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Notation:

k is a number field,
kv is the completion of k at a place v ,
Ov is the ring of integers of kv ,
Ak is the ring of adèles of k ,

S is a finite set of places of k containing the archimedean
places, OS = {x ∈ k |valv (x) ≥ 0 for any v /∈ S},

k is an algebraic closure of k , Γ = Gal(k/k),
X is a variety over k , X = X ×k k ,

Br(X ) = H2
ét(X ,Gm),

Br0(X ) = Im[Br(k)→Br(X )],
Br1(X ) = Ker[Br(X )→Br(X )]
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The following question was asked by Peter Swinnerton-Dyer.

Question
Let X→Spec(OS) be a smooth and projective morphism with
geometrically integral fibres. Let X = X ×OS k be the generic
fibre. Assume that Pic(X ) is a finitely generated torsion-free
abelian group. Does there exist a closed subset
Z ⊂

∏
v∈S X (kv ) such that

X (Ak )Br = Z ×
∏
v 6∈S

X (kv ) ?

In other words: is it true that only the bad reduction primes and
the archimedean places show up in the Brauer–Manin
obstruction?
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Equivalently: show that for any A ∈ Br(X ) and any v /∈ S the
value A(P) at P ∈ X (kv ) is the same for all P.

Write Xv = X ×k kv and, for v /∈ S, write Xv = X ×OS Ov .

Remark
If for every v /∈ S the image of Br(X )→Br(Xv ) is contained in
the subgroup generated by the images of Br(kv ) and Br(Xv ),
then the answer is positive.

Proof Since Xv/Ov is projective we have X (kv ) = Xv (Ov ).
Thus the value of A ∈ Br(Xv ) at any P ∈ X (kv ) comes from
Br(Ov ) = 0. �

The following proposition generalises an earlier result of Martin
Bright.
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Proposition

The image of Br1(X )→Br(Xv ) is contained in the subgroup
generated by the images of Br(kv ) and Br(Xv ).

Idea of proof: Let knr
v be the maximal unramified extension of kv

in kv ,
X nr

v = Xv ×kv knr
v , X v = Xv ×kv kv .

Let I = Gal(kv/knr
v ) be the inertia group.

Key claim: Inertia I acts trivially on Pic(X v ).

Let ` be a prime different from the residual characteristic of kv .
The Kummer exact sequence

1→µ`n→Gm
[`n]−→ Gm→1

gives Pic(X v )/`n ↪→ H2
ét(X v , µ`n ). Passing to the limit we obtain

Pic(X v ) ⊂ Pic(X v )⊗Z` ⊂ H2
ét(X v ,Z`(1)) = lim.proj.H2

ét(X v , µ`n ).
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Smooth base change theorem for the smooth and proper
morphism π : Xv→Spec(Ov ) implies that the étale sheaf
R2π∗µ`n is locally constant. It follows that the action of
Gal(kv/kv ) on the generic geometric fibre H2

ét(X v , µ`n ), i.e. on
the fibre at Spec(kv ), factors through

π1(Spec(Ov ),Spec(kv )) = Gal(kv/kv )/I.

This proves the key claim.

One deduces that every element of Br1(Xv ) belongs to
Ker[Br(Xv )→Br(X nr

v )]. The proposition follows with a little more
work (or just use Martin Bright’s result). �
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How about the transcendental Brauer group?

Let ` be a prime different from the residual characteristic of kv .
Write Br(Xv ){`} for the `-primary subgroup of Br(Xv ).
Let F be the residue field of kv , and let F be an algebraic
closure of F.

Lemma

If the closed geometric fibre X ×OS F has no connected
unramified covering of degree `, then Br(Xv ){`} is generated by
the images of Br(kv ){`} and Br(Xv ){`}.

The proof is an easy consequence of Gabber’s purity theorem
and results of Kato (Crelle’s J., 1986, which use K-theory and
the Merkuriev–Suslin theorem).
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Sketch of proof:

Let X0 = X ×OS F be the closed fibre of π : Xv→Spec(Ov ),
X 0 = X ×OS F.
F(X0) is the function field of X0.

Kato proves that the residue map fits into a complex

Br(X )[`n]
res−−−→ H1(F(X0),Z/`n) −→

⊕
Y⊂X0,

H0(F(Y ),Z/`n(−1)),

where the sum is over all irreducible Y ⊂ X0 such that
codimX0(Y ) = 1, and F(Y ) is the function field of Y .
A character in

H1(F(X0),Z/`n) = Hom(Gal(F(X0)/F(X0)),Z/`n)

defines a covering of X0 that corresponds to the invariant field
of this character.
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If A ∈ Br(Xv )[`n], then the covering defined by res(A) is
unramified at every divisor of X0. Hence it is unramified, i.e.
res(A) ∈ H1

ét(X0,Z/`n).

