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Abstract. Let p be an odd prime and let k be a field finitely generated over

the finite field with p elements. For any K3 surface X over k we prove that the

the cokernel of the natural map Br(k) → Br(X) is finite modulo the p-primary

torsion subgroup.

1. Introduction

In our previous paper [19] we proved that the cokernel of the natural map of
Brauer groups Br(k) → Br(X) is finite when X is a K3 surface over a field k of
characteristic zero which is finitely generated over its prime subfield. The crucial
ingredients of that result are the Tate conjecture for divisors proved in the case of
abelian varieties by Faltings [5, 6] and the Kuga–Satake construction as reworked
by Deligne [4]. The main goal of this paper is to prove the analogous statement in
finite odd characteristic. In this case the crucial ingredients are the Tate conjecture
for K3 surfaces and the existence of the Kuga–Satake variety, as recently established
by Madapusi Pera [14, Thm. 4.17], as well as the second author’s results on abelian
varieties in finite characteristic [24, 25, 26].

The following semisimplicity property for `-adic Galois representations attached
to K3 surfaces is obtained in Theorem 5.1 (i).

Theorem 1.1. Let k be a field finitely generated over Fp, where p 6= 2, and let X
be a K3 surface over k. For any prime ` 6= p the Galois module H2

ét(X̄,Q`(1)) is
semisimple.

The proofs of the following main results of this paper can be found in Section 5.

Theorem 1.2. Let k be a field finitely generated over Fp, where p 6= 2, and let X be
a K3 surface over k. Then for all but finitely many ` the Galois module H2

ét(X̄, μ`)
is semisimple and H2

ét(X̄, μ`)Gal(k) = NS(X̄)Gal(k)/`.

Using the method of [19] we deduce from Theorems 1.1 and 1.2 the desired
finiteness statement:

Theorem 1.3. Let k be a field finitely generated over Fp, where p 6= 2, and let X
be a K3 surface over k. Then the cokernel of the natural map Br(k) → Br(X) is
finite modulo the p-primary torsion subgroup.

Although our method is similar to that of [19], the case of finite characteristic
requires a more extensive use of the results of the second author on the analogue of
the Tate conjecture with finite coefficients and the semisimplicity of mod ` Galois
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representations attached to abelian varieties when ` is a large prime [25, 26]. Indeed,
unlike the classical Kuga–Satake–Deligne construction, Madapusi Pera’s work does
not provide us with a Clifford algebra over Z. The absence of integral cohomology
in characteristic p makes the treatment of `-adic Clifford algebras a bit more subtle.

2. Preliminaries

We start with defining our notation. For an abelian group B and a positive
integer n we write B/n = B⊗Z/n and write B[n] for the kernel of the multiplication
by n map [n] : B → B. If ` is a prime we denote by B(non − `) the quotient of B
by the `-primary torsion subgroup. The `-adic Tate module T`(B) is defined as the
projective limit of abelian groups B[`i], where the transition maps B[`i+1] → B[`i]
are given by the multiplication by `. If B[`] is finite, then T`(B) is a free Z`-module
of finite rank. See [19, p. 485] for more details.

Let k be a field with an algebraic closure k̄, and let k̄sep ⊂ k̄ be the separable
closure of k in k̄. Let Gal(k) = Gal(k̄sep/k) be the absolute Galois group of k, and
let Br(k) be the Brauer group of k.

For a geometrically integral, smooth and projective variety X over k we write X̄
for the variety X ×k k̄sep over k̄sep. We write Br(X) = H2

ét(X,Gm) for the Brauer–
Grothendieck group of X, and Br0(X) for the image of the canonical homomorphism
Br(k) → Br(X) induced by the structure map.

Let X be a K3 surface over k. If ` 6= char(k), then H2
ét(X̄,Z`(1)) is a free

Z`-module of rank 22, and the natural map

H2
ét(X̄,Z`(1))/` −̃→ H2

ét(X̄, μ`)

is an isomorphism of Gal(k)-modules. By Grothendieck [7, III.8.2] and Tate [22]
there is a short exact sequence of Gal(k)-modules, which are also free Z`-modules
of finite rank:

0−→NS(X̄) ⊗ Z`−→H2
ét(X̄,Z`(1))−→T`(Br(X̄))−→0. (1)

We identify NS(X̄) ⊗ Z` with its image in H2
ét(X̄,Z`(1)). Then (1) shows that

NS(X̄) ⊗ Z` is a saturated Z`-submodule of H2
ét(X̄,Z`(1)), that is, the quotient is

torsion-free. It is well known that there exists a finite Galois field extension k′/k
such that the open finite index subgroup Gal(k′) ⊂ Gal(k) acts trivially on NS(X̄)
and hence on NS(X̄) ⊗ Z`.

