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Summary

Higher-order inference about a scalar parameter in the presence of nuisance parameters

can be achieved by bootstrapping, in circumstances where the parameter of interest is

a component of the canonical parameter in a full exponential family. The optimal test

which is approximated is a conditional one, based on conditioning on the sufficient statis-

tic for the nuisance parameter. A bootstrap procedure which ignores the conditioning
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is shown to have desirable conditional properties, in providing third-order relative accu-

racy in approximation of p-values associated with the optimal test, in both continuous

and discrete models. The bootstrap approach is equivalent to third-order to analyt-

ical approaches, and is demonstrated in a number of examples to give very accurate

approximations even in very small sample sizes.

Some key words: Bootstrap; Conditional test; Full exponential family; Likelihood; Nui-

sance parameter; Signed root likelihood ratio statistic.
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1. Introduction

Suppose that Y = (Y1, . . . , Yn) is a random vector whose distribution depends on a

parameter θ = (ψ, λ), where ψ is a scalar parameter of interest and λ is a vector of nui-

sance parameters, and suppose that it is required to test the null hypothesis H0 : ψ = ψ0

against a one-sided alternative of the form ψ < ψ0 or ψ > ψ0. The parametric boot-

strap provides a possible approach: see for example Davison & Hinkley (1997, §4.2.3).

Indeed, for such a testing problem, higher-order-accurate inference can be achieved by

bootstrap procedures. In particular, inference procedures based on estimation of the

sampling distribution of an appropriate statistic under the model in which the nuisance

parameters are specified as their constrained maximum likelihood values for the given

value ψ0 of the interest parameter offer third-order accuracy, under repeated sampling,

quite generally: see DiCiccio et al. (2001) and Lee & Young (2005).

We will be concerned in this paper with bootstrap procedures based on the signed

root likelihood ratio statistic,

R = R(ψ0) ≡ sgn(ψ̂ − ψ0)[2{l(θ̂)− l(θ̂0)}]
1/2,

where l(θ) is the loglikelihood function, θ̂ = (ψ̂, λ̂) is the maximum likelihood estimator

and θ̂0 = (ψ0, λ̂0) is the constrained maximum likelihood estimator of θ given H0. In

broad generality, R(ψ0) has, under the null hypothesis H0, the standard normal dis-

tribution to error of order O(n−1/2), so that standard normal approximation produces

p-values that are uniformly distributed, under repeated sampling of Y , to error of first-

order O(n−1/2). This order of error is reduced to third-order O(n−3/2) by bootstrapping,

using the procedure suggested by DiCiccio et al. (2001). Given ψ0, the estimator θ̂0

is used to construct a bootstrap distribution of R(ψ0). With FR(r; θ) = pr(R ≤ r; θ)

denoting the distribution function of R under θ, the bootstrap distribution function is

FR(·; θ̂0). Evidence against H0, in favour of, say, ψ < ψ0 is provided by small values of
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r, where r denotes the observed data value of R(ψ0). The appropriate bootstrap p-value

is

pR(ψ0) = FR(r; θ̂0). (1)

Lee & Young (2005) showed that, under repeated sampling, ifH0 is true, the distribution

of the bootstrap p-value FR(R; θ̂0) is uniform to error of third-order. They showed further

that the strategy of bootstrapping at the constrained maximum likelihood estimator

achieves reduction in error to third-order not only for the signed root likelihood ratio

statistic R, but also for other asymptotically normal test statistics such as Wald and

score statistics. The conventional approach of bootstrapping at the global maximum

likelihood estimator θ̂, approximating FR(r; θ) by pr(R ≤ r; θ̂), typically achieves a

reduction in error to second-order O(n−1) only.

However, if the parameter of interest ψ is a component of the canonical parameter

in a full exponential family model, the appropriate inference is a conditional one, based

on the conditional distribution of the sufficient statistic for the interest parameter given

the observed data value of the sufficient statistic for the nuisance parameters. This con-

ditioning furnishes, in particular, an exact similar test with the finite-sample optimality

property of being uniformly most powerful among similar tests; see Lehmann & Romano

(2005, §4.4). In practice, however, it may be awkward or impossible to construct the ex-

act similar test, as determination of the p-value requires that the conditional distribution

of the sufficient statistic should be known.

