
The Bootstrap and Kriging Prediction
Intervals
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ABSTRACT. Kriging is a method for spatial prediction that, given observations of a spatial

process, gives the optimal linear predictor of the process at a new specified point. The kriging

predictor may be used to define a prediction interval for the value of interest. The coverage of the

prediction interval will, however, equal the nominal desired coverage only if it is constructed using

the correct underlying covariance structure of the process. If this is unknown, it must be estimated

from the data. We study the effect on the coverage accuracy of the prediction interval of substi-

tuting the true covariance parameters by estimators, and the effect of bootstrap calibration of

coverage properties of the resulting ‘plugin’ interval. We demonstrate that plugin and bootstrap

calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration

appears to have a significant effect in improving the rate of convergence of coverage error.
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1. Introduction

The purpose of predictive inference is the assessment of the values of a small number, typically

one, of as yet unobserved random variables, given a data sample. Data y represent the ob-

served value of a random variable Y, with density pY ðy; hÞ, depending on the unknown pa-
rameter h, and the unobserved Z to be predicted has, conditionally on Y ¼ y, the density

qðz j y; hÞ. In this paper we will be concerned specifically with the construction of prediction
intervals for a scalar Z. The aim is the construction of an interval I � IðyÞ which contains Z
with some specified probability, say 1� 2c. In the more usual unconditional approach we
require:

P ½Z 2 IðY Þ	 ¼ 1� 2c;

with the probability over the joint distribution of ðZ; Y Þ. Alternatively, we may adopt a
conditional approach, in which the coverage requirement is conditional on the observed y:

P ½Z 2 IðyÞ	 ¼ 1� 2c;

where now the probability is with respect to the conditional distribution of Z, given Y ¼ y.

Various approaches to predictive inference have been proposed, including notions of pre-

dictive likelihood and fully Bayesian solutions. A brief review is given by Barndorff-Nielsen &

Cox (1994, Section 9.4). In some circumstances, the prediction interval may be constructed via

a pivotal quantity, a function of ðZ; Y Þ with a known distribution, not depending on h. More
usually, however, an estimative approach is taken, in which an interval, depending on h, is
constructed with the correct coverage properties, and then an estimate of h is substituted for

B 7 7 0 1 0 4 8
Journal No. Manuscript No.

Dispatch: 27.8.02 Journal: SJOS

Author Received: No. of pages: 18B

� Board of the Foundation of the Scandinavian Journal of Statistics 2002. Published by Blackwell Publishers Ltd, 108 Cowley Road,
Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA Vol 29: 000–000, 2002



the unknown true value. The resulting ‘plugin’ interval then has coverage properties which

differ from the nominal required coverage. In order for the prediction interval to achieve the

required coverage interpretation asymptotically it may be necessary for prediction limits to be

modified to account for the effects of parameter estimation. Beran (1990a, b) suggested the use

of bootstrap calibration to control the coverage probability of the prediction interval: see also

Hall et al. (1999) and Loh (1987, 1988). The idea is to use bootstrapping, simulating from a

model estimated from the data y, to estimate how the actual coverage of the prediction interval

varies as a function of the nominal desired coverage. The nominal coverage of the plugin

interval is then recalibrated to deliver an actual coverage closer to the desired coverage than

that obtained from the unmodified interval. Hall et al. (1999) provide evidence that bootstrap

calibration of estimative approaches to predictive inference may be more effective than pre-

dictive likelihood approaches.

A key issue concerns the general effectiveness of bootstrap calibration as a means of ac-

counting for parameter uncertainty in construction of prediction intervals. The work of Beran

(1990a, b) and Hall et al.(1999) is concerned with independent data settings, or those, such as

autoregressive time series and linear models, which can be expressed in terms of independent

errors. In this paper, the principal objective is to investigate the effectiveness of bootstrap

calibration in handling parameter uncertainty in a specific, dependent data, spatial setting,

that of kriging prediction. In this context, a point predictor is constructed for the value of a

Gaussian spatial process at a particular spatial location, given observations of the process at a

set of sampling locations. Kriging methods are described in detail by Cressie (1993, Chapter 3).

This setting is considered by Putter & Young (2001), who establish conditions under which the

kriging predictor constructed using estimates of the parameters of the covariance function is

asymptotically efficient with respect to the kriging predictor that utilizes the true values of the

parameters.

The present paper considers the effect of parameter estimation on the asymptotic cov-

erage accuracy of the plugin prediction interval constructed from the kriging predictor, and

considers the effect of bootstrap calibration in reducing the coverage error. In this context,

parametric bootstrapping from a fitted Gaussian process is used to estimate the effects of

parameter uncertainty on the accuracy of the prediction interval. Informally, it is reasonable

to expect that bootstrapping from a fitted model with parameter values ‘close’ to the true

values will provide evidence of the effects of parameter estimation and allow a recalibration

of the prediction interval, to yield a reduction in coverage error over that of the crude

plugin interval, which makes no attempt to allow for parameter uncertainty. We establish

that in some generality asymptotic accuracy is achieved by both the plugin and bootstrap

calibrated intervals, and demonstrate further that the bootstrap calibration does indeed

have a significant effect in reducing the order of magnitude of the coverage error. We

believe that these findings point to the value of bootstrap calibration as a means of mo-

difying an inference to accomodate parameter uncertainty in more general problems of

spatial prediction.

