Good reduction of the Brauer-Manin obstruction

A joint work in progress with J-L. Colliot-Thélène

Alexei Skorobogatov

Imperial College London
Schloss Thurnau, July 2010

Notation:

k is a number field,
k_{v} is the completion of k at a place v,
\mathcal{O}_{v} is the ring of integers of k_{v},
\mathbb{A}_{k} is the ring of adèles of k,
S is a finite set of places of k containing the archimedean places, $\mathcal{O}_{S}=\left\{x \in k \mid \operatorname{val}_{v}(x) \geq 0\right.$ for any $\left.v \notin S\right\}$,
\bar{k} is an algebraic closure of $k, \Gamma=\operatorname{Gal}(\bar{k} / k)$,
X is a variety over $k, \bar{X}=X \times_{k} \bar{k}$,
$\operatorname{Br}(X)=\mathrm{H}_{\text {êt }}^{2}\left(X, \mathbb{G}_{m}\right)$,
$\operatorname{Br}_{0}(X)=\operatorname{Im}[\operatorname{Br}(k) \rightarrow \operatorname{Br}(X)]$,
$\operatorname{Br}_{1}(X)=\operatorname{Ker}[\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})]$

The following question was asked by Peter Swinnerton-Dyer.

Question

Let $\mathcal{X} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{S}\right)$ be a smooth and projective morphism with geometrically integral fibres. Let $X=\mathcal{X} \times \mathcal{O}_{S} k$ be the generic fibre. Assume that $\operatorname{Pic}(\bar{X})$ is a finitely generated torsion-free abelian group. Does there exist a closed subset
$Z \subset \prod_{v \in S} X\left(k_{v}\right)$ such that

$$
X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=Z \times \prod_{v \notin S} X\left(k_{v}\right) ?
$$

The following question was asked by Peter Swinnerton-Dyer.

Question

Let $\mathcal{X} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{S}\right)$ be a smooth and projective morphism with geometrically integral fibres. Let $X=\mathcal{X} \times \mathcal{O}_{s} k$ be the generic fibre. Assume that $\operatorname{Pic}(\bar{X})$ is a finitely generated torsion-free abelian group. Does there exist a closed subset
$Z \subset \prod_{v \in S} X\left(k_{v}\right)$ such that

$$
X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=Z \times \prod_{v \notin S} X\left(k_{v}\right) ?
$$

In other words: is it true that only the bad reduction primes and the archimedean places show up in the Brauer-Manin obstruction?

Equivalently: show that for any $A \in \operatorname{Br}(X)$ and any $v \notin S$ the value $A(P)$ at $P \in X\left(k_{v}\right)$ is the same for all P.

Equivalently: show that for any $A \in \operatorname{Br}(X)$ and any $v \notin S$ the value $A(P)$ at $P \in X\left(k_{v}\right)$ is the same for all P.
Write $X_{v}=X \times_{k} k_{v}$ and, for $v \notin S$, write $\mathcal{X}_{v}=\mathcal{X} \times{ }_{\mathcal{O}_{S}} \mathcal{O}_{v}$.

Equivalently: show that for any $A \in \operatorname{Br}(X)$ and any $v \notin S$ the value $A(P)$ at $P \in X\left(k_{v}\right)$ is the same for all P.
Write $X_{v}=X \times_{k} k_{v}$ and, for $v \notin S$, write $\mathcal{X}_{v}=\mathcal{X} \times{ }_{\mathcal{O}_{S}} \mathcal{O}_{v}$.

Remark

If for every $v \notin S$ the image of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{v}\right)$ is contained in the subgroup generated by the images of $\operatorname{Br}\left(k_{v}\right)$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)$, then the answer is positive.

Proof Since $\mathcal{X}_{v} / \mathcal{O}_{v}$ is projective we have $X\left(k_{v}\right)=\mathcal{X}_{v}\left(\mathcal{O}_{v}\right)$.
Thus the value of $A \in \operatorname{Br}\left(\mathcal{X}_{v}\right)$ at any $P \in X\left(k_{v}\right)$ comes from $\operatorname{Br}\left(\mathcal{O}_{v}\right)=0$.

Equivalently: show that for any $A \in \operatorname{Br}(X)$ and any $v \notin S$ the value $A(P)$ at $P \in X\left(k_{v}\right)$ is the same for all P.
Write $X_{v}=X \times_{k} k_{v}$ and, for $v \notin S$, write $\mathcal{X}_{v}=\mathcal{X} \times{ }_{\mathcal{O}_{S}} \mathcal{O}_{v}$.

