Good reduction of the Brauer–Manin obstruction A joint work in progress with J-L. Colliot-Thélène

Alexei Skorobogatov

Imperial College London

Schloss Thurnau, July 2010

k is a number field, k_v is the completion of *k* at a place *v*, \mathcal{O}_v is the ring of integers of k_v , \mathbb{A}_k is the ring of adèles of *k*,

S is a finite set of places of *k* containing the archimedean places, $\mathcal{O}_{S} = \{x \in k | val_{v}(x) \geq 0 \text{ for any } v \notin S\},\$

 \overline{k} is an algebraic closure of k, $\Gamma = \text{Gal}(\overline{k}/k)$, X is a variety over k, $\overline{X} = X \times_k \overline{k}$,

 $Br(X) = H^{2}_{\text{ét}}(X, \mathbb{G}_{m}),$ $Br_{0}(X) = Im[Br(k) \rightarrow Br(X)],$ $Br_{1}(X) = Ker[Br(X) \rightarrow Br(\overline{X})]$

A B A A B A

The following question was asked by Peter Swinnerton-Dyer.

Question

Let $\mathcal{X} \rightarrow \operatorname{Spec}(\mathcal{O}_S)$ be a **smooth** and projective morphism with geometrically integral fibres. Let $X = \mathcal{X} \times_{\mathcal{O}_S} k$ be the generic fibre. Assume that $\operatorname{Pic}(\overline{X})$ is a finitely generated **torsion-free** abelian group. Does there exist a closed subset $Z \subset \prod_{v \in S} X(k_v)$ such that

$$X(\mathbb{A}_k)^{\mathrm{Br}} = Z imes \prod_{v
ot \in S} X(k_v)$$
 ?

くロ とく聞 とくほ とくほ とう

The following question was asked by Peter Swinnerton-Dyer.

Question

Let $\mathcal{X} \rightarrow \operatorname{Spec}(\mathcal{O}_S)$ be a **smooth** and projective morphism with geometrically integral fibres. Let $X = \mathcal{X} \times_{\mathcal{O}_S} k$ be the generic fibre. Assume that $\operatorname{Pic}(\overline{X})$ is a finitely generated **torsion-free** abelian group. Does there exist a closed subset $Z \subset \prod_{v \in S} X(k_v)$ such that

$$X(\mathbb{A}_k)^{\mathrm{Br}} = Z \times \prod_{v \notin S} X(k_v)$$
 ?

In other words: is it true that only the bad reduction primes and the archimedean places show up in the Brauer–Manin obstruction?

ヘロト 人間 ト ヘヨト ヘヨト

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Write $X_v = X \times_k k_v$ and, for $v \notin S$, write $\mathcal{X}_v = \mathcal{X} \times_{\mathcal{O}_S} \mathcal{O}_v$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Write $X_v = X \times_k k_v$ and, for $v \notin S$, write $\mathcal{X}_v = \mathcal{X} \times_{\mathcal{O}_S} \mathcal{O}_v$.

Remark

If for every $v \notin S$ the image of $Br(X) \rightarrow Br(X_v)$ is contained in the subgroup generated by the images of $Br(k_v)$ and $Br(\mathcal{X}_v)$, then the answer is positive.

Proof Since $\mathcal{X}_{\nu}/\mathcal{O}_{\nu}$ is projective we have $X(k_{\nu}) = \mathcal{X}_{\nu}(\mathcal{O}_{\nu})$. Thus the value of $A \in Br(\mathcal{X}_{\nu})$ at any $P \in X(k_{\nu})$ comes from $Br(\mathcal{O}_{\nu}) = 0$.

ヘロト ヘアト ヘビト ヘビト

Write $X_v = X \times_k k_v$ and, for $v \notin S$, write $\mathcal{X}_v = \mathcal{X} \times_{\mathcal{O}_S} \mathcal{O}_v$.

Remark

If for every $v \notin S$ the image of $Br(X) \rightarrow Br(X_v)$ is contained in the subgroup generated by the images of $Br(k_v)$ and $Br(\mathcal{X}_v)$, then the answer is positive.