The primary contribution of this paper is to establish that in this exponential family

context the bootstrap p-value (1), constructed without regard to the desired conditioning

of the optimal test, nevertheless approximates the p-value of the exact conditional test

to relative error of third-order O(n−3/2). Thus, in some generality, the bootstrap method

outlined above has the same asymptotic properties as saddlepoint methods developed

by Skovgaard (1987) and Barndorff-Nielsen (1986) and studied by Jensen (1992).
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2. Theoretical development

Let Y = (Y1, Y2) be a random variable whose distribution is a full exponential family

model having canonical parameter θ = (ψ, λ) and density that we may suppose to be of

the form

fY (y; θ) = exp{ψy1 + λ
Ty2 − κ(ψ, λ)− k(y1, y2)}, y = (y1, y2), (2)

where y2 and λ vectors of dimension q. Let (Y1i, Y2i), i = 1, . . . , n, be a random sam-

ple from the distribution of Y . The interest parameter ψ is thus a component of the

canonical parameter, though we note that, by reparameterization, our arguments may be

applied in circumstances where the interest parameter is a linear combination of canon-

ical parameters, or a ratio of canonical parameters. In the latter case the conditioning

statistic will depend on ψ0; see Barndorff-Nielsen & Cox (1994, §2.5). The sufficient

statistic is Ȳ = ( Ȳ1, Ȳ2), where Ȳj =
∑
Yji/n, and the exact conditional test is based

on the distribution of Ȳ1, given Ȳ2 = ȳ2, the observed data value of Ȳ2. Conditioning on

Ȳ2 = ȳ2 eliminates the nuisance parameter λ. Large values of Ȳ1 are evidence against

H0 in favour of ψ > ψ0.

When Y1 is a continuous variable and Y2 is either a continuous or a lattice variable,

Jensen (1995, formulae 5.2.1 and 5.2.5), showed that, for r of order O(1),

pr(R ≥ r|Ȳ2 = ȳ2;ψ) = 1− Φ(r) + φ(r)
{1
u
−
1

r
+O(n−3/2)

}
, (3)

where r = sgn(ψ̂−ψ)[2n{(ψ̂−ψ)ȳ1+(λ̂− λ̂ψ)
Tȳ2−κ(ψ̂, λ̂)+κ(ψ, λ̂ψ)}]

1/2, κθ(ψ̂, λ̂) = ȳ,

κλ(ψ, λ̂ψ) = ȳ2, and u = n1/2(ψ̂ − ψ)|κθθ(ψ̂, λ̂)|
1/2|κλλ(ψ, λ̂ψ)|

−1/2. In these expressions,

partial differentiation is indicated by subscripts, so that κθ(θ) = ∂κ(θ)/∂θ, κθθ(θ) =

∂2κ(θ)/∂θ∂θT, etc., and Φ(·) and φ(·) are the standard normal cumulative distribution

and probability density functions, respectively. Furthermore, Jensen (1995, formula

5.2.11) showed that approximation (3) continues to hold when Y1 is a lattice variable by
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replacing u with uℓ = n1/2[1− exp{−(ψ̂ − ψ)}]|κθθ(ψ̂, λ̂)|
1/2|κλλ(ψ, λ̂ψ)|

−1/2. Note that,

for r of order O(1), both Φ(r) and φ(r) are of order O(1), so that (3) may be rewritten

as

pr(R ≥ r|Ȳ2 = ȳ2;ψ) =
{
1− Φ(r) + φ(r)

(1
u
−
1

r

)}
{1 +O(n−3/2)},

or

pr(R ≥ r|Ȳ2 = ȳ2;ψ) ≃ 1− Φ(r) + φ(r)(u
−1 − r−1), (4)

where the symbol ≃ denotes an approximation with relative error of order O(n−3/2).

The goal is to show that pr{R ≥ r; (ψ, λ̂ψ)} ≃ pr(R ≥ r|Ȳ2 = ȳ2;ψ), when r is

of order O(1). This result is derived by integrating, when Y2 is a continuous variable,

or summing, when Y2 is a lattice variable, the right-hand side of (4) with respect to

a saddlepoint expansion of the density of Ȳ2, to obtain an expansion for the marginal

distribution of R, that is, for pr(R ≥ r; θ). Then, by evaluating this latter expansion at

the particular parameter value (ψ, λ̂ψ), we see that the right-hand side of (4) is recovered,

which confirms the desired result.