Remark

If for every $v \notin S$ the image of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{v}\right)$ is contained in the subgroup generated by the images of $\operatorname{Br}\left(k_{v}\right)$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)$, then the answer is positive.

Proof Since $\mathcal{X}_{v} / \mathcal{O}_{v}$ is projective we have $X\left(k_{v}\right)=\mathcal{X}_{v}\left(\mathcal{O}_{v}\right)$.
Thus the value of $A \in \operatorname{Br}\left(\mathcal{X}_{v}\right)$ at any $P \in X\left(k_{v}\right)$ comes from $\operatorname{Br}\left(\mathcal{O}_{v}\right)=0$.

The following proposition generalises an earlier result of Martin Bright.

Proposition

The image of $\mathrm{Br}_{1}(X) \rightarrow \operatorname{Br}\left(X_{v}\right)$ is contained in the subgroup generated by the images of $\operatorname{Br}\left(k_{v}\right)$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)$.

Proposition

The image of $\mathrm{Br}_{1}(X) \rightarrow \operatorname{Br}\left(X_{v}\right)$ is contained in the subgroup generated by the images of $\operatorname{Br}\left(k_{v}\right)$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)$.

Idea of proof: Let k_{v}^{nr} be the maximal unramified extension of k_{v} in $\overline{k_{v}}$,

$$
X_{v}^{\mathrm{nr}}=X_{v} \times_{k_{v}} k_{v}^{\mathrm{nr}}, \quad \bar{X}_{v}=X_{v} \times_{k_{v}} \bar{k}_{v}
$$

Let $I=\operatorname{Gal}\left(\bar{k}_{v} / k_{v}^{\mathrm{nr}}\right)$ be the inertia group.

Proposition

The image of $\mathrm{Br}_{1}(X) \rightarrow \operatorname{Br}\left(X_{v}\right)$ is contained in the subgroup generated by the images of $\operatorname{Br}\left(k_{v}\right)$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)$.

Idea of proof: Let k_{v}^{nr} be the maximal unramified extension of k_{v} in $\overline{k_{v}}$,

$$
X_{v}^{\mathrm{nr}}=X_{v} \times_{k_{v}} k_{v}^{\mathrm{nr}}, \quad \bar{X}_{v}=X_{v} \times_{k_{v}} \bar{k}_{v} .
$$

Let $I=\operatorname{Gal}\left(\bar{k}_{v} / k_{v}^{\mathrm{nr}}\right)$ be the inertia group.
Key claim: Inertia / acts trivially on $\operatorname{Pic}\left(\bar{X}_{v}\right)$.
Let ℓ be a prime different from the residual characteristic of k_{v}. The Kummer exact sequence

$$
1 \rightarrow \mu_{\ell n} \rightarrow \mathbb{G}_{m} \xrightarrow{\left[\ell^{n}\right]} \mathbb{G}_{m} \rightarrow 1
$$

gives $\operatorname{Pic}\left(\bar{X}_{v}\right) / \ell^{n} \hookrightarrow \mathrm{H}_{\mathrm{et}}^{2}\left(\bar{X}_{v}, \mu_{\ell^{n}}\right)$. Passing to the limit we obtain
$\operatorname{Pic}\left(\bar{X}_{v}\right) \subset \operatorname{Pic}\left(\bar{X}_{v}\right) \otimes \mathbb{Z}_{\ell} \subset H_{\mathrm{et}}^{2}\left(\bar{X}_{v}, \mathbb{Z}_{\ell}(1)\right)=\lim . \operatorname{proj} . H_{\mathrm{et}}^{2}\left(\bar{X}_{v}, \mu_{\ell} n\right)$.

