL(2)+

R . (Here GL(2)+
R is given

by the condition det(x) > 0; note that GL(2)(R)/S = H±.)

A Shimura datum is a pair (G,X), where G is a connected reductive algebraic
group over Q and X is a G(R)-conjugacy class in Hom(S, G(R)) satisfying certain
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axioms ensuring that X is an Hermitian symmetric domain. Morphisms of Shimura
data are defined in the obvious way. In the K3 case (SO(Ld),Ωd) is a Shimura
datum. In the case of ppav’s the Shimura datum is (GSp2g,H±g ).

A congruence subgroup is a subgroup of G(Q) cut out by a compact open subgroup
K ⊂ G(AQ,f), where AQ,f is the ring of finite adèles. (Equivalently, a subgroup whose
subgroup of finite index preserves a lattice modulo some integer N in a rational
representation.) Deligne’s definition of the Shimura variety defined by the Shimura
datum (G,X) and a compact open subgroup K ⊂ G(AQ,f) is

ShK(G,X)C = G(Q)\X ×G(AQ,f)/K,

where G(Q) acts diagonally on both factors on the left, whereas K acts on G(AQ,f)
on the right. The crucial fact is that any Shimura variety ShK(G,X) is defined over
a number field, it is a so called canonical model. The set ShK(G,X)(C) is a disjoint
union of the quotients Γ\X0, where X0 is a connected component of X and Γ is a
congruence subgroup of the stabiliser G(Q)0 ⊂ G(Q) of X0. Rizov proved that Md

is defined over Q, similarly to Ag.
We have M̃d ↪→ ShK0(SO(Ld)Q,Ωd) for some K0. One can choose K in such a

way that a Zariski open subscheme M̃d,K ↪→ ShK(SO(Ld)Q,Ωd) carries a universal
family of K3 surfaces with a level structure given by K. (We shall not need its
precise description.)

Kuga–Satake construction II

Recall that h : S → SO(Ld)R canonically lifts to h̃ : S → GSpin(Ld)R. It follows
that the GSpin(Ld)(R)-conjugacy class of h̃ : S → GSpin(Ld)R maps bijectively
to Ωd, the SO(Ld)(R)-conjugacy class of h. This shows that the homomorphism
GSpin(Ld)→ SO(Ld) naturally extends to a morphism of Shimura data

(GSpin(Ld),Ωd) −→ (SO(Ld),Ωd).

On the other hand, the choice of a polarisation defines a morphism of Shimura data

(GSpin(Ld),Ωd) −→ (GSp2g,H±g ),

where g = 219. In fact, one can choose congruence subgroups K ⊂ SO(Ld)Q,
K1 ⊂ GSpin(Ld)Q and K2 ⊂ GSp2g,Q in such a way that there are finite morphisms
of Shimura varieties defined over some number field

ShK(SO(Ld)Q,Ωd)
α←− ShK1(GSpin(Ld),Ωd)

β−→ ShK2(GSp2g,H±g ). (1)

Moreover, we can choose K, K1 and K2 in such a way that a non-empty Zariski
open subset of ShK(SO(Ld)Q,Ωd) carries a universal family of K3 surfaces with
polarisation of degree 2d and the level structure given by K. (K1 and K2 are given
by the condition ρ(g) ≡ 1 mod N , where ρ is the relevant representation, N ≥ 3.)
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Pulling this family back to ShK1(GSpin(Ld),Ωd) we obtain a non-empty Zariski open
subset U of ShK1(GSpin(Ld),Ωd) with a universal family of K3 surfaces π : X → U
with polarisation of degree 2d and the ‘spin’ level structure given by K1. Associating
to these K3 surfaces their Kuga–Satake abelian varieties we get an abelian scheme
a : A → U with a certain level structure. A generalisation of Lemma 1.3 based
on the comparison theorems between étale and Betti cohomology is the following
statement.

Proposition 2.1 There is a unique isomorphism of local systems

C+(P 2π∗Z(1)) ∼= EndC(R1a∗Z).

Here P 2π∗Z(1) is the relative orthogonal complement to the ample primitive class
λ ∈ R2π∗Z(1), and C = C+(Ld)

op. For any prime ` there is a unique isomorphism
of étale Z`-sheaves

C+(P 2π∗Z`(1)) ∼= EndC(R1a∗Z`).

The two isomorphisms are compatible via the comparison isomorphisms between clas-
sical and `-adic étale cohomology.