Section 2 of the paper describes the problem of kriging prediction, and the procedure of

ordinary kriging, which is the primary focus of the rest of the paper. Plugin and bootstrap

calibrated unconditional prediction intervals are defined in Section 3, with conditional pre-

diction intervals described in Section 4. Coverage properties and our main theoretical results

are described in Section 5. Extension of our results to the technique of universal kriging is

detailed in Section 6. Section 7 considers a number of specific covariance models, while a

numerical study, which includes illustration of examples of Section 7, as well as more general

models, is reported in Section 8. Concluding remarks are given in Section 9 and proofs of the

main results are given in the Appendix.
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2. Ordinary kriging

Kriging is a method for (spatial) prediction, widely used in mining, hydrology, forestry and

other fields. Given a spatial process, observed at sampling locations x1; . . . ; xn, it gives the
optimal (minimum Mean Squared Error, MSE) unbiased linear predictor of the process at a

given new point, xp, taking into account the spatial dependence of the observations. In ordinary
kriging, it is assumed that the mean of the process fZðxÞ; x 2 Rdg is constant but unknown, and
that the covariance structure is known. In particular we consider a stationary Gaussian process

fZðxÞ; x 2 Rdg with E½ZðxÞ	 ¼ l and covariance function CnðtÞ ¼ Cov½Zðxþ tÞ; ZðxÞ	, depend-
ing on some parameter n. Given the observations Z ¼ ðZðx1Þ; . . . ; ZðxnÞÞT; we wish to find
weights a ¼ ða1n; . . . ; annÞT with

Pn
i¼1 ain ¼ 1 such that the MSE

E
Xn
i¼1

ainZðxiÞ � ZðxpÞ
" #2

ð1Þ

is minimized. The restriction on the weights ensures that the kriging predictor

ZðxpÞ ¼
Xn
i¼1

ainZðxiÞ;

is unbiased. The n
 n covariance matrix of Z is denoted by

X ¼ Cov½Z;Z	 ¼ fCnðxi � xjÞgi;j¼1;...;n;

the n-dimensional covariance vector by

x ¼ Cov½ZðxpÞ;Z	 ¼ fCnðxp � xiÞgi¼1;...;n;

and the variance of the process by r2 ¼ Var½ZðxiÞ	. Then,

a ¼ aðnÞ ¼ X�1 x þ 1
ð1� 1TX�1xÞ

1TX�11

� �
; ð2Þ

defines an n-vector which minimizes (1) given Cnð�Þ, and satisfies 1Ta ¼ 1. The theoretical
kriging prediction error in terms of minimum MSE, for the (theoretical) kriging predictor

ZðxpÞ, using the weights in (2), is

m2 ¼ m2ðnÞ ¼ Var½ZðxpÞ � ZðxpÞ	 ¼ r2 � xTX�1x þ ð1TX�1x � 1Þ2

1TX�11
: ð3Þ

Note that (2) and (3) depend uniquely on the covariance structure. In this paper we will

consider prediction intervals for ZðxpÞ under two types of asymptotics; infill asymptotics, where
samples are taken from a fixed bounded region and the sampling locations become

increasingly dense, and increasing domain asymptotics, where the distance between neigh-

bouring sampling locations remains bounded from below and the domain from which

sampling takes place necessarily increases.

3. Unconditional prediction intervals

Let UðzcÞ ¼ 1� c, where U denotes the standard normal distribution function. If the covari-
ance structure is known, it follows that

IcðnÞ ¼ ZðxpÞ � zcm;

is an exact 1� 2c prediction interval for ZðxpÞ. Hence, we have
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Pn½ZðxpÞ 2 IcðnÞ	 ¼ 1� 2c:

Note that the probability is over the joint distribution of ðZðxpÞ;ZÞ, and that the interval IcðnÞ
does not depend on l: The coverage is exactly 1� 2c only if constructed using the correct
underlying covariance structure. In practice, this covariance structure will be unknown and is

estimated from the data. We will study how the coverage of the prediction interval is affected

when the true covariance parameters are substituted by estimates, so called plugin prediction

intervals. We will also study the effect of bootstrap calibration of coverage properties of plugin

intervals.

3.1. Plugin prediction intervals

When n is unknown, the bootstrap substitution principle replaces n by an estimator n̂nn, cor-
responding to estimating the covariance function CnðtÞ by Cn̂nn

ðtÞ. The plugin prediction interval
of nominal coverage 1� 2c is Icðn̂nnÞ. Write

pnðc; nÞ ¼ Pn½ZðxpÞ 2 Icðn̂nnÞ	;

for the true coverage, under n, of the prediction interval Icðn̂nnÞ. This is not in general equal to
the nominal coverage 1� 2c. The probability pnðc; nÞ does not depend on l if n̂nn is a location
invariant estimator, since

Pn½ZðxpÞ 2 Icðn̂nnÞjl	 ¼ Pn½jZðxpÞ � l � âaTðZ� l1ÞjOzcm̂mjl	
¼ Pn½jZðxpÞ � âaTZjOzcm̂mjl ¼ 0	:

Here, and in the sequel a b denotes when the parameters n have been replaced by n̂nn in any
function. In this paper we will focus on Maximum Likelihood (ML) estimators, which for a

Gaussian process makes n̂nn location invariant.