Smooth base change theorem for the smooth and proper morphism $\pi: \mathcal{X}_{v} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{v}\right)$ implies that the étale sheaf $R^{2} \pi_{*} \mu_{\ell n}$ is locally constant. It follows that the action of $\operatorname{Gal}\left(\overline{k_{v}} / k_{v}\right)$ on the generic geometric fibre $\mathrm{H}_{\mathrm{et}}^{2}\left(\bar{X}_{v}, \mu_{\ell^{n}}\right)$, i.e. on the fibre at $\operatorname{Spec}\left(k_{v}\right)$, factors through

$$
\pi_{1}\left(\operatorname{Spec}\left(\mathcal{O}_{v}\right), \operatorname{Spec}\left(\overline{k_{v}}\right)\right)=\operatorname{Gal}\left(\overline{k_{v}} / k_{v}\right) / I .
$$

This proves the key claim.
One deduces that every element of $\mathrm{Br}_{1}\left(X_{v}\right)$ belongs to $\operatorname{Ker}\left[\operatorname{Br}\left(X_{v}\right) \rightarrow \operatorname{Br}\left(X_{v}^{\mathrm{nr}}\right)\right]$. The proposition follows with a little more work (or just use Martin Bright's result).

How about the transcendental Brauer group?

How about the transcendental Brauer group?
Let ℓ be a prime different from the residual characteristic of k_{v}. Write $\operatorname{Br}\left(X_{v}\right)\{\ell\}$ for the ℓ-primary subgroup of $\operatorname{Br}\left(X_{v}\right)$. Let \mathbb{F} be the residue field of k_{v}, and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F}.

How about the transcendental Brauer group?
Let ℓ be a prime different from the residual characteristic of k_{v}. Write $\operatorname{Br}\left(X_{v}\right)\{\ell\}$ for the ℓ-primary subgroup of $\operatorname{Br}\left(X_{v}\right)$.
Let \mathbb{F} be the residue field of k_{v}, and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F}.

Lemma

If the closed geometric fibre $\mathcal{X} \times{ }_{\mathcal{O}_{s}} \overline{\mathbb{F}}$ has no connected unramified covering of degree ℓ, then $\operatorname{Br}\left(X_{v}\right)\{\ell\}$ is generated by the images of $\operatorname{Br}\left(k_{v}\right)\{\ell\}$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)\{\ell\}$.

How about the transcendental Brauer group?
Let ℓ be a prime different from the residual characteristic of k_{v}. Write $\operatorname{Br}\left(X_{v}\right)\{\ell\}$ for the ℓ-primary subgroup of $\operatorname{Br}\left(X_{V}\right)$.
Let \mathbb{F} be the residue field of k_{v}, and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F}.

Lemma

If the closed geometric fibre $\mathcal{X} \times \mathcal{O}_{S} \overline{\mathbb{F}}$ has no connected unramified covering of degree ℓ, then $\operatorname{Br}\left(X_{v}\right)\{\ell\}$ is generated by the images of $\operatorname{Br}\left(k_{v}\right)\{\ell\}$ and $\operatorname{Br}\left(\mathcal{X}_{v}\right)\{\ell\}$.

The proof is an easy consequence of Gabber's purity theorem and results of Kato (Crelle's J., 1986, which use K-theory and the Merkuriev-Suslin theorem).

Sketch of proof:

Let $\mathcal{X}_{0}=\mathcal{X} \times_{\mathcal{O}_{s}} \mathbb{F}$ be the closed fibre of $\pi: \mathcal{X}_{v} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{v}\right)$, $\overline{\mathcal{X}}_{0}=\mathcal{X} \times{ }_{\mathcal{O}_{s}} \overline{\mathbb{F}}$.
$\mathbb{F}\left(\mathcal{X}_{0}\right)$ is the function field of \mathcal{X}_{0}.
Kato proves that the residue map fits into a complex

$$
\operatorname{Br}(X)\left[\ell^{n}\right] \xrightarrow{\text { res }} \mathrm{H}^{1}\left(\mathbb{F}\left(\mathcal{X}_{0}\right), \mathbb{Z} / \ell^{n}\right) \longrightarrow \bigoplus_{Y \subset \mathcal{X}_{0}} \mathrm{H}^{0}\left(\mathbb{F}(Y), \mathbb{Z} / \ell^{n}(-1)\right)
$$

where the sum is over all irreducible $Y \subset \mathcal{X}_{0}$ such that $\operatorname{codim}_{\mathcal{X}_{0}}(Y)=1$, and $\mathbb{F}(Y)$ is the function field of Y. A character in

$$
\mathrm{H}^{1}\left(\mathbb{F}\left(\mathcal{X}_{0}\right), \mathbb{Z} / \ell^{n}\right)=\operatorname{Hom}\left(\operatorname{Gal}\left(\overline{\mathbb{F}\left(\mathcal{X}_{0}\right)} / \mathbb{F}\left(\mathcal{X}_{0}\right)\right), \mathbb{Z} / \ell^{n}\right)
$$

defines a covering of \mathcal{X}_{0} that corresponds to the invariant field of this character.