Proof Since $\mathcal{X}_{\nu}/\mathcal{O}_{\nu}$ is projective we have $X(k_{\nu}) = \mathcal{X}_{\nu}(\mathcal{O}_{\nu})$. Thus the value of $A \in Br(\mathcal{X}_{\nu})$ at any $P \in X(k_{\nu})$ comes from $Br(\mathcal{O}_{\nu}) = 0$.

The following proposition generalises an earlier result of Martin Bright.

ヘロン ヘアン ヘビン ヘビン

Proposition

The image of $Br_1(X) \rightarrow Br(X_v)$ is contained in the subgroup generated by the images of $Br(k_v)$ and $Br(\mathcal{X}_v)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

The image of $\operatorname{Br}_1(X) \to \operatorname{Br}(X_v)$ is contained in the subgroup generated by the images of $\operatorname{Br}(k_v)$ and $\operatorname{Br}(\mathcal{X}_v)$.

Idea of proof: Let k_v^{nr} be the maximal unramified extension of k_v in $\overline{k_v}$,

$$X_{\nu}^{\mathrm{nr}} = X_{\nu} \times_{k_{\nu}} k_{\nu}^{\mathrm{nr}}, \quad \overline{X}_{\nu} = X_{\nu} \times_{k_{\nu}} \overline{k}_{\nu}.$$

Let $I = \text{Gal}(\overline{k}_v / k_v^{\text{nr}})$ be the inertia group.

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Proposition

The image of $\operatorname{Br}_1(X) \to \operatorname{Br}(X_v)$ is contained in the subgroup generated by the images of $\operatorname{Br}(k_v)$ and $\operatorname{Br}(\mathcal{X}_v)$.

Idea of proof: Let k_v^{nr} be the maximal unramified extension of k_v in $\overline{k_v}$,

$$X_{\nu}^{\mathrm{nr}} = X_{\nu} \times_{k_{\nu}} k_{\nu}^{\mathrm{nr}}, \quad \overline{X}_{\nu} = X_{\nu} \times_{k_{\nu}} \overline{k}_{\nu}.$$

Let $I = \text{Gal}(\overline{k}_v/k_v^{\text{nr}})$ be the inertia group.

Key claim: Inertia *I* acts trivially on $Pic(\overline{X}_v)$.

Let ℓ be a prime different from the residual characteristic of k_v . The Kummer exact sequence

$$\mathbf{1} {\rightarrow} \mu_{\ell^n} {\rightarrow} \mathbb{G}_m \xrightarrow{[\ell^n]} \mathbb{G}_m {\rightarrow} \mathbf{1}$$

gives $\operatorname{Pic}(\overline{X}_{\nu})/\ell^n \hookrightarrow \operatorname{H}^2_{\operatorname{\acute{e}t}}(\overline{X}_{\nu},\mu_{\ell^n})$. Passing to the limit we obtain $\operatorname{Pic}(\overline{X}_{\nu}) \subset \operatorname{Pic}(\overline{X}_{\nu}) \otimes \mathbb{Z}_{\ell} \subset \operatorname{H}^2_{\operatorname{\acute{e}t}}(\overline{X}_{\nu},\mathbb{Z}_{\ell}(1)) = \operatorname{lim.proj.}\operatorname{H}^2_{\operatorname{\acute{e}t}}(\overline{X}_{\nu},\mu_{\ell^n}).$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Smooth base change theorem for the smooth and proper morphism $\pi : \mathcal{X}_{v} \rightarrow \operatorname{Spec}(\mathcal{O}_{v})$ implies that the étale sheaf $R^{2}\pi_{*}\mu_{\ell^{n}}$ is locally constant. It follows that the action of $\operatorname{Gal}(\overline{k_{v}}/k_{v})$ on the generic geometric fibre $\operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{X}}_{v}, \mu_{\ell^{n}})$, i.e. on the fibre at $\operatorname{Spec}(\overline{k_{v}})$, factors through

$$\pi_1(\operatorname{Spec}(\mathcal{O}_{\boldsymbol{V}}),\operatorname{Spec}(\overline{k_{\boldsymbol{V}}})) = \operatorname{Gal}(\overline{k_{\boldsymbol{V}}}/k_{\boldsymbol{V}})/I.$$

This proves the key claim.