We define NS(X) as the Galois invariant subgroup NS(X) := NS(X̄)Gal(k). (Note
that the image of Pic(X) in NS(X) is a subgroup of finite index.) In particular,
NS(X) is a saturated Z-submodule of NS(X̄). We have

NS(X) ⊗ Z` ⊂ H2
ét(X̄,Z`(1))Gal(k) ⊂ H2

ét(X̄,Z`(1)).

Since NS(X)⊗Z` is a saturated Z`-submodule of NS(X̄)⊗Z`, it is also a saturated
Z`-submodule of H2

ét(X̄,Z`(1)). The intersection pairing

NS(X̄) × NS(X̄) → Z, α, β 7→ α ∙ β

is non-degenerate, see [9, Prop. 3, p. 64] and also [11, Lemma V.3.27]. In particular,
the discriminant dX of this pairing is a non-zero integer. On the other hand, the
cup-product pairing

eX,` : H2
ét(X̄,Z`(1)) × H2

ét(X̄,Z`(1)) → Z`
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is Galois-invariant and a perfect duality. The restriction of eX,` to NS(X̄) coincides
with the intersection pairing. We define the group of transcendental cycles T (X̄)`

as the orthogonal complement to NS(X̄)⊗Z` in H2
ét(X̄,Z`(1)) with respect to eX,`.

It is clear that T (X̄)` is a saturated Galois-stable Z`-submodule of H2
ét(X̄,Z`(1)).

It is also clear that if ` does not divide dX , then

H2
ét(X̄,Z`(1)) = (NS(X̄) ⊗ Z`) ⊕ T (X̄)`.

For any ` we have
(NS(X̄) ⊗ Z`) ∩ T (X̄)` = 0,

and the direct sum (NS(X̄) ⊗ Z`) ⊕ T (X̄)` has finite index in H2
ét(X̄,Z`(1)). It is

clear that T (X̄)`/` is a Gal(k)-submodule of H2
ét(X̄, μ`).

Let us consider the Q`-vector space H2
ét(X̄,Q`(1)) := H2

ét(X̄,Z`(1))⊗Z`
Q` with

its natural structure of a Gal(k)-module. We have a natural embedding of Galois
modules NS(X̄) ⊗Q` ⊂ H2

ét(X̄,Q`(1)), from which we obtain

NS(X) ⊗Q` ⊂ H2
ét(X̄,Q`(1))Gal(k).

K. Madapusi Pera [14, Thm. 1] proved that if k is finitely generated over Fp and
p > 2, then

NS(X) ⊗Q` = H2
ét(X̄,Q`(1))Gal(k).

This is an important special case of the Tate conjecture on algebraic cycles [20].
Closely related results were previously obtained by D. Maulik [10] and F. Charles
[2, Cor. 2]. Since NS(X) ⊗ Z` is a saturated Z`-submodule in H2

ét(X̄,Z`(1)), the
theorem of Madapusi Pera is equivalent to

NS(X) ⊗ Z` = H2
ét(X̄,Z`(1))Gal(k).

Another restatement of the same result is

T (X̄)Gal(k)
` = 0.

Note that this still holds if k is replaced by any finite separable field extension.

3. Abelian varieties

Let A be an abelian variety over a field k. We write End(A) for the ring of
endomorphisms of A. For a positive integer n not divisible by char(k), we write
A[n] for A(k̄)[n]. Then A[n] is a Gal(k)-submodule of A(k̄sep).

Let ` 6= char(k) be a prime. It is well known [16] that the `-adic Tate module
T`(A) = T`(A(k̄sep)) is a free Z`-module of rank 2dim(A) equipped with a natural
continuous action of the Galois group

ρ`,A : Gal(k) → AutZ`
(T`(A)).

We write V`(A) = T`(A) ⊗Z`
Q`, and view T`(A) as a Z`-lattice in V`(A). Then

ρ`,A gives rise to the `-adic representation

ρ`,A : Gal(k) → AutZ`
(T`(A)) ⊂ AutQ`

(V`(A)).