If $A \in \operatorname{Br}\left(X_{V}\right)\left[\ell^{n}\right]$, then the covering defined by $\operatorname{res}(A)$ is unramified at every divisor of \mathcal{X}_{0}. Hence it is unramified, i.e. $\operatorname{res}(A) \in \mathrm{H}_{\mathrm{et}}^{1}\left(\mathcal{X}_{0}, \mathbb{Z} / \ell^{n}\right)$.

$$
\mathrm{H}^{p}\left(\mathbb{F}, \mathrm{H}_{\mathrm{et}}^{q}\left(\overline{\mathcal{X}}_{0}, \mathbb{Z} / \ell^{n}\right)\right) \Rightarrow \mathrm{H}_{\mathrm{et}}^{p+q}\left(\mathcal{X}_{0}, \mathbb{Z} / \ell^{n}\right)
$$

gives rise to

$$
0 \rightarrow \mathrm{H}^{1}\left(\mathbb{F}, \mathbb{Z} / \ell^{n}\right) \rightarrow \mathrm{H}_{\mathrm{ett}}^{1}\left(\mathcal{X}_{0}, \mathbb{Z} / \ell^{n}\right) \rightarrow \mathrm{H}_{\mathrm{et}}^{1}\left(\overline{\mathcal{X}}_{0}, \mathbb{Z} / \ell^{n}\right)
$$

Our assumption implies that $\mathrm{H}_{\mathrm{et}}^{1}\left(\overline{\mathcal{X}}_{0}, \mathbb{Z} / \ell^{n}\right)=0$, hence

$$
\operatorname{res}(A) \in \mathrm{H}^{1}\left(\mathbb{F}, \mathbb{Z} / \ell^{n}\right)
$$

By local class field theory $\operatorname{Br}\left(k_{v}\right)\left\{\ell^{n}\right\} \rightarrow \mathrm{H}^{1}\left(\mathbb{F}, \mathbb{Z} / \ell^{n}\right)$ is an isomorphism, so that there exists $\alpha \in \operatorname{Br}\left(k_{v}\right)\left\{\ell^{n}\right\}$ such that $\operatorname{res}(\alpha)=\operatorname{res}(A)$. By Gabber's absolute purity theorem $A-\alpha \in \operatorname{Br}\left(\mathcal{X}_{v}\right)$.

Question: Is there an analogue when $\ell=p$?

Question: Is there an analogue when $\ell=p$?

Remark

Let X be a smooth, projective and geometrically integral variety over k such that $\operatorname{Pic}(\bar{X})$ is a finitely generated torsion-free abelian group, and $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ is finite. Then $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}$ is open and closed in $X\left(\mathbb{A}_{k}\right)$.
$\operatorname{Proof} \operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \subset \mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X}))$, which is finite since $\operatorname{Pic}(\bar{X})$ is finitely generated and torsion-free.
The sum of local invariants of a given element of $\operatorname{Br}(X)$ is a continuous function on $X\left(\mathbb{A}_{k}\right)$ with finitely many values, and this function is identically zero if the element is in $\operatorname{Br}_{0}(X)$.

Main result:

Theorem

Assume

(i) $\mathrm{H}^{1}\left(\bar{X}, O_{\bar{X}}\right)=0$;
(ii) the Néron-Severi group $\mathrm{NS}(\bar{X})$ has no torsion;
(iii) $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ is a finite abelian group of order invertible in
\mathcal{O}_{S}.
Then the answer to our question is positive.

This follows from the previous results by the smooth base change theorem: we can identify

$$
\mathrm{H}_{\mathrm{et}}^{1}\left(\overline{\mathcal{X}}_{0}, \mathbb{Z} / \ell\right)=\mathrm{H}_{\mathrm{et}}^{1}(\bar{X}, \mathbb{Z} / \ell) \simeq \operatorname{Pic}(\bar{X})_{\ell}
$$

and so conclude that the closed geometric fibre has no connected étale covering of degree ℓ.

Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \bar{X}.

Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \bar{X}.