One deduces that every element of $Br_1(X_v)$ belongs to $Ker[Br(X_v) \rightarrow Br(X_v^{nr})]$. The proposition follows with a little more work (or just use Martin Bright's result).

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction

⇒ < ⇒ >

< 合

э

Let ℓ be a prime different from the residual characteristic of k_{ν} . Write $\operatorname{Br}(X_{\nu})\{\ell\}$ for the ℓ -primary subgroup of $\operatorname{Br}(X_{\nu})$. Let \mathbb{F} be the residue field of k_{ν} , and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} .

Let ℓ be a prime different from the residual characteristic of k_{ν} . Write $\operatorname{Br}(X_{\nu})\{\ell\}$ for the ℓ -primary subgroup of $\operatorname{Br}(X_{\nu})$. Let \mathbb{F} be the residue field of k_{ν} , and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} .

Lemma

If the closed geometric fibre $\mathcal{X} \times_{\mathcal{O}_S} \overline{\mathbb{F}}$ has no connected unramified covering of degree ℓ , then $\operatorname{Br}(X_v)\{\ell\}$ is generated by the images of $\operatorname{Br}(k_v)\{\ell\}$ and $\operatorname{Br}(\mathcal{X}_v)\{\ell\}$.

Let ℓ be a prime different from the residual characteristic of k_{ν} . Write $\operatorname{Br}(X_{\nu})\{\ell\}$ for the ℓ -primary subgroup of $\operatorname{Br}(X_{\nu})$. Let \mathbb{F} be the residue field of k_{ν} , and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} .

Lemma

If the closed geometric fibre $\mathcal{X} \times_{\mathcal{O}_S} \overline{\mathbb{F}}$ has no connected unramified covering of degree ℓ , then $\operatorname{Br}(X_v)\{\ell\}$ is generated by the images of $\operatorname{Br}(k_v)\{\ell\}$ and $\operatorname{Br}(\mathcal{X}_v)\{\ell\}$.

The proof is an easy consequence of Gabber's purity theorem and results of Kato (Crelle's J., 1986, which use K-theory and the Merkuriev–Suslin theorem).

Sketch of proof:

Let $\mathcal{X}_0 = \mathcal{X} \times_{\mathcal{O}_S} \mathbb{F}$ be the closed fibre of $\pi : \mathcal{X}_v \rightarrow \operatorname{Spec}(\mathcal{O}_v)$, $\overline{\mathcal{X}}_0 = \mathcal{X} \times_{\mathcal{O}_S} \overline{\mathbb{F}}$. $\mathbb{F}(\mathcal{X}_0)$ is the function field of \mathcal{X}_0 .

Kato proves that the residue map fits into a complex

$$\mathrm{Br}(X)[\ell^n] \xrightarrow{\mathrm{res}} \mathrm{H}^1(\mathbb{F}(\mathcal{X}_0), \mathbb{Z}/\ell^n) \longrightarrow \bigoplus_{Y \subset \mathcal{X}_0,} \mathrm{H}^0(\mathbb{F}(Y), \mathbb{Z}/\ell^n(-1)),$$

where the sum is over all irreducible $Y \subset \mathcal{X}_0$ such that $\operatorname{codim}_{\mathcal{X}_0}(Y) = 1$, and $\mathbb{F}(Y)$ is the function field of *Y*. A character in

$$\mathrm{H}^{1}(\mathbb{F}(\mathcal{X}_{0}),\mathbb{Z}/\ell^{n}) = \mathrm{Hom}(\mathrm{Gal}(\overline{\mathbb{F}(\mathcal{X}_{0})}/\mathbb{F}(\mathcal{X}_{0})),\mathbb{Z}/\ell^{n})$$

defines a covering of \mathcal{X}_0 that corresponds to the invariant field of this character.