To simplify the presentation, the case q = 1 is considered. Thus, in what follows,

Y2 is taken to be a real-valued random variable and λ is scalar. The demonstration

consists of three steps: first we obtain an approximation to the marginal density of Ȳ2

by saddlepoint expansion; then we obtain an approximation to the variable u−1−r−1 by

ordinary Taylor expansion; and finally we combine the results of the previous two steps

by Laplace approximation to find an expansion for the expectation of u−1 − r−1 taken

with respect to the marginal distribution of Ȳ2.

Step 1. Standard saddlepoint methods, as developed, for example, by Jensen (1995,

formula 2.2.4), show that the marginal density of Ȳ2 has the expansion

fȲ2(ȳ2; θ) =

(
nh(2)
2π

)1/2
exp(−nh)

[
1−
1

n

{1
8

h(4)
(h(2))2

−
1

6

(h(3))
2

(h(2))3

}
+O(n−2)

]
,
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where h = h(ȳ2; θ) = λ̂ψ ȳ2 − λȳ2 + κ(ψ, λ)− κ(ψ, λ̂ψ) and h(k) = ∂
kh/∂ȳk2 , k = 1, . . . , 4.

Differentiation of the equation κλ(ψ, λ̂ψ) = ȳ2, which defines λ̂ψ as a function of ȳ2,

yields ∂λ̂ψ/∂ȳ2 = {κλλ(ψ, λ̂ψ)}
−1, and hence h(1) = λ̂ψ − λ and h(2) = {κλλ(ψ, λ̂ψ)}

−1.

Thus, the point ȳ∗2 at which h(ȳ2; θ) attains its minimum value satisfies λ̂ψ = λ, i.e.,

ȳ∗2 = κλ(ψ, λ). Let δ = ȳ2 − ȳ
∗

2 , which is of order O(n
−1/2). Taylor expansion about ȳ∗2

in the saddlepoint expansion of the marginal density of Ȳ2 yields

fȲ2(ȳ2; θ) =

(
nh∗(2)
2π

)1/2
exp(−1

2
δ2nh∗(2)){1 + δH1 + δ

3nH3

+ n−1H0 + δ
2H2 + δ

4nH4 + δ
6n2H6 +O(n

−3/2)},

where h∗(2) = h(2)(ȳ
∗

2) = {κλλ(ψ, λ)}
−1 and the coefficients H0, H1, . . . are of order O(1)

and are functions of κλλ(ψ, λ), κλλλ(ψ, λ), and κλλλλ(ψ, λ).

Step 2. Standard Taylor expansion of r2 about ψ̂ yields an expansion of u−1 − r−1

of the form

u−1 − r−1 = n−1/2g1(ψ̂, λ̂) + n
−1g2(ψ̂, λ̂)r +O(n

−3/2),

where g1(ψ, λ) and g2(ψ, λ) are of order O(1) and are functions of the derivatives of

κ(ψ, λ). If we regard (ψ̂, λ̂) as a function of (r, ȳ2), this expansion can be used to obtain

an expansion for u−1−r−1 about ȳ∗2, with r set at its specified value. Derivatives relevant

to this purpose include

∂ψ̂(r, ȳ2)

∂ȳ2
= −

(λ̂− λ̂ψ)

(ψ̂ − ψ)

κ̂λλ
|κ̂θθ|

−
κ̂ψλ
|κ̂θθ|

= −
1

2
(ψ̂ − ψ)

B̂

|κ̂θθ|
+O(n−1),

∂λ̂(r, ȳ2)

∂ȳ2
=
(λ̂− λ̂ψ)

(ψ̂ − ψ)

κ̂ψλ
|κ̂θθ|

+
κ̂ψψ
|κ̂θθ|

=
1

κ̂λλ

{
1 +
1

2
(ψ̂ − ψ)

κ̂ψλB̂

|κ̂θθ|

}
+O(n−1),

where B̂ = κ̂ψψλ−2κ̂ψλλκ̂ψλκ̂
−1
λλ+ κ̂λλλκ̂

2
ψλκ̂

−2
λλ and κ̂θθ = κθθ(θ̂), and so on. The quantity

B̂ is of order O(1) and arises in the expansion

(λ̂− λ̂ψ)

(ψ̂ − ψ)
= κ̂−1λλ{κ̂ψλ −

1
2
(ψ̂ − ψ)B̂}+O(n−1).
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The crucial observation is that the derivatives of ψ̂(r, ȳ2) and λ̂(r, ȳ2) of all orders taken

with respect to ȳ2 are of order O(1) or smaller.