Corollary

Assume
(i) $\mathrm{H}^{1}\left(\bar{X}, O_{\bar{X}}\right)=\mathrm{H}^{2}\left(\bar{X}, O_{\bar{X}}\right)=0$;
(ii) the Néron-Severi group $\mathrm{NS}(\bar{X})$ has no torsion;
(iii) either $\operatorname{dim} X=2$, or $\mathrm{H}_{\mathrm{et}}^{3}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for every prime ℓ outside S.
Then the answer to our question is positive.

Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \bar{X}.

Corollary

Assume
(i) $\mathrm{H}^{1}\left(\bar{X}, O_{\bar{X}}\right)=\mathrm{H}^{2}\left(\bar{X}, O_{\bar{X}}\right)=0$;
(ii) the Néron-Severi group $\mathrm{NS}(\bar{X})$ has no torsion;
(iii) either $\operatorname{dim} X=2$, or $\mathrm{H}_{\mathrm{et}}^{3}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for every prime ℓ outside S.
Then the answer to our question is positive.

This applies to unirational varieties (some of them are not rational, e.g. Harari's example of a transcendental
Brauer-Manin obstruction with $\operatorname{Br}(\bar{X})=\mathbb{Z} / 2)$.

What about bad reduction?
If $A \in \operatorname{Br}\left(X_{v}\right)_{n}$, and assume that the residual characteristic of k_{v} does not divide n. Let $\mathcal{X}_{v} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{v}\right)$ be a regular model, smooth and projective over $\operatorname{Spec}\left(\mathcal{O}_{v}\right)$. Let \mathcal{X}_{0} be the closed fibre, $\mathcal{X}_{0}^{\text {smooth }}$ be its smooth locus, and let V_{i} be the irreducible components of $\mathcal{X}_{0}^{\text {smooth }}$ that are geometrically irreducible. Then the reduction of a k_{v}-point belongs to some V_{i}.
Kato's complex implies that $\operatorname{res}_{V_{i}}(A) \in \mathrm{H}_{\mathrm{et}}^{1}\left(V_{i}, \mathbb{Z} / n\right)$, but this group is finite. Evaluating at \mathbb{F}-points gives finitely many functions $V_{i}(\mathbb{F}) \rightarrow \mathrm{H}^{1}(\mathbb{F}, \mathbb{Z} / n)=\mathbb{Z} / n$, or one function $f: V_{i}(\mathbb{F}) \rightarrow(\mathbb{Z} / n)^{m}$. This defines a partition of $V_{i}(\mathbb{F})$. We get a partition of $X\left(k_{v}\right)$ into a disjoint union of subsets such that $A(P)$ is constant on each subset.

Note that this Corollary does not apply to K3 surfaces.
Nevertheless we have the following result.

Theorem

Let D be the diagonal quartic surface over \mathbb{Q} given by

$$
x_{0}^{4}+a_{1} x_{1}^{4}+a_{2} x_{2}^{4}+a_{3} x_{3}^{4}=0,
$$

where $a_{1}, a_{2}, a_{3} \in \mathbb{Q}^{*}$. Let \mathcal{S} be the set of primes consisting of 2 and the primes dividing the numerators or the denominators of a_{1}, a_{2}, a_{3}. Then

$$
D\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=Z \times \prod_{p \notin \mathcal{S}} D\left(\mathbb{Q}_{p}\right)
$$

for an open and closed subset $Z \subset D(\mathbb{R}) \times \prod_{p \in \mathcal{S}} D\left(\mathbb{Q}_{p}\right)$.

Proof This follows from the previous theorem by the results of leronymou-AS-Zarhin: only the primes from $\{2,3,5\} \cap \mathcal{S}$ can divide the order of the finite group $\operatorname{Br}(D) / \operatorname{Br}_{1}(D)$.

Note The primes from $\mathcal{S} \backslash\{2,3,5\}$ are not too bad, whereas those from $\{2,3,5\} \cap \mathcal{S}$ are seriously bad.

Note We do not have an example of a transcendental Azumaya algebra on D of order 2 defined over \mathbb{Q}, but Thomas Preu has constructed such an algebra of order 3 which gives a BM obstruction to WA. Order 5?