向下 イヨト イヨト

If $A \in Br(X_{\nu})[\ell^n]$, then the covering defined by res(A) is unramified at every divisor of \mathcal{X}_0 . Hence it is unramified, i.e. $res(A) \in H^1_{\acute{e}t}(\mathcal{X}_0, \mathbb{Z}/\ell^n)$.

$$\mathrm{H}^{p}(\mathbb{F},\mathrm{H}^{q}_{\mathrm{\acute{e}t}}(\overline{\mathcal{X}}_{0},\mathbb{Z}/\ell^{n})) \Rightarrow \mathrm{H}^{p+q}_{\mathrm{\acute{e}t}}(\mathcal{X}_{0},\mathbb{Z}/\ell^{n})$$

gives rise to

$$0{\rightarrow} \mathrm{H}^{1}(\mathbb{F},\mathbb{Z}/\ell^{n}){\rightarrow} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\mathcal{X}_{0},\mathbb{Z}/\ell^{n}){\rightarrow} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\overline{\mathcal{X}}_{0},\mathbb{Z}/\ell^{n})$$

Our assumption implies that $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\overline{\mathcal{X}}_{0},\mathbb{Z}/\ell^{n})=0$, hence

 $\operatorname{res}(A) \in \operatorname{H}^{1}(\mathbb{F}, \mathbb{Z}/\ell^{n}).$

By local class field theory $\operatorname{Br}(k_{\nu})\{\ell^n\} \rightarrow \operatorname{H}^1(\mathbb{F}, \mathbb{Z}/\ell^n)$ is an isomorphism, so that there exists $\alpha \in \operatorname{Br}(k_{\nu})\{\ell^n\}$ such that $\operatorname{res}(\alpha) = \operatorname{res}(A)$. By Gabber's absolute purity theorem $A - \alpha \in \operatorname{Br}(\mathcal{X}_{\nu})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question: Is there an analogue when $\ell = p$?

Alexei Skorobogatov Good reduction of the Brauer–Manin obstruction

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Question: Is there an analogue when $\ell = p$?

Remark

Let X be a smooth, projective and geometrically integral variety over k such that $\operatorname{Pic}(\overline{X})$ is a finitely generated torsion-free abelian group, and $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ is finite. Then $X(\mathbb{A}_k)^{\operatorname{Br}}$ is **open** and closed in $X(\mathbb{A}_k)$.

Proof $Br_1(X)/Br_0(X) \subset H^1(k, Pic(\overline{X}))$, which is finite since $Pic(\overline{X})$ is finitely generated and torsion-free.

The sum of local invariants of a given element of Br(X) is a continuous function on $X(\mathbb{A}_k)$ with finitely many values, and this function is identically zero if the element is in $Br_0(X)$.

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

Assume (i) $H^1(\overline{X}, O_{\overline{X}}) = 0$; (ii) the Néron–Severi group $NS(\overline{X})$ has no torsion; (iii) $Br(X)/Br_1(X)$ is a finite abelian group of order invertible in \mathcal{O}_S . Then the answer to our question is positive.

This follows from the previous results by the smooth base change theorem: we can identify

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\overline{\mathcal{X}}_{0},\mathbb{Z}/\ell)=\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Z}/\ell)\simeq\mathrm{Pic}(\overline{X})_{\ell}$$

and so conclude that the closed geometric fibre has no connected étale covering of degree ℓ .

Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \overline{X} .

(七日) (日)

Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \overline{X} .

Corollary

Assume (i) $H^1(\overline{X}, O_{\overline{X}}) = H^2(\overline{X}, O_{\overline{X}}) = 0;$ (ii) the Néron–Severi group NS(\overline{X}) has no torsion; (iii) either dim X = 2, or $H^3_{\text{ét}}(\overline{X}, \mathbb{Z}_\ell)$ is torsion-free for every prime ℓ outside S. Then the answer to our question is positive. Condition (iii) is hard to check in general, so we state a particular case where all conditions are only on \overline{X} .