It follows that u−1 − r−1 has an expansion of the form

{u(r, ȳ2)}
−1 − r−1 = {u(r, ȳ∗2)}

−1 − r−1 + δn−1/2G∗ +O(n−3/2),

where G∗ is of order O(1) and is a function of r and the derivatives of κ(ψ, λ) evaluated

at (ψ̂∗, λ̂∗), the value of (ψ̂, λ̂) corresponding to (r, ȳ∗2) with r set at its specified value.

Step 3. The final step is to use Laplace approximation to integrate {u(r, ȳ2)}
−1− r−1

with respect to the marginal density of Ȳ2. This integration amounts to finding the

expected value of

[{u(r, ȳ∗2)}
−1 − r−1 +Dn−1/2G∗ +O(n−3/2)]{1 +DH1 +D

3nH3

+ n−1H0 +D
2H2 +D

4nH4 +D
6n2H6 +O(n

−3/2)}

= [{u(r, ȳ∗2)}
−1 − r−1](1 +DH1 +D

3nH3) +Dn
−1/2G∗ +O(n−3/2),

where D = Ȳ2 − ȳ
∗

2 , and Ȳ2 is to be regarded as a normally distributed random variable

with mean ȳ∗2 and variance {nh
∗

(2)}
−1. The integration process then yields

{u(r, ȳ∗2)}
−1 − r−1 +O(n−3/2).

If, given Ȳ2 = ȳ2, the parameter is taken to be (ψ, λ) = (ψ, λ̂ψ) with κλ(ψ, λ̂ψ) = ȳ2,

then ȳ∗2 = ȳ2, and the average value of u
−1 − r−1 against the marginal density of Ȳ2 is

{u(r, ȳ2)}
−1 − r−1 +O(n−3/2), verifying the desired result.

Suppose that Y2 is a lattice variable whose minimal span is the integers. The density

of Ȳ2 (Jensen, 1995, formula 2.2.4) has the expansion

fȲ2(ȳ2; θ) =

(
h∗(2)
2πn

)1/2
exp(−1

2
δ2nh∗(2)){1 + δH1 + δ

3nH3

+ n−1H0 + δ
2H2 + δ

4nH4 + δ
6n2H6 +O(n

−3/2)}.
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Thus, averaging {u(r, ȳ2)}
−1 − r−1 with respect to the marginal density of Ȳ2 requires

calculation of a sum of the form

∑

δ

(2πn)−1/2 exp(−1
2
δ2nh∗(2))q(δ),

where q(δ) = (h∗(2))
1/2
(
[{u(r, ȳ∗2)}

−1 − r−1](1 + δH1 + δ
3nH3) + δn

−1/2G∗ +O(n−3/2)
)
.

The discrete version of Laplace approximation detailed by Jensen (1995, formula 3.2.10)

shows that the sum equals

(h∗(2))
−1/2q(0) + 1

2
n−1(h∗(2))

−3/2q(2)(0) + O(n
−2) = {u(r, ȳ∗2)}

−1 − r−1 +O(n−3/2),

exactly as in the continuous case, where q(2)(δ) = ∂2q(δ)/∂δ2. Again, provided we set

the parameter to be (ψ, λ) = (ψ, λ̂ψ), for which κλ(ψ, λ̂ψ) = ȳ2, the observed value of

the conditioning statistic Ȳ2, then the sum becomes {u(r, ȳ2)}
−1 − r−1 + O(n−3/2), as

desired.

Suppose finally that Y1 is a lattice variable. Taylor expansion shows that u
−1
ℓ − r

−1

admits an expansion of the same form as for u−1 − r−1:

u−1ℓ − r
−1 = n−1/2gℓ1(ψ̂, λ̂) + n

−1gℓ2(ψ̂, λ̂)r +O(n
−3/2),

say. Arguments identical to those used for u−1− r−1 apply, and the desired result holds

therefore in this case also.