3.2. Bootstrap calibrated prediction intervals

Ideally, we want to recalibrate the plugin prediction interval Icðn̂nnÞ by seeking a ~cc such that

pnð~cc; nÞ ¼ Pn½ZðxpÞ 2 I~ccðn̂nnÞ	 ¼ 1� 2c:

We would hence use the plugin prediction interval of nominal coverage 1� 2~cc. Since ~cc is
unknown we construct a bootstrap estimator. Because pnðc; nÞ is monotonically decreasing
and continuous in c (see the proof of Lemma 1), we define p�1

n ð�; nÞ to be the inverse of pnð�; nÞ
with respect to c. We estimate ~cc by p�1

n ð1� 2c; n̂nnÞ, where

pnðc; n̂nnÞ ¼ Pn̂nn
½Z�ðxpÞ 2 Icðn̂n�nÞ	;

is a bootstrap estimator of pnðc; nÞ. The bootstrap sample Z�ðxpÞ; Z�ðx1Þ; . . . ; Z�ðxnÞ is a
realization of a Gaussian process with covariance parameters n̂nn ¼ n̂nnðZÞ and mean zero.
Furthermore, n̂n�n ¼ n̂nnðZ�Þ denotes the parameter estimator as constructed from

Z� ¼ ðZ�ðx1Þ; . . . ; Z�ðxnÞÞT. The bootstrap calibrated prediction interval is Ip�1
n ð1�2c;n̂nnÞðn̂nnÞ.

Monte Carlo simulation can be used to approximate the function pnðc; n̂nnÞ to arbitrary
accuracy. In practice, we use a finite number, B, say, of bootstrap samples, to approximate

pnðc; n̂nnÞ for a set of values of c close to the nominal desired coverage, and approximate the
bootstrap estimator ~cc by simple quadratic interpolation.
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4. Conditional prediction intervals

A conditional prediction interval is constructed in such a way that the coverage probability,

computed conditional on the observed values, corresponds to the desired coverage 1� 2c.
Therefore, it will in general not be equivalent to an unconditional prediction interval, which is

formed to have coverage 1� 2c without holding the observed values fixed. In this section we
will consider conditional prediction intervals for ZðxpÞ given Z. The distribution of ZðxpÞ given
Z is Gaussian with mean value

g ¼ En½ZðxpÞjZ	 ¼ l þ xTX�1E;

where E ¼ Z� l1; and variance

s2 ¼ Var½ZðxpÞjZ; n	 ¼ r2 � xTX�1x:

A conditional prediction interval for ZðxpÞ given Z with true coverage 1� 2c is given by

ICc ðnÞ ¼ g � zcs:

The corresponding conditional plugin prediction interval with nominal coverage 1� 2c is
ICc ðn̂nnÞ. Inserting the ML estimators n̂nn and l̂l ¼ 1TX̂X�1Z=1TX̂X�11 gives us ICc ðn̂nnÞ ¼ âaTZ� zcŝs:
The true coverage of ICc ðn̂nnÞ given Z is

Pn½ZðxpÞ 2 ICc ðn̂nnÞjZ	 ¼ UðAn þ zcBCn Þ � UðAn � zcBCn Þ; ð4Þ

where An satisfies

sðnÞAnðnÞ ¼ ðx̂xTX̂X�1 � xTX�1ÞEþ ð1� x̂xTX̂X�11Þl̂lE; ð5Þ

with l̂lE ¼ l̂l � l ¼ 1TX̂X�1E=1TX̂X�11; and

BCn ¼ BCn ðnÞ ¼ sðn̂nnÞ=sðnÞ: ð6Þ

The coverage of the plugin prediction interval Icðn̂nnÞ, that was proposed in Section 3.1, given
Z, is

Pn½ZðxpÞ 2 Icðn̂nnÞjZ	 ¼ UðAn þ zcBnÞ � UðAn � zcBnÞ; ð7Þ

where

Bn ¼ BnðnÞ ¼ mðn̂nnÞ=sðnÞ: ð8Þ

5. Coverage properties

In order to say something about the (asymptotic) coverage of the different plugin prediction

intervals we need to know some properties of the parameter estimators. Contiguity is one

such property, which can be defined as follows (for more details see e.g. Roussas, 1972). For

every n, let ðXn;AnÞ be a measurable space and let fQngnP1 and fQ0
ngnP1 be two sequences

of probability measures on fðXn;AnÞgnP1: Then the sequence fQ0
ngnP1 is said to be conti-

guous with respect to fQngnP1 if for every Dn 2 An, QnðDnÞ ! 0 implies that Q0
nðDnÞ ! 0, as

n! 1: Let N denote the parameter space of n, and let MðnÞ denote the set of all sequences
fnngnP1 in N such that fPnn;ngnP1 is contiguous with respect to fPn;ngnP1. Here Pn;n denotes

the joint distribution of Z given n, and similarly Pnn;n denotes the joint distribution of Z given

nn: In both cases we assume that the mean of the process is zero. This implies no restriction
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in the reasoning below as long as the estimators n̂nn are location invariant. We have from (7)
that

Pnn ½ZðxpÞ 2 Icðn̂nnÞjZ	 ¼ Gðc;AnðnnÞ;BnðnnÞÞ; ð9Þ

where the function G is continuous in all its arguments and Gðc; 0; 1Þ ¼ 1� 2c:

Lemma 1

Assume that

AnðnnÞ ! 0 and BnðnnÞ ! 1 in Pn;n-probability; ð10Þ

for some fnng 2 MðnÞ. Then

Pnn ½ZðxpÞ 2 Icðn̂nnÞjZ	 ! 1� 2c in Pn;n-probability; ð11Þ

pnðc; nnÞ ¼ Pnn ½ZðxpÞ 2 Icðn̂nnÞ	 ! 1� 2c as n! 1; ð12Þ

and

p�1
n ð1� 2c; nnÞ ! c as n! 1: ð13Þ

The above lemma, with nn � n, ensures that both the unconditional and the conditional plugin
prediction intervals for ZðxpÞ asymptotically give the correct coverage 1� 2c. A similar

property holds for the bootstrap calibrated plugin intervals. LetMSðnÞ be some subset ofMðnÞ:

Lemma 2

Assume that (10) holds for all fnng 2 MSðnÞ, and that fn̂nng 2 MSðnÞ a:s: Then for any

fnng 2 MSðnÞ,

Pnn ½ZðxpÞ 2 Ip�1
n ð1�2c;n̂nnÞðn̂nnÞjZ	 ! 1� 2c in Pn;n-probability; ð14Þ

and

Pnn ½ZðxpÞ 2 Ip�1
n ð1�2c;n̂nnÞðn̂nnÞ	 ! 1� 2c as n! 1: ð15Þ

Lemmas 1 and 2 also hold if Icðn̂nnÞ and Bn are replaced by ICc ðn̂nnÞ and BCn , respectively.

Remark 1. The condition fn̂nng 2 MSðnÞ a.s. in Lemma 2 can be relaxed to the following
condition: For each subsequence fnkg there is a subsequence fnkðlÞg such that fn̂nnkðlÞ g 2 MSðnÞ
a.s., which is equivalent to that fPn̂nnn;n

g is contiguous with respect to fPn;ng a.s. for that sub-
sequence. This is useful if we know how the estimator n̂nn behaves in probability (see Section 7).

5.1. Convergence rates

The convergence rate of the bootstrap calibrated prediction intervals turns out to be faster

than for the plugin prediction intervals under some additional assumptions. The following

lemmas will summarize these properties. First we state two important assumptions.

(A1) Suppose that there are functions faijðnÞg such that
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En½A2nðnÞ	 ¼ a11ðnÞ=nþ oðn�1Þ;

En½BnðnÞ � 1	 ¼ a12ðnÞ=nþ oðn�1Þ;

En½ðBnðnÞ � 1Þ2	 ¼ a22ðnÞ=nþ oðn�1Þ:

(A2) Assume that the sequences fnA2nðnÞg and fnðBnðnÞ � 1Þ2g are uniformly integrable.

Lemma 3

Suppose that (A1) and (A2) hold. Then, under the assumptions of Lemma 2,

pnðc; nÞ ¼ 1� 2c þ bðc; nÞ=nþ oðn�1Þ; ð16Þ
where

bðc; nÞ ¼ zcuðzcÞ½2a12ðnÞ � a11ðnÞ � z2ca22ðnÞ	;

and uð�Þ is the density of a standard normal distribution. Moreover,

Rnðc; nÞ ¼ p�1
n ð1� 2c; nÞ � c � bðc; nÞ=2n ¼ oðn�1Þ: ð17Þ

This lemma implies that the (unconditional) plugin prediction interval Icðn̂nnÞ typically has
coverage 1� 2c þ Oðn�1Þ:

Lemma 4

Suppose that @Gðc;An;BnÞ=@c and bðc; nÞ are bounded. If

En½nRnðc; n̂nnÞ	 ! 0; and dn ¼ bðc; n̂nnÞ � bðc; nÞ!
P
0; as n! 1; ð18Þ

then, under the assumptions of Lemma 3,

pnðp�1
n ð1� 2c; n̂nnÞ; nÞ ¼ 1� 2c þ oðn�1Þ:

Remark 2. Lemmas 3 and 4 hold even if the functions faijðnÞg depend on n, when the
functions are uniformly bounded with respect to n.

Here, we conclude that the (unconditional) bootstrap calibrated prediction interval

Ip�1
n ð1�2c;n̂nnÞðn̂nnÞ has coverage 1� 2c þ oðn

�1Þ, and thus a faster convergence rate than the
plugin prediction interval.

6. Universal kriging

Suppose that the mean of the process fZðxÞ; x 2 Rdg changes with x in a way such that
ZðxÞ ¼ lðxÞ þ �ðxÞ;

where

lðxÞ ¼
Xq
j¼1

bjfjðxÞ;

and �ðxÞ is a mean zero Gaussian stationary process with covariance parameters n. Here fjðxÞ,
j ¼ 1; . . . ; q, are known functions of the coordinates, and b ¼ ðb1; . . . ; bqÞT, are unknown
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coefficients. Suppose that we have observed the process at n locations, giving us the observed

values Z ¼ Xb þ E, where X ¼ ffjðxiÞg is an n
 qmatrix and E ¼ ð�ðx1Þ; . . . ; �ðxnÞÞT. We want
to predict the value of the process at a new location xp, corresponding to ZðxpÞ ¼ bTfp þ �ðxpÞ;
where fp ¼ ðf1ðxpÞ; . . . ; fqðxpÞÞT. Assuming that the covariance structure is known, the
universal kriging predictor corresponds to the best linear unbiased predictor of ZðxpÞ, given Z,
minimizing (1). It is given by ZuðxpÞ ¼ aTuZ, where

au ¼ X�1½x þ X ðXTX�1X Þ�1ðfp � XTX�1xÞ	:

The unbiasedness of ZuðxpÞ implies that aTuXb ¼ bTfp: The MSE is

m2u ¼ E½ðZuðxpÞ � ZðxpÞÞ2	 ¼ r2 � xTX�1x

þ ðfp � XTX�1xÞTðXTX�1X Þ�1ðfp � XTX�1xÞ: ð19Þ

Hence, an exact 1� 2c (unconditional) prediction interval for ZðxpÞ is

IcðnÞ ¼ aTuZ� zcmu; ð20Þ

and the corresponding plugin prediction interval Icðn̂nnÞ, with coverage

pnðc; nÞ ¼ Pn½ZðxpÞ 2 Icðn̂nnÞ	. We further have that

f ¼ En½ZðxpÞjZ	 ¼ bTfp þ xTX�1E;

and

Var½ZðxpÞjZ; n	 ¼ s2ðnÞ ¼ r2 � xTX�1x:

From this we can construct an exact 1� 2c prediction interval conditional on Z as

ICc ðnÞ ¼ f � zcs, assuming that n and b are known. The corresponding conditional plugin
prediction interval with nominal coverage 1� 2c is ICc ðn̂nnÞ. Inserting the ML estimators n̂nn and
b̂b ¼ ðXTX̂X�1X Þ�1XTX̂X�1Z gives us

ICc ðn̂nnÞ ¼ âaTuZ� zcŝs:

The true coverage of ICc ðn̂nnÞ given Z corresponds to (4) with BCn ðnÞ ¼ sðn̂nnÞ=sðnÞ and AnðnÞ
satisfying

sðnÞAnðnÞ ¼ ðx̂xTX̂X�1 � xTX�1ÞEþ ðfTp � x̂xTX̂X�1X Þb̂bE; ð21Þ

where b̂bE ¼ b̂b � b ¼ ðXTX̂X�1X Þ�1XTX̂X�1E: The coverage of the plugin prediction interval of

(20), given Z, equals (7), with An satisfying (21) and Bn ¼ muðn̂nnÞ=sðnÞ. The ML estimators n̂nn
are location invariant, which implies that the coverage probabilities of all the plugin prediction

intervals are the same whether or not b ¼ 0. For example, using the fact that âaTuXb ¼ bTfp,

Pn½ZðxpÞ 2 Icðn̂nnÞjZ; b	 ¼ Pn½jZðxpÞ � fTpb � âaTu ðZ� XbÞjOzcm̂mujZ; b	
¼ Pn½jZðxpÞ � âaTuZjOzcm̂mujZ; b ¼ 0	:

Hence, Lemmas 1–4 hold for universal kriging situations as well, with the corresponding

changes of An and Bn.

7. Examples

In this section, two examples with exponentially decaying covariance functions are discussed.

Both infill and increasing domain asymptotics are considered. We will show that the plugin
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and the bootstrap calibrated prediction intervals have the correct coverage asymptotically for

these examples.

7.1. A one-dimensional example

Consider a stationary Gaussian process, fZðxÞ 2 Rg, on the real line with expected value l and
covariance function

Cnðxi � xjÞ ¼ Cov½ZðxiÞ; ZðxjÞ	 ¼ r2 e�hjxi�xjj; r2; h > 0; ð22Þ

with n ¼ ðr2; hÞT. Suppose that the process is observed at locations xi ¼ i=an; i ¼ 1; . . . ; n. If
an ¼ Oð1Þ it corresponds to increasing domain asymptotics and if an ¼ OðnÞ it corresponds to
infill asymptotics. We will consider these two cases separately, demanding that there are

constants 0 < K1OK2 < 1 such that K1OanOK2n. Let x0 ¼ �1; xnþ1 ¼ 1, and define
k ¼ kðnÞ to be an integer satisfying xkOxpOxkþ1, where xp is the location where we want to
predict the process. This gives us information about whether or not the point of prediction is

an interior point, in between the observed locations. The coverage of the prediction intervals

depends on several items. From Lemma 1 in Ying (1993) and the notation cn ¼ e�hðxp�xkÞ,

dn ¼ e�hðxkþ1�xpÞ, and E ¼ ð�1; . . . ; �nÞ
T, where �i ¼ ZðxiÞ � l, it follows that

1TX�1x ¼ ðcn þ dnÞ=ð1þ e�h=anÞ; ð23Þ

ETX�1x ¼ �kcnð1� d2n Þ þ �kþ1dnð1� c2nÞ
1� e�2h=an ; ð24Þ

s2ðnÞ ¼ r2ð1� c2nÞð1� d2n Þ
1� e�2h=an ; ð25Þ

and

r21TX�1E ¼ nð1� e�h=anÞ���þ e�h=anð�1 þ �nÞ
1þ e�h=an

; ð26Þ

where ��� ¼
Pn

i¼1 �i=n: Let N0 be a compact region in R2þ (positive orthant) that contains the

true parameters n ¼ ðr2; hÞT as an interior point.