The uniqueness has the following strong consequence for K3 surfaces defined over
a non-closed field k of characteristic zero. Let k̄ be an algebraic closure of k. Write
Γ = Gal(k̄/k) and X = X ×k k̄. Note that if k ⊂ C, then Pic(X) is naturally
isomorphic to Pic(XC).

Corollary 2.2 Let X be a projective K3 surface over a field k of characteristic zero.
There exists a finite extension k′/k and an abelian variety A over k′ with complex
multiplication by C such that there is an isomorphism of Gal(k̄/k′)-modules

C+(P 2(X,Z`(1))) ∼= EndC(H1(A×k′ k̄,Z`))

for any prime `.

Proof. Any projective variety X over k of characteristic zero is actually defined over
a field finitely generated over Q. (Join to Q the coefficients of the equations that
define X is some projective space.) So we can assume without loss of generality
that k can be embedded into C. Then we have the previous constructions giving us
the morphisms α and β in (1), together with the universal families π : X → U and
a : A→ U . After a finite extension of k we can assume that the morphisms α and β
in (1) are defined over k′ and X has a spin level structure defined over k′. Hence the
specialisation of the isomorphism of Proposition 2.1 gives a unique isomorphism.
Since it is unique, it must be compatible with the natural Galois action on both
sides. �
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An easy variant of this result gives an abelian variety A (isogenous to the abelian
variety of Corollary 2.2) defined over a finite extension k′ and an embedding of
Gal(k̄/k′)-modules

H2
ét(X,Q`(1)) ↪→ End(H1(A×k′ k̄,Q`)). (2)

When k ⊂ C, this map is compatible, via the comparison theorem between Betti
and étale `-adic cohomology, with the embedding of integral Hodge structures of
weight 0:

H2(XC,Z(1)) ↪→ End(H1(AC,Z)).

Similarly, by avoiding the finitely many primes dividing the discriminant of the
intersection pairing on Pic(X), one obtains an embedding of Gal(k̄/k′)-modules

H2
ét(X,µ`) ↪→ EndF`

(A[`]). (3)

Deligne used this to prove the Weil onjectures for K3 surfaces over finite fields
(before he proved the general case), but this theory has many other nice applications.
First of all, the semisimplicity of the Galois module H2

ét(X,Q`(1)) for a K3 surface
X follows from (2) and the semisemplicity for abelian varieties.

Theorem 2.3 Let X be a K3 surface over a field k finitely generated over Q. Then
the Tate conjecture holds for X, that is, we have

H2
ét(X,Q`(1))Γ = Pic(X)Γ ⊗Z Q`.

Note that the profinite, hence compact group Γ acts continuously on the discrete
group Pic(X), so this action factors through a finite quotient of Γ, i.e. Gal(k′/k)
for a finite Galois extension k′ of k.

Proof of Theorem 2.3. This can be done over a finite extension of k, so we can
assume that Γ acts trivially on Pic(X) and on End(A). We need to show that the Γ-
invariant subspace of H2

ét(X,Q`(1)) is Pic(X)⊗ZQ`. By Faltings, the Tate conjecture
holds for A. Thus the Γ-invariant subspace of End(H1(A,Q`)) is End(A) ⊗Z Q`.
Hence the image of H2

ét(X,Q`(1))Γ in End(H1(A,Q`)) belongs to the Q`-span of the
intersection of the image of H2(XC,Q(1)) in End(H1(AC,Q)) with End(A)⊗Z Q ⊂
End(H1(AC,Q)). But such elements of End(H1(AC,Q)) have Hodge type (0, 0).
Hence every element of H2

ét(X,Q`(1))Γ is a Q`-linear combination of classes of type
(0, 0). By the Lefschetz theorem, each such class is algebraic. �

Theorem 2.4 Let X be a K3 surface over a field k finitely generated over Q. Then
Br(X)Γ is finite.
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Proof. The `-primary torsion subgroup Br(X)Γ{`} is finite for all primes `. This
follows from the Tate conjecture for divisors and the semisimplicity of the Galois
module H2

ét(X,Q`(1)) in exactly the same way as for abelian varieties.

To prove that Br(X)Γ[`] = 0 for almost all ` we use the same strategy as for
abelian varieties. The argument reduces to proving that for almost all ` we have
H2

ét(X,µ`)
Γ = (Pic(X)/`)Γ. For this it is enough to show that (T (X)/`)Γ = 0 for

almost all `, where T (X) = Pic(X)⊥ is the transcendental lattice of X. By the
Lefschetz theorem and the non-degeneracy of the intersection pairing on Pic(X),
the transcendental lattice T (X) does not contain non-zero elements of Hodge type
(0, 0). Hence the image of T (X) in End(H1(AC,Z)) has trivial intersection with
End(A). It follows that the image of T (X)/` in EndF`

(A[`]) intersects trivially with
End(A)/` = End(A)/` for almost all `. By Faltings and Zarhin, for almost all ` we
have

EndF`
(A[`])Γ = End(A)/`.