Corollary

Assume (i) $H^1(\overline{X}, O_{\overline{X}}) = H^2(\overline{X}, O_{\overline{X}}) = 0;$ (ii) the Néron–Severi group NS(\overline{X}) has no torsion; (iii) either dim X = 2, or $H^3_{\text{ét}}(\overline{X}, \mathbb{Z}_\ell)$ is torsion-free for every prime ℓ outside S. Then the answer to our question is positive.

This applies to unirational varieties (some of them are not rational, e.g. Harari's example of a transcendental Brauer–Manin obstruction with $Br(\overline{X}) = \mathbb{Z}/2$).

What about bad reduction?

If $A \in Br(X_v)_n$, and assume that the residual characteristic of k_v does not divide *n*. Let $\mathcal{X}_v \rightarrow Spec(\mathcal{O}_v)$ be a regular model, smooth and projective over $Spec(\mathcal{O}_v)$. Let \mathcal{X}_0 be the closed fibre, \mathcal{X}_0^{smooth} be its smooth locus, and let V_i be the irreducible components of \mathcal{X}_0^{smooth} that are geometrically irreducible. Then the reduction of a k_v -point belongs to some V_i .

Kato's complex implies that $\operatorname{res}_{V_i}(A) \in \operatorname{H}^1_{\acute{\operatorname{\acute{e}t}}}(V_i, \mathbb{Z}/n)$, but this group is finite. Evaluating at \mathbb{F} -points gives finitely many functions $V_i(\mathbb{F}) \to \operatorname{H}^1(\mathbb{F}, \mathbb{Z}/n) = \mathbb{Z}/n$, or one function $f: V_i(\mathbb{F}) \to (\mathbb{Z}/n)^m$. This defines a partition of $V_i(\mathbb{F})$. We get a partition of $X(k_v)$ into a disjoint union of subsets such that A(P) is constant on each subset.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Note that this Corollary does not apply to K3 surfaces. Nevertheless we have the following result.

Theorem

Let D be the diagonal quartic surface over \mathbb{Q} given by

$$x_0^4 + a_1 x_1^4 + a_2 x_2^4 + a_3 x_3^4 = 0,$$

where $a_1, a_2, a_3 \in \mathbb{Q}^*$. Let S be the set of primes consisting of 2 and the primes dividing the numerators or the denominators of a_1, a_2, a_3 . Then

$$D(\mathbb{A}_{\mathbb{Q}})^{\mathrm{Br}} = Z \times \prod_{p \notin S} D(\mathbb{Q}_p)$$

for an open and closed subset $Z \subset D(\mathbb{R}) \times \prod_{\rho \in S} D(\mathbb{Q}_{\rho})$.

くロ とく聞 とくほ とくほ とう

Proof This follows from the previous theorem by the results of leronymou–AS–Zarhin: only the primes from $\{2, 3, 5\} \cap S$ can divide the order of the finite group $Br(D)/Br_1(D)$.

Note The primes from $S \setminus \{2, 3, 5\}$ are not too bad, whereas those from $\{2, 3, 5\} \cap S$ are seriously bad.

Note We do not have an example of a transcendental Azumaya algebra on *D* of order 2 defined over \mathbb{Q} , but Thomas Preu has constructed such an algebra of order 3 which gives a BM obstruction to WA. Order 5?

A full proof of the result of leronymou–AS–Zarhin is quite long. *Notation:*

X is the Fermat quartic $x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0$; *E* is the elliptic curve $y^2 = x^3 - x$ with CM by $\mathbb{Z}[i]$, $i = \sqrt{-1}$.