There are canonical isomorphisms of Galois modules T`(A)/`i ∼= A[`i] for all i ≥ 1.
There is a natural embedding of Z-algebras End(A) ↪→ End(Ā), whose image is

a saturated subgroup [15, Sect. 4, p. 501]. We will identify End(A) with its image
in End(Ā). The natural action of Gal(k) on End(Ā) is continuous when End(Ā) is
given discrete topology, so the image of Gal(k) in Aut(End(Ā)) is finite. The ring
End(A) coincides with the Galois-invariant subring End(Ā)Gal(k), see [18]. In other
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words, there is a finite Galois field extension k′/k such that Gal(k) → Aut(End(Ā))
factors through Gal(k)� Gal(k′/k) and

End(A) = End(Ā)Gal(k′/k).

There are natural embeddings of Z`-algebras

End(A) ⊗ Z` ⊂ End(Ā) ⊗ Z` ⊂ EndZ`
(T`(A)),

of Q`-algebras

End(A) ⊗Q` ⊂ End(Ā) ⊗Q` ⊂ EndQ`
(V`(A))

and of F`-algebras

End(A) ⊗ F` ⊂ End(Ā) ⊗ F` ⊂ EndF`
(A[`]).

The image of End(A)⊗Z` in EndZ`
(T`(A)) is obviously contained in the centraliser

EndGal(k)(T`(A)) of Gal(k) in EndZ`
(T`(A)). Similar statements hold if Z` is re-

placed by Q` or F`.
For each prime ` 6= char(k) let us consider the Q`-bilinear trace form

ψ` : EndQ`
(V`(A)) × EndQ`

(V`(A)) → Q`, ψ`(u, v) = tr(uv).

This form is Galois-invariant, symmetric and non-degenerate. The same formula
defines a perfect (unimodular) Z`-bilinear form on EndZ`

(T`(A)). The restriction
of this form to End(Ā) takes values in Z and does not depend on the choice of `,
see [13, Sect. 19, Thm. 4].

Let us choose a polarisation on A and write u 7→ u′ for the corresponding Rosati
involution on End(Ā) ⊗ Q, see [13, Sect. 20]. Then tr(u′u) is a positive rational
number if u 6= 0, see [8, Ch. V, Sect. 3, Thm. 1] or [13, Sect. 21, Thm. 1]. This
implies that the Gal(k)-invariant form

ψ` : End(Ā) × End(Ā) → Z

is non-degenerate (but not necessarily perfect) and does not depend on `. Since the
Rosati involution commutes with the action of Gal(k), and End(A) = End(Ā)Gal(k),
the bilinear form

ψ` : End(A) × End(A) → Z

is also non-degenerate, and therefore its discriminant dA is a non-zero integer that
does not depend on `.

The following assertion was proved by one of the authors [23, 24] in char(k) > 2,
by Faltings [5, 6] in char(k) = 0 and by Mori [12] in char(k) = 2. (See also [27, 29].)

Theorem 3.1. Let k be a field finitely generated over its prime subfield and let A
be an abelian variety over k. For a prime ` 6= char(k) we have

(i) End(A) ⊗ Z` = EndGal(k)(T`(A)) and End(A) ⊗Q` = EndGal(k)(V`(A));

(ii) the Galois module V`(A) is semisimple.

Remark 3.2. When k is finite, the assertion (i) of Theorem 3.1 was proved by
Tate [21], who conjectured that it holds for an arbitrary finitely generated field. He
also proved that the two formulae in (i) are equivalent for any given k,A, `. The
semisimplicity of V`(A) for finite k was established earlier by Weil [13].

The following assertion was proved in [25, 26, 29].
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Theorem 3.3. Let k be a field finitely generated over its prime subfield, and let A
be an abelian variety over k. Then for all but finitely many primes ` 6= char(k) the
Galois module A[`] is semisimple and End(A)/` = EndGal(k)(A[`]).

Proposition 3.4. Let k be a field finitely generated over its prime subfield, and
let A be an abelian variety over k. Let P be an infinite set of primes that does
not contain char(k). Suppose that for each ` ∈ P we are given a Gal(k)-submodule
U` ⊂ EndZ`

(T`(A)) such that U` is a saturated Z`-submodule of EndZ`
(T`(A)) and

U`
Gal(k) = 0. Then for all but finitely many ` ∈ P we have (U`/`)Gal(k) = 0.