Thus (T (X)/`)Γ = 0 for almost all `. �

3 Complex multiplication for K3 surfaces

CM points of Shimura varieties

Let H be an integral HS defined by a homomorphism h : S → GL(H)R. The
Mumford–Tate group is the smallest connected algebraic group MT ⊂ GL(H)Q
such that h(S) ⊂ MTR. Note that MT is defined over Q, whereas h(S) is defined
over R. One says that H has CM type if MT is commutative (then MT is an
algebraic torus).

A point in a Shimura variety ShK(G,X) is called a CM point if it comes from
a homomorphism h : S → G whose image is contained in TR, where T ⊂ G is an
algebraic torus defined over Q. Each CM point of a Shimura variety is defined over
a number field; in fact, canonical models of Shimura varieties are defined precisely
in order for this to hold. The existence of CM points is thus the fundamental reason
for the existence of canonical models of Shimura varieties.

Consider the example of ShK(GL(2),H±), where K = GL(2, Ẑ). This is the coarse
moduli space of elliptic curves parametrised by their j-invariant, that is, the affine
line A1(C) = SL(Z)\H defined over Q. An elliptic curve E has CM when End(E)Q
is an imaginary quadratic field K. In this case S ⊂ GL(2)R is in fact an algebraic
torus MTE defined over Q and isomorphic to ResK/Q(Gm,K). The point of A1

Q
corresponding to an elliptic curve with CM is defined over a number field. (Class field
theory interpretes it as the ring class field of the order End(E) ⊂ End(E)Q = K.)
It is known that then j ∈ Q (in fact, j is an algebraic integer).

Another example is Ag = ShK(GSp2g,H±), where K = GSp2g(Ẑ), which is the
coarse moduli space of principally polarised abelian varieties of dimension g. The
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CM-points of Ag correspond to ppav’s with CM in the classical sense, that is, to
abelian varieties A such that A is isogenous to a product of powers of simple abelian
varieties Ai (over k̄) for which End(Ai)Q is a CM field. (Recall that a CM field is a
totally complex quadratic extension of a totally real field.)

Mumford–Tate groups of complex K3 surfaces were classified by Zarhin. He proved
that the Hodge structure on the transcendental lattice T (X) is irreducible. As a
consequence, the ring of Hodge endomorphisms EndHdg(T (X)Q) is a field. Zarhin
shows that this field K is either totally real or a CM field. The K3 surface X has
CM type if and only if K is a CM field and dimK(T (X)Q) = 1. The Mumford–
Tate group has the following description. Let K+ ⊂ K be the maximal totally real
subfield, [K : K+] = 2. Let T 1 = Res1

K/K+
(Gm,K) be the norm 1 torus. This is a

non-split 1-dimensional torus over K+. Then MT = ResK+/Q(T 1).

Taelman showed that all CM fields of even degree between 2 and 20 can be realised
by complex K3 surfaces. The nicest case is when K is an imaginary quadratic field:
any K3 surface of Picard rank 20 has CM by K = Q(

√
δ), δ = b2 − 4ac, where(

a b
b c

)
is the matrix of the restriction of the cup-product on H2(X,Z(1)) to T (X). In this
case K+ = Q and M is given by x2 − δy2 = 1.

Brauer groups of K3 surfaces

Let X be a complex K3 surface. Let T (X) be the transcendental lattice of X.

The Brauer group is defined as Br(X) = H2
ét(X,Gm). The Kummer sequence

0 −→ µ`n −→ Gm
[`n]−→ Gm −→ 0

gives rise to an exact sequence

0 −→ Pic(X)/`n −→ H2
ét(X,µ`n) −→ Br(X)[`n] −→ 0.

Passing to the limit as n→∞ we get

0 −→ Pic(X)⊗Z Z` −→ H2
ét(X,Z`(1)) −→ T`(Br(X)) −→ 0,

where T` is the Tate module of the Brauer group, defined as the inverse limit of
Br(X)[`n] as n → ∞. This sequence shows that T`(Br(X)) is dual to T (X) ⊗Z Z`,
where T (X) is the transcendental lattice ofX. Thus we have canonical isomorphisms

Br(X){`} = T`(Br(X))⊗Z`
Q`/Z` = Hom(T (X),Q`/Z`).