The above argument holds for values of r in the normal deviation region, where R

is of order O(1). Jensen (1992) showed that conditional tail probability approximations

derived from (4) have relative error of order O(n−1) in large deviation regions, where R

is of order O(n1/2). Consequently, the bootstrap tail probabilities also approximate the

conditional ones to the same order of error in those regions.

In the present context of inference about canonical parameters in exponential fami-

lies, Jensen (1986a) considered bias- and variance-corrected versions of the signed root

likelihood ratio statistic R. He showed using an Edgeworth expansion argument that
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the conditional distribution of {R − µ̂(θ̂0)}/σ̂(θ̂0), given Ȳ2 = ȳ2, is standard normal

to error of order O(n−3/2) in the normal deviation region, though uniformity of relative

errors in the large deviation region does not hold. Here, Jensen took µ̂(θ) and σ̂2(θ) to

be asymptotic analytical approximations to the unconditional mean µ(θ) and variance

σ2(θ) of R obtained by the delta method. However, µ(θ̂0) and σ(θ̂0) are readily estimated

by simulation, so by bootstrapping we may replace the need for analytical bias and vari-

ance correction; an alternative bootstrap approach, which only requires estimation of

the unconditional mean and variance of R, rather than estimation of the full bootstrap

distribution of R, which is likely to be significantly more demanding computationally,

approximates the exact conditional p-value by

Φ[{r − µ(θ̂0)}/σ(θ̂0)]. (5)

Of the two approximate conditional p-values that can be obtained by simulation,

pR(ψ0), as given by (1), and the p-value (5) obtained by normal approximation, the

former will typically be more accurate, particularly in the region of extreme values of r.

The primary advantage of (5) is in its computational savings, which could be significant

when confidence limits are being constructed.

Approximation (4) furnishes directly an analytical approximation to the p−value of

the exact conditional test, with the same property of relative error of order O(n−3/2) as

we have shown for the bootstrap p−value (1). An asymptotically equivalent formulation

of (4) is

pr(R ≥ r|Ȳ2 = ȳ2;ψ) ≃ 1−Φ(r
∗), (6)

where r∗ is the adjusted form of the signed root likelihood ratio statistic (Barndorff-

Nielsen, 1986) which has the form r∗(ψ) = r + r−1 log(u/r).

In the empirical examples studied in the next section, we are concerned primarily

with the accuracy of bootstrap p−values (1) and (5) as approximations to those of the
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exact conditional test. Recall that the p−values (1) are based on the bootstrap sampling

distribution of R, while the approximation (5) uses the bootstrap simulation only to

derive bias and variance corrections to the statistic. However, we offer also comparisons

with analytical approximations to the exact conditional p−values derived from (6), as

these provide some benchmark of what is achievable by fully analytical means for small

sample sizes. In this regard, there is some evidence in the literature which favours use of

approximation (6) over (4): see for example Pierce & Peters (1992) and the discussion

of Barndorff-Nielsen & Cox (1994, §6.7).

3. Examples

3 · 1. Lognormal mean

Let Y1, . . . , Yn be independent N(µ, σ
2) and suppose we are interested in inference

about ψ = µ + 1
2
σ2, with σ2 as the nuisance parameter. The inference problem is

equivalent to that about the mean of the associated lognormal distribution.

As considered by Jensen (1986a), we assume a data configuration in which the usual

unbiased estimator σ̃2 = nσ̂2/(n − 1) of σ2 takes the value σ̃2 = 5, with the sample

mean Ȳ = −1
2
σ̃2. With sample size n = 5, this gives ψ̂ = −1/2. We consider testing

H0 : ψ = ψ0, for a range of values ψ0, for each value testing against the appropriate

one-sided alternative, so that the bootstrap p-value is min{pR(ψ0), 1 − pR(ψ0)}, with

pR(ψ0) given by (1).

Calculation of the p-values associated with the exact conditional test is awkward,

requiring numerical integration, though quite feasible; details are given by Land (1971).

In Fig. 1(a) we compare the absolute relative errors of the bootstrap p-values, and also

those obtained from the adjusted signed root likelihood ratio statistic r∗(ψ0) defined by

(6), by comparison with the p-values of the exact conditional test. We include in our
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comparison both the bootstrap p-values (1) and the p-values (5). All bootstrap p-values

were obtained on the basis of 50 million bootstrap samples. Such a large simulation was

used in the study to eliminate Monte Carlo variability. We offer some comments in §4

on the size of bootstrap simulation which might more realistically be used in practice.