Proof. By Theorem 3.1(ii) the Galois module V`(A) is semisimple, and by a theorem
of Chevalley [3, p. 88] this implies that EndQ`

(V`(A)) is also semisimple. The Galois
submodules U` ⊗ Q` and EndGal(k)(V`(A)) are orthogonal in EndQ`

(V`(A)) with
respect to the Galois-invariant bilinear form ψ`. Indeed, otherwise (U`⊗Q`)Gal(k) 6=
0 which contradicts the assumption U`

Gal(k) = 0. It follows that End(A) ⊗ Z` and
U` are orthogonal, too.

Now assume that ` ∈ P does not divide dA. Then the Z`-bilinear symmetric
Galois-invariant form

ψ` : End(A) ⊗ Z` × End(A) ⊗ Z` → Z`

is perfect. Thus the Galois module EndZ`
(T`(A)) splits into a direct sum

EndZ`
(T`(A)) = (End(A) ⊗ Z`) ⊕ S`,

where S` is the orthogonal complement to End(A)⊗Z`. It is clear that S` is a Galois-
stable saturated Z`-submodule of EndZ`

(T`(A)). We have natural isomorphisms of
Galois modules

EndZ`
(T`(A))/` = EndZ`/`(T`(A)/`) = EndF`

(A[`]).

Thus reducing modulo `, we obtain a Galois-invariant decomposition

EndF`
(A[`]) = End(A)/` ⊕ S`/`.

This gives rise to

EndGal(k)(A[`]) = End(A)/` ⊕ (S`/`)Gal(k).

Theorem 3.3 implies that for all but finitely many ` ∈ P we have (S`/`)Gal(k) = 0.
Since U` is orthogonal to End(A)⊗Z`, we have U` ⊂ S`. Moreover, U` is a saturated
Z`-submodule of S`, and this implies that the natural map U`/` → S`/` is injective.
We conclude that (U`/`)Gal(k) = 0 for all but finitely many ` ∈ P . �

Recall that if char(k) does not divide a positive integer n, then we have a canon-
ical isomorphism of Galois modules

H1
ét(Ā,Z/n) = Hom(A[n],Z/n).

For a prime ` 6= char(k) we obtain canonical isomorphisms of Galois modules

H1
ét(Ā,Z`) = HomZ`

(T`(A),Z`), H1
ét(Ā,Q`) = HomQ`

(V`(A),Q`),

EndZ`
(H1

ét(Ā,Z`)) ∼= EndZ`
(T`(A)),

where the last identification is an anti-isomorphism of rings. This allows us to
restate Proposition 3.4 in the following form.
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Corollary 3.5. Let k be a field finitely generated over its prime subfield, and let
A be an abelian variety over k. Let P be an infinite set of primes that does not
contain char(k). Suppose that for each ` ∈ P we are given a Gal(k)-submodule

U` ⊂ EndZ`
(H1

ét(Ā,Z`))

such that U` is a saturated Z`-submodule of EndZ`
(H1

ét(Ā,Z`)) and U`
Gal(k) = 0.

Then for all but finitely many ` ∈ P we have (U`/`)Gal(k) = 0.

Theorem 3.6. Let k be a field finitely generated over its prime subfield, and let A
be an abelian variety over k. Then

(i) the Gal(k)-module EndQ`
(H1

ét(Ā,Q`)) is semisimple for any prime ` 6= char(k);

(ii) the Gal(k)-module EndF`
(H1

ét(Ā,Z/`)) is semisimple for all but finitely many
primes ` 6= char(k).

Proof. (i) We have a Q`-algebra anti-isomorphism

EndQ`
(V`(A)) ∼= EndQ`

(H1
ét(Ā,Q`)),

which is also an isomorphism of Galois modules. By Theorem 3.1 the Galois module
V`(A) is semisimple, and then Chevalley’s theorem [3, p. 88] implies the semisim-
plicity of EndQ`

(V`(A)).
(ii) We have an F`-algebra anti-isomorphism

EndF`
(H1

ét(Ā,Z/`)) ∼= EndF`
(A[`]),

which is also an isomorphism of Galois modules. By Theorem 3.3 the Galois module
A[`] is semisimple for all but finitely many `. By a theorem of Serre [17, Cor. 1],
if ` is greater than 2 dimF`

(A[`]) − 2 = 4dim(A) − 2, then the semisimplicity of
A[`] implies the semisimplicity of the Galois module EndF`

(A[`]). This finishes the
proof of (ii). �

4. Clifford Algebras and Kuga–Satake construction

Let Λ be a principal ideal domain and let E be a free Λ-module of finite rank
with a non-degenerate quadratic form q : E → Λ. Let C(E, q) be the Clifford
algebra of (E, q). Let % : E → C(E, q) be the canonical Λ-linear homomorphism
satisfying

%(x)2 = q(x) ∈ Λ ⊂ C(E, q).