Taking the direct sum over all primes ` we finally get a canonical isomorphism of
abelian groups Br(X) = Hom(T (X),Q/Z).

11



Uniform bounds

J. Tsimerman (following the work of many other people) recently proved the
following result (the average Colmez conjecture). Let g be a positive integer. There
exist constants bg, Cg > 0 such that, for every principally polarised abelian variety
A of dimension g defined over a number field k, if A is of CM type, then

|discr (Z(End(A)))| < Cg [k : Q]bg .

From this, using the interpretation of the Kuga–Satake construction in terms of
Shimura varieties explained above, together with a K3 analogue of Zarhin’s quater-
nion trick for abelian varieties, one can deduce the following results.

Theorem 3.1 (M. Orr, A.S.) (a) There are only finitely many Q-isomorphism
classes of abelian varieties of CM type of given dimension which can be defined over
number fields of given degree.

(b) There are only finitely many Q-isomorphism classes of K3 surfaces of CM
type which can be defined over number fields of given degree.

As a consequence one obtains the boundedness of the discriminant (or the iso-
morphism class) of the lattice Pic(X) for K3 surfaces X of CM type defined over
number fields of bounded degree. Shafarevich conjectured this in 1994 for arbitrary
K3 surfaces defined over number fields of bounded degree.

Another application is the following uniform boundedness result for the Brauer
groups.

Theorem 3.2 (M. Orr, A.S.) For any positive integer n there is a constant Cn
such that |Br(X)Γ| < Cn for any K3 surface X of CM type defined over a number
field of degree at most n. The same is true for abelian varieties of dimension g for
a constant Cn,g depending on g and n.

Várilly-Alvarado conjectured this to hold without the CM assumption, as an
analogue of Merel’s theorem on the universal boundedness of torsion of elliptic curves
defined over number fields of bounded degree. We shall see that the analogy between
the torsion subgroup of an elliptic curve and the Brauer group of a K3 surfaces can
be made more explicit in the CM case.

A crucial ingredient necessary to deduce Theorem 3.2 from Theorem 3.1 is the
integral Mumford–Tate conjecture, known for abelian varieties of CM type and ar-
bitrary K3 surfaces (Pohlmann; Tankeev, Y. André; Cadoret–Moonen). Let k be a
field finitely generated over Q. Then, after an appropriate finite extension of k, the
image of the Galois representation in H2

ét(X,Z`(1)) is a subgroup of bounded index
in G(Z`), where G is the Mumford–Tate group. Serre conjectured this to hold for
any smooth projective variety X
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Class field theory

Let k be a number field. Let Ak be the ring of adèles of k and let A×k be the
group of idèles of k. Let k∞ be the product of archimedean completions of k. Write
k∞+ for the connected component of k∞. Class field theory gives an exact sequence

1 −→ k×k×∞+ −→ A×k −→ Gal(kab/k) −→ 1, (4)

where kab is the maximal abelian extension of k. The image of an idèle s ∈ A×k in
Gal(kab/k) is denoted by [s, k].

Suppose that Λ ⊂ k is a lattice, i.e. a free abelian group of rank [k : Q]. (Then
Λ⊗Z Q = k.) An idèle s ∈ A×k associates to Λ another lattice, which we denote by
sΛ. It is defined as the unique lattice in k such that sΛ ⊗Z Zp is the subgroup of
kp := k ⊗Q Qp =

∏
v|p kv equal to sp(Λ⊗Z Zp), where sp := (sv)v|p ∈

∏
v|p k

×
v .

Next, s defines a homomorphism k/Λ → k/sΛ, as follows. The quotient k/Λ
is naturally isomorphic to the direct sum of kp/(Λ ⊗Z Zp) for all primes p. The
homomorphism k/Λ→ k/sΛ is defined as the direct sum of maps

kp/(Λ⊗Z Zp) −→ kp/sp(Λ⊗Z Zp)

given by multiplication by sp. Similarly, s defines a homomorphism

Hom(Λ,Q/Z) −→ Hom(sΛ,Q/Z)

sending f(x) to f(s−1x).

A subring R of a number field k is called an order in k if R contains 1 and is a
lattice in k. To a lattice Λ we associate its order R defined as the set of x ∈ k for
which xΛ ⊂ Λ. Then Λ ⊂ k is a proper fractional ideal of R, which means that R is
exactly the set of x ∈ k for which xΛ ⊂ Λ.