The Galois representation on E_n was computed by Gauss:

if *p* splits in $\mathbb{Z}[i]$, so that $p = a^2 + b^2$, where $a + bi \equiv 1 \mod 2 + 2i$, then the Frobenius at the prime $(a + b\sqrt{-1})$ of $\mathbb{Z}[\sqrt{-1}]$ acts on E_n as the complex multiplication by $a + b\sqrt{-1}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The key ingredients of the leronymou-AS-Zarhin result:

leronymou's paper on the 2-torsion in Br(X) (uses a pencil of genus 1 curves on X without a section);

(* E) * E)

The key ingredients of the leronymou–AS–Zarhin result:

- leronymou's paper on the 2-torsion in Br(X) (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to E × E (works only over Q(√−1, √2));

A B K A B K

The key ingredients of the leronymou–AS–Zarhin result:

- leronymou's paper on the 2-torsion in $Br(\overline{X})$ (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to E × E (works only over Q(√−1, √2));
- AS-Zarhin's isomorphism between the Brauer group of an abelian surface and the Brauer group of the corresponding Kummer surface;

通 と く ヨ と く ヨ と

The key ingredients of the leronymou–AS–Zarhin result:

- leronymou's paper on the 2-torsion in Br(X) (uses a pencil of genus 1 curves on X without a section);
- Mizukami's explicit representation of X as the Kummer surface attached to an abelian surface isogenous to E × E (works only over ℚ(√−1, √2));
- AS-Zarhin's isomorphism between the Brauer group of an abelian surface and the Brauer group of the corresponding Kummer surface;
- leronymou–AS–Zarhin paper: an explicit analysis of the Galois representation on E_n , for *n* odd.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.

(By Nikulin, it implies that X is Kummer)

Sketch of Mizukami's construction, after Swinnerton-Dyer

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.

(By Nikulin, it implies that X is Kummer)

But the set of 48 obvious lines does not contain a subset of 16 disjoint lines :(

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.

(By Nikulin, it implies that *X* is Kummer)

But the set of 48 obvious lines does not contain a subset of 16 disjoint lines :(

However, sometimes a plane through two intersecting lines on X cuts X in the union of these lines and a residual conic. There is a set of 16 disjoint rational curves on X consisting of 8 straight lines and 8 conics :)

To prove that X is a Kummer surface we must exhibit 16 disjoint lines.

(By Nikulin, it implies that X is Kummer)

But the set of 48 obvious lines does not contain a subset of 16 disjoint lines :(

However, sometimes a plane through two intersecting lines on X cuts X in the union of these lines and a residual conic. There is a set of 16 disjoint rational curves on X consisting of 8 straight lines and 8 conics :)

One can find two elliptic pencils on X intersecting trivially with these 16 curves, which gives a map $X \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ of degree 4 contracting these curves.

くロト (過) (目) (日)

C is the curve $v^2 = (u^2 - 1)(u^2 - \frac{1}{2})$,

 $\textit{A} = \textit{C} \times \textit{C} / \tau$, where τ changes the signs of all four coordinates,

K is the Kummer surface attached to A.

K is birationally equivalent to the surface

$$z^2 = (x-1)(x-\frac{1}{2})(y-1)(y-\frac{1}{2}), \quad t^2 = xy.$$

Explicit equations show that $X \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ factors through the degree 4 map $K \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ given by $(x, y, z, t) \mapsto (x, y)$. This gives a birational map $X \rightarrow K$, which must be an isomorphism.

・ロ・ ・ 同・ ・ ヨ・

Note *K* is birational to the double covering of \mathbb{P}^2 :

$$z^{2} = (x-1)(x-\frac{1}{2})(t^{2}-x)(t^{2}-\frac{1}{2}x).$$

Easy to write Azumaya algebras on K:

$$(t^2 - x, t^2 - \frac{1}{2}x), (t^2 - x, x - 1).$$

Open problem For many diagonal quartics *D* over \mathbb{Q} one expects a transcendental element of order 2 in Br(*D*). How to write it explicitly? Can one use Mizukami's isomorphism?

伺下 イヨト イヨト

Advertisement:

Conference "Torsors: theory and practice" 10-14 January 2011 Edinburgh, Scotland

organised by V. Batyrev and A. Skorobogatov

http://www2.imperial.ac.uk/ anskor/

All queries to a.skorobogatov@imperial.ac.uk

(E) < E)</p>