The map % is injective by [1, Sect. 19.3, Cor. 2 to Thm. 1], so that %(E) ∼= E.
It follows from [1, Sect. 19.3, Thm. 1] that C(E, q) is a free Λ-module of finite
rank, and the Λ-submodule %(E) is a direct summand of the Λ-module C(E, q); in
particular, it is a saturated submodule. Let

multL : C(E, q) → EndΛ(C(E, q))

be the homomorphism of Λ-algebras that sends a ∈ C(E, q) to the endomorphism
x 7→ ax. Since 1 ∈ C(E, q), the homomorphism multL is injective. In particular,
the Λ-algebras C(E, q) and multL(C(E, q)) are isomorphic.

We claim that multL(%(E)) is a saturated Λ-submodule of EndΛ(C(E, q)). Tak-
ing into account that %(E) is saturated in C(E, q), it is enough to show that
multL(C(E, q)) is saturated in EndΛ(C(E, q)). Indeed, if a ∈ C(E, q) is such that
multL(a) is a divisible element in EndΛ(C(E, q)), then multL(a)(x) is divisible in
C(E, q) for all x ∈ C(E, q). In particular, if we put x = 1, then we see that
a = multL(a)(1) is divisible in C(E, q). This proves our claim.
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Now let Λ = Z` and let E` be a free Z`-module of finite rank with a non-
degenerate quadratic form q` : E` → Z`. Let Aut(C(E`, q`)) be the group of
automorphisms of the Z`-algebra C(E`, q`). If there is a continuous `-adic repre-
sentation ρ` : Gal(k) → AutZ`

(E`) that preserves q`, then, by the universal property
of Clifford algebras, there is a representation

ρ`,Cliff : Gal(k) → Aut(C(E`, q`))

such that for any σ ∈ Gal(k) and any x ∈ E` we have ρ`,Cliff(σ)(%(x)) = %(ρ`(σ)(x)).
Using [1, Sect. 19.3, Thm. 1] one easily checks that ρ`,Cliff is continuous.

Proposition 4.1. Let k be a field finitely generated over its prime subfield. Let P
be an infinite set of primes not containing char(k). Assume that for each ` ∈ P we
are given a free Z`-module E` with a non-degenerate quadratic form q` : E` → Z`

and a continuous `-adic representation ρ` : Gal(k) → AutZ`
(E`) preserving q`.

Suppose that there is an abelian variety A over a finite separable field extension
k′ of k, and for each prime ` ∈ P there is an isomorphism of Z`-modules ι` :
C(E`, q`)−̃→H1

ét(Ā,Z`) such that the composition of injective maps of Z`-modules

E`

%

−−→ C(E`, q`)
ι`

−−−→ H1
ét(Ā,Z`)

multL

−−−−→ EndZ`
(H1

ét(Ā,Z`))

is a homomorphism of Gal(k′)-modules.
Then the Gal(k)-module E`⊗Z`

Q` is semisimple for each ` ∈ P , and the Gal(k)-
module E`/` is semisimple for all but finitely many ` ∈ P .

Proof. Replacing k′ by its normal closure over k, we can assume that k′ is a finite
Galois extension of k, so that Gal(k′) ⊂ Gal(k) is an (open) normal subgroup of
index [k′ : k]. In the beginning of this section we have seen that multL(%(E`))
is a saturated Z`-submodule of EndZ`

(C(E`, q`)). Since ι` is an isomorphism,
multL(ι`(%(E`))) is a saturated Z`-submodule of EndZ`

(H1
ét(A,Z`)) isomorphic to

E` as a Gal(k′)-module. This immediately implies that the Gal(k′)-module E`/` is
isomorphic to a submodule of

EndZ`
(H1

ét(A,Z`))/` = EndF`
(H1

ét(A,F`)).

The Q`-vector space E`⊗Z`
Q` is a Gal(k)-module. Considered as a Gal(k′)-module,

it is isomorphic to a submodule of

EndZ`
(H1

ét(A,Z`)) ⊗Z`
Q` = EndQ`

(H1
ét(A,Q`)).