Hp(F,Hq
ét(X 0,Z/`n))⇒ Hp+q

ét (X0,Z/`n)

gives rise to

0→H1(F,Z/`n)→H1
ét(X0,Z/`n)→H1

ét(X 0,Z/`n)

Our assumption implies that H1
ét(X 0,Z/`n) = 0, hence

res(A) ∈ H1(F,Z/`n).

By local class field theory Br(kv ){`n}→H1(F,Z/`n) is an
isomorphism, so that there exists α ∈ Br(kv ){`n} such that
res(α) = res(A). By Gabber’s absolute purity theorem
A− α ∈ Br(Xv ). �
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Question: Is there an analogue when ` = p?

Remark
Let X be a smooth, projective and geometrically integral variety
over k such that Pic(X ) is a finitely generated torsion-free
abelian group, and Br(X )/Br1(X ) is finite. Then X (Ak )Br is
open and closed in X (Ak ).

Proof Br1(X )/Br0(X ) ⊂ H1(k ,Pic(X )), which is finite since
Pic(X ) is finitely generated and torsion-free.

The sum of local invariants of a given element of Br(X ) is a
continuous function on X (Ak ) with finitely many values, and this
function is identically zero if the element is in Br0(X ). �
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Main result:

Theorem
Assume
(i) H1(X ,OX ) = 0;
(ii) the Néron–Severi group NS(X ) has no torsion;
(iii) Br(X )/Br1(X ) is a finite abelian group of order invertible in
OS.
Then the answer to our question is positive.

This follows from the previous results by the smooth base
change theorem: we can identify

H1
ét(X 0,Z/`) = H1

ét(X ,Z/`) ' Pic(X )`

and so conclude that the closed geometric fibre has no
connected étale covering of degree `. �
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Condition (iii) is hard to check in general, so we state a
particular case where all conditions are only on X .

Corollary
Assume
(i) H1(X ,OX ) = H2(X ,OX ) = 0;
(ii) the Néron–Severi group NS(X ) has no torsion;
(iii) either dim X = 2, or H3

ét(X ,Z`) is torsion-free for every
prime ` outside S.
Then the answer to our question is positive.

This applies to unirational varieties (some of them are not
rational, e.g. Harari’s example of a transcendental
Brauer–Manin obstruction with Br(X ) = Z/2).
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What about bad reduction?

If A ∈ Br(Xv )n, and assume that the residual characteristic of kv
does not divide n. Let Xv→Spec(Ov ) be a regular model,
smooth and projective over Spec(Ov ). Let X0 be the closed
fibre, X smooth

0 be its smooth locus, and let Vi be the irreducible
components of X smooth

0 that are geometrically irreducible. Then
the reduction of a kv -point belongs to some Vi .

Kato’s complex implies that resVi (A) ∈ H1
ét(Vi ,Z/n), but this

group is finite. Evaluating at F-points gives finitely many
functions Vi(F)→H1(F,Z/n) = Z/n, or one function
f : Vi(F)→(Z/n)m. This defines a partition of Vi(F). We get a
partition of X (kv ) into a disjoint union of subsets such that A(P)
is constant on each subset.
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Note that this Corollary does not apply to K3 surfaces.
Nevertheless we have the following result.

Theorem
Let D be the diagonal quartic surface over Q given by

x4
0 + a1x4

1 + a2x4
2 + a3x4

3 = 0,

where a1, a2, a3 ∈ Q∗. Let S be the set of primes consisting of
2 and the primes dividing the numerators or the denominators
of a1, a2, a3. Then

D(AQ)Br = Z ×
∏
p 6∈S

D(Qp)

for an open and closed subset Z ⊂ D(R)×
∏

p∈S D(Qp).

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction



Proof This follows from the previous theorem by the results of
Ieronymou–AS–Zarhin: only the primes from {2, 3, 5} ∩ S can
divide the order of the finite group Br(D)/Br1(D). �

Note The primes from S \ {2, 3, 5} are not too bad, whereas
those from {2, 3, 5} ∩ S are seriously bad.

Note We do not have an example of a transcendental Azumaya
algebra on D of order 2 defined over Q, but Thomas Preu has
constructed such an algebra of order 3 which gives a BM
obstruction to WA. Order 5?
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A full proof of the result of Ieronymou–AS–Zarhin is quite long.