7.1.1. Infill asymptotics

For a mean zero Gaussian process, Putter & Young (2001) showed that if

fnn ¼ ðr2n; hnÞ
Tg 2 MSðnÞ, where

MSðnÞ ¼ ffnn 2 N0g : hn � h ¼ Oð1Þ and r2nhn � r2h ¼ Oðn�1=2Þg;

then fPnn;ng is contiguous with respect to fPn;ng under infill asymptotics. Furthermore, Ying
(1991) showed that the ML estimators n̂nn 2 N0 are not consistent estimators of n but that
r̂r2nĥhn ! r2h a.s. and r̂r2nĥhn � r2h ¼ Opðn�1=2Þ. Hence, for each subsequence of fn̂nng, there is a
subsequence that belongs to MSðnÞ a.s. Assume that xp is an interior point, which implies that
xkþ1 � xk ¼ Oðn�1Þ: By (25) and Taylor expansions, we then have

s2ðnÞ ¼ 2r2hðxp � xkÞðxkþ1 � xpÞan½1þ Oðn�2Þ	 ¼ Oðn�1Þ: ð27Þ

Hence, BCn ðnnÞ ¼ sðn̂nnÞ=sðnnÞ ! 1 a.s. if fnng 2 MSðnÞ: Let us now consider AnðnnÞ and let
xn ¼ xðnnÞ and Xn ¼ XðnnÞ. From (24) and Taylor expansions, we conclude that
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ðx̂xTX̂X�1 � xTnX
�1
n ÞE ¼ �koðn�1Þ þ �kþ1oðn�1Þ: ð28Þ

Equation (26), with E ¼ 1, implies that r̂r2n1
TX̂X�11P1, and further that

l̂lE ¼ ð�1 þ �nÞOð1Þ þ ���Oð1Þ: ð29Þ

From (23), we conclude that 1� x̂xTX̂X�11 ¼ Oðn�2Þ. This, together with (27)–(29) implies that

AnðnnÞ ¼ �koðn�1=2Þ þ �kþ1oðn�1=2Þ þ ð�1 þ �nÞOðn�3=2Þ þ ���Oðn�3=2Þ; ð30Þ

when fnng 2 MSðnÞ:We thus conclude that AnðnnÞ ! 0 in Pn;n-probability, since the variance of

��� is bounded. Furthermore, ð1� x̂xTX̂X�11Þ2=1TX̂X�11 ¼ Oðn�4Þ, which from (3) implies that

BnðnnÞ ¼ mðn̂nnÞ=sðnnÞ ! 1 a.s::

All the above ensures that both the conditional and the unconditional prediction intervals,

ICc ðn̂nnÞ and Icðn̂nnÞ, as well as their bootstrap calibrated versions, have the correct coverage
asymptotically. A similar reasoning shows that the same holds if xp is not an interior point.

Remark 3. In order to understand the convergence rates of the plugin and bootstrap cal-

ibrated prediction intervals, we need to study the conditions of Lemma 4. For this example,

the derivative

dGðc;An;BCn Þ=dc ¼ �BCn ½uðAn þ zcBCn Þ þ uðAn � zcBCn Þ	=uðzcÞ;

is bounded, since BCn is bounded. Conditions (A1) and (A2) are also verifiable for An: From
(30) we have that En½A2n	 ¼ oðn�1Þ, which implies that a11ðnÞ ¼ 0: Moreover, since f�ig is
Gaussian with finite variance, (30) implies that fnA2ng is uniformly integrable. Turning our
attention to BCn , we have that

ðBCn Þ
2 � 1 ¼ s2ðn̂nnÞ � s2ðnÞ

s2ðnÞ ¼ ðr̂r2nĥhn � r2hÞ
r2h

þ Oðn�2Þ:

It is possible to verify that the bias and MSE of r̂r2nĥhn is of order Oðn�1Þ, and that
fnððBCn Þ

2 � 1Þ2g is uniformly integrable (see Sjöstedt-de Luna, 2002). More specifically,
a22ðnÞ ¼ 2r4h2, and

a21ðn; nÞ ¼
n
2an

ðEn½2r̂r2nĥh2n � ĥh2nl̂l
2
E	 � r2h2Þ þ 1

2an

Xn
i¼2
En½l̂lEĥhnð�i þ �i�1Þ � ĥh2n�

2
i�1	;

which implies that bðc; nÞ is bounded. However, since ðr̂r2n; ĥhnÞ are not consistent estimators of
ðr2; hÞ (cf. Ying, 1991) the rest of the assumptions in Lemma 4 are difficult to verify.

7.1.2. Increasing domain asymptotics

For increasing domain asymptotics the distance between neighbouring observations is

bounded from below such that for some d > 0 it always holds that jxi � xjjPd for any two
locations. Let

MSðnÞ ¼ ffnn 2 N0g : hn � h ¼ Oðn�1=2Þ and r2nhn � r2h ¼ Oðn�1=2Þg:

Putter & Young (2001) showed that fPnn ;ng is contiguous with respect to fPn;ng if

fnng 2 MSðnÞ, for l ¼ 0. The ML estimators are asymptotically normally distributed, and
such that n̂nn � n ¼ Opðn�1=2Þ and l̂l � l ¼ Opðn�1=2Þ, when xi ¼ i=an, and an ¼ Oð1Þ: This
follows by checking the conditions of Theorem 3 given by Mardia & Marshall (1984).