By applying Theorem 3.6 to the abelian variety A over k′ we obtain that the Gal(k′)-
module E` ⊗Z`

Q` is semisimple for each ` ∈ P , and that the Gal(k′)-module E`/`
is semisimple for all but finitely many ` ∈ P . The semisimplicity of E` ⊗Z`

Q` as a
Gal(k)-module follows from its semisimplicity as a Gal(k′)-module by [17, Lemma
5 (b), p. 523]. By the same lemma, if we further exclude the finitely many primes
dividing [k′ : k], the semisimplicity of the Gal(k)-module E`/` follows from the
semisimplicity of the Gal(k′)-module E`/`. �

We finish this section with the following complement to Proposition 4.1.

Proposition 4.2. In the assumptions of Proposition 4.1 suppose that for each
prime ` ∈ P we have a Gal(k′)-submodule U` of E` such that U` is saturated in E`

and U`
Gal(k′) = 0. Then (U`/`)Gal(k′) = 0 for all but finitely many ` ∈ P .
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Proof. Since U` is saturated in E` and multL(ι`(%(E`))) ∼= E` is saturated in
EndZ`

(H1
ét(A,Z`)), we see that multL(ι`(%(U`))) is a saturated Z`-submodule of

EndZ`
(H1

ét(A,Z`)). It is Gal(k′)-stable and isomorphic to U` as a Galois module.
The proposition now follows from Corollary 3.5. �

5. K3 surfaces

Theorem 5.1. Let k be a field of odd characteristic p that is finitely generated over
Fp. Let X be a K3 surface over k. Then

(i) for any prime ` 6= p the Gal(k)-modules H2
ét(X̄,Q`(1)) and T (X̄)` ⊗Z`

Q` are
semisimple;

(ii) for all but finitely many primes ` the Gal(k)-modules H2
ét(X̄, μ`) and T (X̄)`/`

are semisimple;
(iii) for all but finitely many primes ` we have (T (X̄)`/`)Gal(k) = 0.

Proof. Choose a polarisation

ξ ∈ Pic(X) ⊂ NS(X̄)Gal(k) ⊂ H2
ét(X̄,Z`(1))Gal(k).

By the adjunction formula the degree of ξ is even, so that (ξ2) = eX,`(ξ, ξ) = 2d,
where d is a positive integer.

Let PH2
ét(X̄,Z`(1)) be the orthogonal complement to ξ in H2

ét(X̄,Z`(1)) with
respect to eX,`. Clearly, PH2

ét(X̄,Z`(1)) is a Galois-stable saturated Z`-submodule
of H2

ét(X̄,Z`(1)). We have

Z` ξ ∩ PH2
ét(X̄,Z`(1)) = 0

and the direct sum Z` ξ ⊕PH2
ét(X̄,Z`(1)) is a subgroup of index 2d in H2

ét(X̄,Z`(1)).
Furthermore, if ` does not divide 2d, then

H2
ét(X̄,Z`(1)) = Z` ξ ⊕ PH2

ét(X̄,Z`(1)) (2)

and the restriction

eX,` : PH2
ét(X̄,Z`(1)) × PH2

ét(X̄,Z`(1)) → Z`

is a perfect Galois-invariant pairing.
By a theorem of K. Madapusi Pera [14, Thm. 4.17] the family of `-adic repre-

sentations E` := PH2
ét(X̄,Z`(1)) preserving the quadratic form q`(x) = eX,`(x, x),

where ` is a prime not equal to p, satisfies the assumption of Proposition 4.1. It
follows that the Gal(k)-module

PH2
ét(X̄,Q`(1)) = PH2

ét(X̄,Z`(1)) ⊗Z`
Q`

is semisimple for each ` 6= p. This implies that the Gal(k)-module

H2
ét(X̄,Q`(1)) = Q` ξ ⊕ PH2

ét(X̄,Q`(1))

is semisimple, and hence so is its Gal(k)-submodule T (X̄)` ⊗Z`
Q`, so (i) is proved.

Suppose that (`, 2d) = 1. Let ξ̄ be the image of ξ in

H2
ét(X̄, μ`(1)) = H2

ét(X̄,Z`(1))/`.