In the figure, as in those in our other examples, the vertical lines correspond to ex-

act conditional p-values of 0.01. The smallest values of ψ0 considered in this example

correspond to exact conditional p-values as low as 0.0003, and the largest values of ψ0

considered to p-values around 0.0080. The full bootstrap approximation (1) displays

remarkably low relative error, except for extreme left-tailed p-values, and is more accu-

rate than the analytical approximation. The procedure based on normal approximation

to a bias and variance corrected version of R constructed by bootstrapping, (5), is re-

markably accurate relative to analytical approximation, but is less accurate than the full

bootstrap approach for extreme p-values.

Following Davison et al. (2006), we note that, if the relative error of an approximation

to the exact conditional p-value is of order O(n−c), a graph of the logarithm of the relative

error against log(n) will be linear, with slope −c. In Fig. 1(b), we have assumed the same

data configuration as before, but varied n, in a test of H0 : ψ = 0. Four approximations

to the exact conditional p-value are considered: the bootstrap approximations (1) and

(5), the analytical approximation Φ(r∗), and Φ(r), obtained by normal approximation

to the distribution of the unadjusted signed root statistic. The relative errors show the

expected dependence on the sample size n, the lines in the figure demonstrating the

O(n−3/2) convergence rate of both bootstrap-based approximations and the analytical

approximation Φ(r∗), and the slower rate of convergence O(n−1/2) of the approximation

Φ(r). Both bootstrap approximations yield lower relative errors than the analytical

method. We note that here, for each sample size n, the exact conditional p-value being

approximated is not extreme, being around 0.47, so it is not surprising that the bootstrap

12



procedure (5) based on normal approximation is competitive with the full bootstrap

approximation (1).

3 · 2. Gamma distribution

Now suppose that Y1, . . . , Yn is an independent sample from a gamma distribution

with mean µ, shape parameter ν and density

f(y;µ, ν) =
νν

Γ(ν)
exp
[
−ν
{y
µ
− log

(
y

µ

)}]1
y
, y > 0, µ, ν > 0.

We consider first inference about the shape parameter ν, with µ nuisance. Here the

optimal conditional test is based on the conditional distribution of
∑n

i=1 log Yi given the

observed data value of
∑n

i=1 Yi, which is equivalent (Pace & Salvan, 1997, Example 5.14)

to testing H0 : ν = ν0 based on a statistic,W say, which is the ratio between the geomet-

ric mean and arithmetic mean of the sample observations, in the conditional distribution

given the observed value u of U =
∑n

i=1 Yi. In fact W and U are independent, so that

the conditioning of the optimal test is carried out automatically when referring to the

marginal distribution of W . This distribution is complicated (Keating et al., 1990), but

easily simulated. We approximated the distribution by generating 200 million samples

of the appropriate size n from the gamma density f(·; 1, ν0).

We illustrate the bootstrap approximation to the exact conditional p-values on a

subset of size n = 10 of the dataset considered by Fraser et al. (1997), concerning

survival times of mice exposed to gamma radiation. The observations are 152, 115,

109, 152, 137, 88, 94, 77, 160 and 165. As in our previous example we consider testing

H0 : ν = ν0 for a range of values of ν0. The smallest value of ν0 considered corresponds

to an exact conditional p-value of 0.0012, and the largest to an exact p−value of 0.0035.

Bootstrap p-values are constructed on the basis of 5 million bootstrap samples, and Fig.

2(a) depicts the absolute relative errors for the bootstrap approximations (1) and (5),

and for the analytical approximation (6). Some Monte Carlo variability is apparent in
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the figure: this is due primarily to the fact that we have simulated the exact conditional

p-values, rather than to simulation error in the bootstrap calculation itself. The basic

message, however, is clear. Throughout the range of ν0 considered, which includes very

extreme values, the bootstrap approximation (1) displays a small relative error, less

than 2%, and compares favourably in terms of accuracy with the analytical method.

The simpler bootstrap approximation (5) is again very competitive compared to the

analytical method, but is less accurate than the full bootstrap approximation in the

extreme tails.