Therefore,
ffiffiffi
n

p
ðr̂r2nĥhn � r2hÞ is also asymptotically normally distributed. Hence, for every
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subsequence of fn̂nng, there is another subsequence that belongs to MSðnÞ a.s. Assume that xp is
an interior point such that xkþ1 � xk ¼ Oð1Þ: It follows from (24) that

ðx̂xTX̂X�1�xTnX
�1
n ÞE¼ �k ½hðĥhn;an;xp� xk ;xkþ1� xpÞ� hðhn;an;xp� xk ;xkþ1� xpÞ	

þ �kþ1½hðĥhn;an;xkþ1� xp;xp� xkÞ� hðhn;an;xkþ1� xp;xp� xkÞ	; ð31Þ

where hð�Þ represents the continuous function

hðh; a; s; tÞ ¼ e
�hsð1� e�2htÞ
1� e�2h=a :

Note that ðan; xkþ1 � xp; xp � xkÞ are bounded, and that ð�kþ1; �kÞ ¼ Opð1Þ: This implies that
(31) converges in probability to zero if fnng 2 MSðnÞ, since a continuous function always is
uniformly continuous on a compact set. A similar argument shows that

sðn̂nnÞ � sðnnÞ!
P
0 as n! 1;

if fnng 2 MSðnÞ. Knowing that l̂lE ¼ Opðn�1=2Þ, it follows from (23), that

ð1� x̂xTX̂X�11Þl̂lE!
P
0 as n! 1:

Because 0 < snðnnÞ ¼ Oð1Þ, together with the above, we have that BCn ðnnÞ ¼ snðn̂nnÞ=snðnnÞ ! 1

and AnðnnÞ ! 0 in Pn;n-probability for fnng 2 MSðnÞ. It follows from (26), with E ¼ 1; that

r̂r21TX̂X�11P1þ nð1� e�ĥhdÞ=2, and hence,

ð1TX̂X�1x̂x � 1Þ2=1TX̂X�11!P 0 as n! 1: ð32Þ

Thus, BnðnnÞ ¼ mðn̂nnÞ=sðnnÞ converges to 1 in Pn;n-probability. Therefore, (11)–(15) hold for

ICc ðn̂nnÞ as well as for Icðn̂nnÞ. Also in this case similar reasoning shows that the plugin prediction
intervals and the bootstrap calibrated prediction intervals have asymptotically correct

coverage if xp is not an interior point.

7.2. A two-dimensional example

Consider a stationary Gaussian process on R2; fZðxÞ; x2R2g, with mean zero and covariance
function

CnðtÞ ¼ Cov½Zðxþ tÞ; ZðxÞ	 ¼ r2 e�kjt1j�hjt2j; r2; h; k > 0; ð33Þ

where n ¼ ðr2; h; kÞT; t ¼ ðt1; t2ÞT, and t; x 2 R2. Suppose that the process is observed on a

lattice, at locations xik ¼ ðui; vkÞT; i ¼ 1; . . . ;m; k ¼ 1; . . . ; n. This gives us the nm observation
vector Z ¼ Znm ¼ ½ZT1 ; . . . ;ZTm	

T, where ZTi ¼ ½Zi1; . . . ; Zin	 and Zik ¼ Zðui; vkÞ: Without loss of
generality, both fuig and fvkg are arranged in ascending order. The design need not be nested,
i.e. it is not assumed that Znm � Zn0m0 , where nOn0 and mOm0: The coverage of the plugin

(bootstrap calibrated) prediction intervals of the ordinary kriging predictor at an interior

point xpp ¼ ðup; vpÞ will be studied under infill asymptotics such that

max
i

fDi ¼ ui � ui�1g ¼ Oðm�1Þ; max
k

ffk ¼ vk � vk�1g ¼ Oðn�1Þ;

and n=m! q < 1, as n;m! 1. Define s ¼ sðmÞ and t ¼ tðnÞ to be integer values satisfying
us < up < usþ1, and vt < vp < vtþ1: The covariance matrix of Z is

X ¼ Cov½Z;Z	 ¼ r2AðkÞ � BðhÞ;

where AðkÞ ¼ fe�kjui�ujjg1Oi;jOm, BðhÞ ¼ fe�hjvk�vljg1Ok;lOn, and � denotes the Kronecker

product. We further have that
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x ¼ Cov½Z; ZðxppÞ	 ¼ r2aðkÞ � bðhÞ;

where aðkÞ ¼ fe�kjui�upjg1OiOm, and bðhÞ ¼ fe�hjvk�vpjg1OkOn. Using the notation am ¼ e�kðup�usÞ,

bm ¼ e�kðusþ1�upÞ, cn ¼ e�hðvp�vtÞ, and dn ¼ e�hðvtþ1�vpÞ, fromLemma 1 in Ying (1993) we have that