Elliptic curves

Let E be an elliptic curve over C such that there exists an isomorphism θ :
K−̃→End(E)Q, where K is an imaginary quadratic field. We assume that θ is
normalised in such a way that θ(a) acts on the holomorphic 1-form dx

y
as multipli-

cation by a ∈ K ⊂ C. Let Λ ⊂ K be a lattice for which there is an isomorphism
ξ : C/Λ−̃→E. Then End(E) is an order in K and Λ is a proper fractional ideal of
End(E). We note that ξ identifies K/Λ with the torsion subgroup of E.

The main theorem of complex multiplication of elliptic curves is the following
statement.

Theorem 3.3 (CM of EC) Let σ ∈ Aut(C/K). Let s ∈ A×K be an idèle such that
[s−1, K] is the image of σ in Gal(Kab/K). Let (E, θ) be an elliptic curve with CM
by θ : K → C. Let Eσ be the elliptic curve over C which is the conjugate of E
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by σ. Then there is a unique isomorphism ξ′ : C/sΛ−̃→Eσ such that the diagram
commutes:

K/Λ
ξ //

s

��

E

σ

��
K/sΛ

ξ′ // Eσ

Proof. [12, Thm. 5.4]. �

Since Λ is well defined up to a multiple in K×, we have the following corollary.
Here ‘the field of moduli’ of (E, θ) means ‘the relative field of moduli over k’, defined
as the subfield of C invariant under the largest subgroup of Aut(C/k) sending (E, θ)
to an isomorphic pair.

Corollary 3.4 The field of moduli of (E, θ) corresponds to the subgroup k×S ⊂ A×k ,
where

S = {s ∈ A×k |sO = O}.

This field is the ring class field of O.

Proof. Theorem 3.3 gives us the condition sΛ = Λ. We have [K : Q] = 2, and in
this case any proper fractional O-ideal is invertible, i.e. Λ ·Λ−1 = O for some proper
fractional O-ideal Λ−1. (See [4, Prop. 7.4] or [3, Cor. 4.4].) Multiplying by Λ−1 we
obtain that s ∈ S if and only if sO = O, which says that sv ∈ O×v for each finite
place v. This implies that A×K/K

×S is the ideal class group of the order O. By [4,
Prop. 7.22] it is isomorphic to the ring class group of conductor f of O, so that the
field of moduli of (E, θ) is the ring class field of the order O, see [4, Section 9,A]. �

CM for K3

LetX be a K3 surface such that there is an isomorphism θ : K−̃→EndHdg(T (X)Q),
where K is a CM field, such that dimK(T (X)Q) = 1. We assume that θ is normalised
in such a way that θ(a) acts on H1,−1 ' C (that is, on the holomorphic 2-form) as
multiplication by a ∈ K ⊂ C.

Let us assume that EndHdg(T (X)) (which a priori is an order in K) is the full ring
of integers OK . (When [K : Q] > 2, a lattice is not necessarily an invertible ideal
of its order, see [3] for a detailed discussion and counterexamples.) Then T (X) can
be identified with a fractional ideal in K uniquely up to multiplication by K×. We
shall refer to X as a K3 surface with CM by (K, θ,OK).

The main theorem of complex multiplication of Brauer groups of K3 surfaces can
be stated as follows.

Theorem 3.5 (CM of K3) Let σ ∈ Aut(C/K). Let s ∈ A×K be an idèle such that
[s−1, K] is the image of σ in Gal(Kab/K). Let X be a complex K3 surface with CM
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by (K, θ,OK) and let Xσ be the complex K3 surface which is the conjugate of X by
σ. Identify T (X) with a lattice in K. Then T (Xσ) is a lattice in Kσ = K such that
σ∗ : T (X)→ T (Xσ) tensored with AQ,f is the multiplication by q s

s̄
for some q ∈ K×.

The following diagram commutes

Hom(T (X),Q/Z) //

��

Br(X)

σ∗
��

Hom(q s
s̄
T (X),Q/Z) // Br(Xσ)

Proof. This follows from Rizov’s main theorem of complex multiplication of K3
surfaces, see Valloni’s preprint. �

In the following corollary ‘the field of moduli’ means ‘the relative field of moduli
over K’.

Corollary 3.6 (Valloni) The field of moduli of the integral HS on T (X) with its
integral quadratic form, where X is a K3 surface with CM by (K, θ,OK), is the
subfield of Kab corresponding to the subgroup

S = {s ∈ A×K |qss̄
−1OK = OK for some q ∈ K×, qq̄ = 1}.
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