Suppose now that the mean µ is the interest parameter, with the shape parameter

ν nuisance. Construction of the optimal conditional test again requires numerical inte-

gration of a conditional density, but in this case the conditional density is not explicitly

known (Jensen, 1986b), except for sample sizes n = 2 or 3. We subject the approxima-

tion methods to a stern test, based on the sample of n = 2 observations consisting of

the first two survival times in the mice dataset considered above. Fig. 2(b) displays the

absolute relative errors of the analytical and bootstrap approximations, the latter again

based on 5 million samples, to p-values of the optimal conditional test for inference on

H0 : µ = µ0. For this extreme dataset the exact p-value is around 0.05 even for values µ0

in the region of 400, and is only as low as 0.01 for values of µ0 around 2000. The relative

errors are comparatively large, up to around 30%, but again both bootstrap approaches

are accurate compared to analytical approximation, with approximation (1) favoured in

accuracy terms to (5).

3 · 3. Binomial distribution

Our third example considers a discrete-data model and concerns inference about the

difference of log-odds for two binomial distributions. We assume a data configuration as

considered by Davison et al. (2006), with Y1, Y2 independent binomial random variables,

Y1 being Bi(2n, p1) and with log-odds λ = log{p1/(1−p1)} and Y2 being Bi(2n, p2), with
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log-odds λ + ψ = log{p2/(1 − p2)}. The observed values are y1 = n, y2 = n + n1/2 and

we are interested in testing no difference in log-odds, H0 : ψ = 0, considering the effect

of increasing n = 4, 9, 16, . . ..

An immediate issue arises about the appropriate reference p-value of the optimal

conditional test. It is widely argued that the appropriate p-value for inference in such

settings is the mid-p-value; see for instance the bibliographical notes of Brazzale et al.

(2007, Ch. 3). In the context of our full exponential family model (2), when testing

H0 : ψ = ψ0 against ψ > ψ0, the mid-p-value is

pr(Ȳ1 > ȳ1|Ȳ2 = ȳ2) +
1

2
pr(Ȳ1 = ȳ1|Ȳ2 = ȳ2).

We intend to undertake a full evaluation of the properties of the bootstrap procedures

for discrete distributions in subsequent work, but here we provide just illustration that

the method provides accurate approximation to the mid-p-value. Figure 3 plots the

logarithms of the relative errors of the analytical approximations Φ(r) and Φ(r∗), as

approximations to the mid-p-value, as well as that of the bootstrap approximations

(1) and (5), as n increases. Note that in our analysis the version of r∗ used is the

continuous form (6) described in §2, rather than a version which incorporates an explicit

correction for discreteness. This approach, of using the continuous form of r∗ for discrete

problems, has been advocated strongly by Pierce & Peters (1999). In this discrete

problem, the bootstrap p-values may be obtained by a complete enumeration of the

bootstrap distribution, without Monte Carlo sampling. We see from the figure the

order O(n−1) rate of convergence to the exact conditional mid-p-value of the analytical

approximation Φ(r∗) discussed by Davison et al. (2006) for this example, and discussed

in general terms by Brazzale et al. (2007, p. 168). The bootstrap approach based on

(1) produces smaller relative errors than the analytical method. In this case, where

the exact conditional p-values being approximated are of the order 0.15, the simpler
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bootstrap approximation (5) produces relative errors quite indistinguishable from those

of the analytical approximation (6).

4. Discussion

From a repeated sampling perspective, the bootstrap provides third-order accuracy in

inference about a scalar parameter of interest in the presence of a nuisance parameter

quite routinely. We have shown that the same accuracy is obtained in a multi-parameter

exponential family context by a bootstrap scheme in which the nuisance parameter is

specified as its constrained maximum likelihood value for the null hypothesis value of

the interest parameter, the accuracy now being with respect to the p-values of an exact

conditional test. The bootstrap procedure displays the same theoretical error properties

as analytical, saddlepoint approximation methods, and is conceptually easier since it is

applied without regard to the conditioning, though more computationally demanding.

In a range of examples studied we have observed the bootstrap approximations to be

more accurate than analytical methods.