From (2) we obtain a direct sum decomposition of Gal(k)-modules

H2
ét(X̄, μ`(1)) = F`ξ̄ ⊕ PH2

ét(X̄,Z`(1))/`,

where ξ̄ is Gal(k)-invariant. By Proposition 4.1 the Gal(k)-module PH2
ét(X̄,Z`(1))/`

is semisimple for all but finitely many primes ` 6= p. Hence H2
ét(X̄, μ`(1)) is semisim-

ple too. Since T (X̄)` is a Galois-stable saturated Z`-submodule of PH2
ét(X̄,Z`(1)),



A FINITENESS THEOREM FOR THE BRAUER GROUP 9

the Gal(k)-module T (X̄)`/` is isomorphic to a submodule of PH2
ét(X̄,Z`(1))/`.

This proves (ii).
Part (iii) follows from Proposition 4.2 applied to the family of Gal(k)-submodules

U` := T (X̄)` ⊂ E` = PH2
ét(X̄,Z`),

for all ` 6= p. Indeed, by the Tate conjecture for K3 surfaces over finitely generated
fields of odd characteristic, proved by Madapusi Pera [14, Thm. 1] (see also [10]

and [2]), we have T (X̄)Gal(k′)
` = 0 for any finite separable field extension k′ of k. �

Proof of Theorem 1.2. The first statement is already proved in Theorem 5.1 (ii).
As recalled in the introduction, for all but finitely many primes ` we have a direct
sum decomposition of Gal(k)-modules

H2
ét(X̄,Z`(1)) = (NS(X) ⊗ Z`) ⊕ T (X̄)`.

For these primes ` the Galois module H2
ét(X̄, μ`) is isomorphic to the direct sum of

NS(X)/` and T (X̄)`/`. By Theorem 5.1 (iii), for all but finitely many ` we have
(T (X̄)`/`)Gal(k) = 0. This implies

H2
ét(X̄, μ`)

Gal(k) = (NS(X)/`)Gal(k).

The cokernel of the natural map NS(X̄)Gal(k) → (NS(X)/`)Gal(k) is a subgroup of
the Galois cohomology group H1(k, NS(X̄)). This group is finite, since NS(X̄) is
a free abelian group of finite rank. Removing the primes that divide the order of
H1(k, NS(X̄)) we see that the natural map

NS(X) = NS(X̄)Gal(k)−→H2
ét(X̄, μ`)

Gal(k)

is surjective for all but finitely many primes `. �

Proof of Theorem 1.3. The Hochschild–Serre spectral sequence

Hp(k, Hq(X̄,Gm)) ⇒ Hp+q(X,Gm)

gives rise to the well known filtration Br0(X) ⊂ Br1(X) ⊂ Br(X), where Br0(X)
is the image of the natural map Br(k) → Br(X) and Br1(X) is the kernel of the
natural map Br(X) → Br(X̄). The spectral sequence shows that Br1(X)/Br0(X)
is contained in the finite group H1(k, NS(X̄)), and Br(X)/Br1(X) is contained in
Br(X̄)Gal(k). Hence it is enough to prove that Br(X̄)Gal(k) is finite.

For a prime ` 6= p the Kummer exact sequence gives rise to the following exact
sequence of Gal(k)-modules [19, (5), p. 486]:

0 → (NS(X̄)/`)Gal(k) → H2(X̄, μ`)Gal(k) → Br(X̄)[`]Gal(k) →

H1(k, NS(X̄)/`) → H1(k, H2(X̄, μ`)).

In the proof of Theorem 1.2 we have seen that for all but finitely many primes ` the
Galois module NS(X̄)/` is a direct summand of H2(X̄, μ`), and the second arrow
in the above exact sequence is an isomorphism. It follows that Br(X̄)[`]Gal(k) = 0
for all but finitely many `.

To finish the proof we note that for any prime ` 6= p the `-primary subgroup
Br(X̄){`}Gal(k) is finite. This follows from [19, Prop. 2.5 (c)] in view of the semisim-
licity of H2(X̄,Q`(1)), proved in Theorem 5.1 (i), and the Tate conjecture

NS(X) ⊗Q` = H2
ét(X̄,Q`(1))Gal(k)

proved by Madapusi Pera [14, Thm. 1] for any field k of odd characteristic p finitely
generated over Fp. �
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[3] C. Chevalley, Théorie de groupes de Lie, tome III. Paris, Hermann 1954.

[4] P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206–226.

[5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zählkorpern , Invent. Math. 73
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