Notation:

X is the Fermat quartic x4
0 + x4

1 + x4
2 + x4

3 = 0;

E is the elliptic curve y2 = x3 − x with CM by Z[i], i =
√
−1.

The Galois representation on En was computed by Gauss:

if p splits in Z[i], so that p = a2 + b2, where
a + bi ≡ 1 mod 2 + 2i , then the Frobenius at the prime
(a + b

√
−1) of Z[

√
−1] acts on En as the complex multiplication

by a + b
√
−1.
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The key ingredients of the Ieronymou–AS–Zarhin result:

Ieronymou’s paper on the 2-torsion in Br(X ) (uses a pencil
of genus 1 curves on X without a section);

Mizukami’s explicit representation of X as the Kummer
surface attached to an abelian surface isogenous to E × E
(works only over Q(

√
−1,
√

2));
AS-Zarhin’s isomorphism between the Brauer group of an
abelian surface and the Brauer group of the corresponding
Kummer surface;
Ieronymou–AS–Zarhin paper: an explicit analysis of the
Galois representation on En, for n odd.

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction



The key ingredients of the Ieronymou–AS–Zarhin result:

Ieronymou’s paper on the 2-torsion in Br(X ) (uses a pencil
of genus 1 curves on X without a section);
Mizukami’s explicit representation of X as the Kummer
surface attached to an abelian surface isogenous to E × E
(works only over Q(

√
−1,
√

2));

AS-Zarhin’s isomorphism between the Brauer group of an
abelian surface and the Brauer group of the corresponding
Kummer surface;
Ieronymou–AS–Zarhin paper: an explicit analysis of the
Galois representation on En, for n odd.

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction



The key ingredients of the Ieronymou–AS–Zarhin result:

Ieronymou’s paper on the 2-torsion in Br(X ) (uses a pencil
of genus 1 curves on X without a section);
Mizukami’s explicit representation of X as the Kummer
surface attached to an abelian surface isogenous to E × E
(works only over Q(

√
−1,
√

2));
AS-Zarhin’s isomorphism between the Brauer group of an
abelian surface and the Brauer group of the corresponding
Kummer surface;

Ieronymou–AS–Zarhin paper: an explicit analysis of the
Galois representation on En, for n odd.

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction



The key ingredients of the Ieronymou–AS–Zarhin result:

Ieronymou’s paper on the 2-torsion in Br(X ) (uses a pencil
of genus 1 curves on X without a section);
Mizukami’s explicit representation of X as the Kummer
surface attached to an abelian surface isogenous to E × E
(works only over Q(

√
−1,
√

2));
AS-Zarhin’s isomorphism between the Brauer group of an
abelian surface and the Brauer group of the corresponding
Kummer surface;
Ieronymou–AS–Zarhin paper: an explicit analysis of the
Galois representation on En, for n odd.

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction



Sketch of Mizukami’s construction, after
Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint
lines.
(By Nikulin, it implies that X is Kummer)

But the set of 48 obvious lines does not contain a subset of 16
disjoint lines :(

However, sometimes a plane through two intersecting lines on
X cuts X in the union of these lines and a residual conic. There
is a set of 16 disjoint rational curves on X consisting of 8
straight lines and 8 conics :)

One can find two elliptic pencils on X intersecting trivially with
these 16 curves, which gives a map X→P1 × P1 of degree 4
contracting these curves.
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C is the curve v2 = (u2 − 1)(u2 − 1
2),

A = C×C/τ , where τ changes the signs of all four coordinates,

K is the Kummer surface attached to A.

K is birationally equivalent to the surface

z2 = (x − 1)(x − 1
2)(y − 1)(y − 1

2), t2 = xy .

Explicit equations show that X→P1 × P1 factors through the
degree 4 map K→P1 × P1 given by (x , y , z, t) 7→ (x , y). This
gives a birational map X→K , which must be an isomorphism.
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Note K is birational to the double covering of P2:

z2 = (x − 1)(x − 1
2)(t2 − x)(t2 − 1

2x).

Easy to write Azumaya algebras on K :

(t2 − x , t2 − 1
2x), (t2 − x , x − 1).

Open problem For many diagonal quartics D over Q one
expects a transcendental element of order 2 in Br(D). How to
write it explicitly? Can one use Mizukami’s isomorphism?
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Advertisement:

Conference “Torsors: theory and practice”
10-14 January 2011
Edinburgh, Scotland

organised by V. Batyrev and A. Skorobogatov

http://www2.imperial.ac.uk/ anskor/

All queries to a.skorobogatov@imperial.ac.uk
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