Conditioning to eliminate nuisance parameters in exponential family models is only

one role for conditioning in statistical inference. The other main context, arguably more

difficult, concerns conditioning on ancillary statistics in more general models, in par-

ticular transformation models. In this context, the unconditional bootstrap procedure

can be expected to yield only second-order conditional accuracy in general. Very intri-

cate calculations show the signed root likelihood ratio statistic to be only second-order

stable: the marginal distribution of R differs from its distribution conditional on an

ancillary statistic at second-order, O(n−1). The bootstrap procedure approximates the

marginal distribution to order o(n−1), but the relevant conditional distribution only to

order O(n−1).
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A fuller analysis of the theoretical behaviour of the bootstrap approach in discrete

data settings seems worthwhile. In particular, the rate of approximation of the bootstrap

p-value to the exact conditional mid-p-value and its relationship to the approximate

conditioning ideas of Pierce & Peters (1999) warrant further analysis.

Finally, we remark briefly on computational considerations. Our numerical illustra-

tions have involved very large bootstrap simulation sizes. In practice a more modest

simulation is likely to be desirable. We have carried out extensive investigations into the

issue of the size of simulation typically required to reduce the Monte Carlo variability of

the bootstrap calculation to a level which allows the good theoretical accuracy properties

to be captured in practice. Overall, a bootstrap simulation involving a few tens of thou-

sands of bootstrap samples is seen as advisable. This recommendation is for a somewhat

larger simulation than is typically advocated in more straightforward applications of the

bootstrap, such as bias estimation or confidence-interval construction, where bootstrap

simulation sizes of a few hundreds or thousands are generally advised. An illustration is

provided in Fig. 4, concerning the gamma shape parameter inference considered above.

Now we consider specifically testing H0 : ν = 30.0, repeating the bootstrap estimation of

the p-value 1000 times, each estimate being based on the simulation of B bootstrap sam-

ples, for a range of values of B. Histograms of the absolute relative errors obtained from

the 1000 replications of the bootstrap calculation are compared with the error obtained

by analytic approximation. Figure 2(a) shows that an ‘infinite bootstrap’ yields a very

small absolute relative error in this situation, substantially smaller than that obtained by

the analytic approximation method. However, Fig. 4 shows that only for large bootstrap

simulation size B = 50, 000 does the bootstrap yield, on average, as accurate an estimate

of the exact conditional p-value as the analytical approximation (6). For smaller values

of B, the relative error of the bootstrap estimator is quite variable. Recall, however,

that a very basic property of our assumed model class, a full exponential family, is that
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the loglikelihood is strictly concave, ensuring existence and uniqueness of the maximum

likelihood estimator. Therefore, though the maximum likelihood estimators required for

construction of the bootstrap distribution of the test statistic may not be available in

closed form, no numerical problem can arise in implementation. A bootstrap simulation

of the size that we have advocated is generally, therefore, quite trivial computationally,

within standard computational platforms.

Theoretical considerations similar to those outlined in §2 show that bootstrapping

other asymptotically normal test statistics, such as the Wald and score statistics, at the

constrained maximum likelihood estimator produces approximations to exact conditional

p-values having the same asymptotic properties as those enjoyed by the approximations

obtained from bootstrapping R. Nevertheless, in numerical examples, we found that

bootstrapping R tends to yield more accurate results, especially in small sample sizes,

than does bootstrapping other test statistics, and hence R is the focus of the present

paper. However, the loss in accuracy incurred by bootstrapping a different test statistic

might be offset by computational advantages, especially in the case of the Wald statistic,

since the bootstrap procedure appears to benefit from a large simulation size. This trade-

off deserves further study. For the Wald statistic, the choice of parameterization could

be a key factor in determining the accuracy achieved for a given simulation size.
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Figure 1: Lognormal mean example. (a) Absolute relative errors of approximations of conditional p-values. (b) Logarithmic plot of

relative errors of approximations against sample size n.
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Figure 2: Absolute relative errors of approximations of conditional p-values, (a) gamma shape example, (b) gamma mean example.
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Figure 3: Logarithmic plot of relative errors of approximations of conditional p-values

against sample size n, binomial example.
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Figure 4: Histogram of absolute relative errors of 1000 bootstrap estimators based on

different simulation sizes B, testing gamma shape ν = 30. Solid vertical line indicates

absolute relative error of analytic approximation Φ(r∗), broken vertical line the average

of the 1000 bootstrap absolute relative errors. (a) B = 50000, (b) B = 20000, (c)

B = 10000, (d) B = 5000.
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