A full proof of the result of leronymou-AS-Zarhin is quite long. Notation:
X is the Fermat quartic $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0$;
E is the elliptic curve $y^{2}=x^{3}-x$ with CM by $\mathbb{Z}[i], i=\sqrt{-1}$.
The Galois representation on E_{n} was computed by Gauss:
if p splits in $\mathbb{Z}[i]$, so that $p=a^{2}+b^{2}$, where
$a+b i \equiv 1 \bmod 2+2 i$, then the Frobenius at the prime
$(a+b \sqrt{-1})$ of $\mathbb{Z}[\sqrt{-1}]$ acts on E_{n} as the complex multiplication by $a+b \sqrt{-1}$.

The key ingredients of the leronymou-AS-Zarhin result:

- leronymou's paper on the 2-torsion in $\operatorname{Br}(\bar{X})$ (uses a pencil of genus 1 curves on X without a section);

The key ingredients of the leronymou-AS-Zarhin result:

- leronymou's paper on the 2-torsion in $\operatorname{Br}(\bar{X})$ (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to $E \times E$ (works only over $\mathbb{Q}(\sqrt{-1}, \sqrt{2})$);

The key ingredients of the leronymou-AS-Zarhin result:

- leronymou's paper on the 2-torsion in $\operatorname{Br}(\bar{X})$ (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to $E \times E$ (works only over $\mathbb{Q}(\sqrt{-1}, \sqrt{2})$);
- AS-Zarhin's isomorphism between the Brauer group of an abelian surface and the Brauer group of the corresponding Kummer surface;

The key ingredients of the leronymou-AS-Zarhin result:

- leronymou's paper on the 2-torsion in $\operatorname{Br}(\bar{X})$ (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to $E \times E$ (works only over $\mathbb{Q}(\sqrt{-1}, \sqrt{2})$);
- AS-Zarhin's isomorphism between the Brauer group of an abelian surface and the Brauer group of the corresponding Kummer surface;
- leronymou-AS-Zarhin paper: an explicit analysis of the Galois representation on E_{n}, for n odd.

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.
(By Nikulin, it implies that X is Kummer)

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.
(By Nikulin, it implies that X is Kummer)
But the set of 48 obvious lines does not contain a subset of 16 disjoint lines:(

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.
(By Nikulin, it implies that X is Kummer)
But the set of 48 obvious lines does not contain a subset of 16 disjoint lines:(

However, sometimes a plane through two intersecting lines on X cuts X in the union of these lines and a residual conic. There is a set of 16 disjoint rational curves on X consisting of 8 straight lines and 8 conics :)

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.
(By Nikulin, it implies that X is Kummer)
But the set of 48 obvious lines does not contain a subset of 16 disjoint lines:(

However, sometimes a plane through two intersecting lines on X cuts X in the union of these lines and a residual conic. There is a set of 16 disjoint rational curves on X consisting of 8 straight lines and 8 conics :)
One can find two elliptic pencils on X intersecting trivially with these 16 curves, which gives a map $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ of degree 4 contracting these curves.
C is the curve $v^{2}=\left(u^{2}-1\right)\left(u^{2}-\frac{1}{2}\right)$,
$A=C \times C / \tau$, where τ changes the signs of all four coordinates,
K is the Kummer surface attached to A.
K is birationally equivalent to the surface

$$
z^{2}=(x-1)\left(x-\frac{1}{2}\right)(y-1)\left(y-\frac{1}{2}\right), \quad t^{2}=x y
$$

Explicit equations show that $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ factors through the degree 4 map $K \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ given by $(x, y, z, t) \mapsto(x, y)$. This gives a birational map $X \rightarrow K$, which must be an isomorphism.

Note K is birational to the double covering of \mathbb{P}^{2} :

$$
z^{2}=(x-1)\left(x-\frac{1}{2}\right)\left(t^{2}-x\right)\left(t^{2}-\frac{1}{2} x\right)
$$

Easy to write Azumaya algebras on K :

$$
\left(t^{2}-x, t^{2}-\frac{1}{2} x\right), \quad\left(t^{2}-x, x-1\right)
$$

Open problem For many diagonal quartics D over \mathbb{Q} one expects a transcendental element of order 2 in $\operatorname{Br}(D)$. How to write it explicitly? Can one use Mizukami's isomorphism?

Advertisement:

Conference "Torsors: theory and practice"
10-14 January 2011
Edinburgh, Scotland
organised by V. Batyrev and A. Skorobogatov
http://www2.imperial.ac.uk/ anskor/
All queries to a.skorobogatov@imperial.ac.uk