ZTX�1x ¼
amð1� b2mÞZTs þ bmð1� a2mÞZTsþ1
	 


BðhÞ�1bðhÞ
1� e�2kDsþ1

; ð34Þ

r2ZTX�11 ¼ ZT1 þ
Xm
i¼2

ZTi � e�kDiZTi�1
1þ e�kDi

 !
BðhÞ�11; ð35Þ

1TX�1x ¼ cn þ dnð Þ am þ bmð Þ
1þ e�hftþ1ð Þ 1þ e�kDsþ1ð Þ ; ð36Þ

and

xTX�1x ¼ r2
a2mð1� b2mÞ þ b2mð1� a2mÞ

ð1� e�2kDsþ1Þ

� �
c2nð1� d2n Þ þ d2n ð1� c2nÞ

1� e�2hftþ1

� �
: ð37Þ

Let N0 be a compact set in R3þ that contains the true parameters n as an interior point. The ML
estimator of n over N0 is location invariant, strongly consistent and asymptotically normally
distributed such that ðn̂n � nÞ ¼ Opðn�1=2Þ (see Ying, 1993). Moreover, van der Vaart (1996)
showed the Local Asymptotic Normality (LAN) property for this model which implies that

fPnn;ng is contiguous with respect to fPn;ng for all fnng 2 MSðnÞ ¼ ffnn 2 N0g : ðnn � nÞ ¼
Oðn�1=2Þg (see Bickel et al. 1993, pp. 16–17). Hence, for each subsequence of fn̂nng, there is
another subsequence that belongs to MSðnÞ a.s. We have by Taylor expansions of (34), noting
the close relationship between ZTs BðhÞ

�1bðhÞ and (24), that

ZT½X̂X�1x̂x � X�1
n xn	 ¼ ZstOðn�1Þ þ Zs;tþ1Oðn�1Þ þ Zsþ1;tOðn�1Þ þ Zsþ1;tþ1Oðn�1Þ:

By inserting Z ¼ 1, in (35) and comparing with (29) we conclude that r̂r2n1
TX̂X�11P1: In order

to confirm that l̂l ¼ Opð1Þ it is therefore sufficient to show that ZTi BðĥhnÞ
�1
1 ¼ Opð1Þ, which

then by similar reasoning implies that r̂r2nZ
TX̂X�11 ¼ Opð1Þ: By Lemma 1 in Ying (1993) we have

ZTi BðĥhnÞ
�1
1 ¼ Zi1 þ

Xn
k¼2

ðZik � e�ĥhnfk Zi;k�1Þ
1þ e�ĥhnfk

¼ Zi1 þ
1

2

Xn
k¼2

ðZk � e�hfk Zk�1Þ

þ 1
2

Xn
k¼2

ðe�hfk � e�ĥhnfk ÞZk�1 þ
1

2

Xn
k¼2

ðZik � e�ĥhnfk Zi;k�1ÞO fjð Þ:

Each of the three sums above has bounded variance, and thus ZTi BðĥhnÞ
�1
1 ¼ Opð1Þ: Further,

Taylor expansions of (36) and (37) yield, respectively, that 1� 1TX̂X�1x̂x ¼ Oðn�2Þ, and

s2ðnÞ ¼ r2kf ðDsþ1Þ þ r2hgðftþ1Þ þ Oðn�2Þ
ð1� kDsþ1 þ Oðn�2ÞÞð1� hftþ1 þ Oðn�2ÞÞ

¼ Oðn�1Þ; ð38Þ

where

f ðDsþ1Þ ¼ ½D2sþ1 � ðup � usÞ2 � ðusþ1 � upÞ2	=Dsþ1 ¼ Oðn�1Þ;

and

gðftþ1Þ ¼ ½f2tþ1 � ðvp � vtÞ2 � ðvtþ1 � vpÞ2	=ftþ1 ¼ Oðn�1Þ:

All this implies that AnðnnÞ ¼ Oðn�1=2Þ in Pn;n-probability for all fnng 2 MSðnÞ. We further
have from (38) and the consistency of n̂nn, that BCn ðnnÞ ! 1 in Pn;n-probability if nn 2 MSðnÞ.
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Also, from the above, (32) divided by sðnnÞ tends to zero a.s. at the rate Oðn�7=2Þ which implies
that BnðnnÞ ! 1 in Pn;n-probability. Thus, the correct asymptotic coverage for plugin and

bootstrap calibrated intervals for ICc ðn̂nnÞ as well as Icðn̂nnÞ is verified.

8. Numerical illustrations

In this section, we provide three numerical illustrations of the coverage properties of plugin

and bootstrap calibrated prediction intervals of nominal 90 per cent coverage, for a stationary

mean zero Gaussian process. In each case the coverages were estimated by Monte Carlo

simulation, for a range of sample sizes n. Parameters were estimated by maximum likelihood,

in each case the mean of the process being treated as a nuisance parameter and estimated

together with the covariance function parameters. Bootstrap calibration was carried out by

estimating coverages at three nominal coverage levels, 0.90, 0.95 and 0.99, with the recali-

brated level estimated to yield the nominal desired coverage 0.90 being obtained by simple

quadratic interpolation.

Our first example, illustrated graphically in Fig. 1, concerns the one-dimensional example

considered in Section 7.1. The covariance function (22) was specified, with parameter values

r2 ¼ h ¼ 1. The process was observed at sampling locations xi ¼ i=an; i ¼ 1; . . . ; n, for a range
of sample sizes n. An increasing domain asymptotic regime was specified by taking an ¼ 1,
with the process being predicted at 0. Results are shown in Fig. 1(a). The reduction of coverage

error with increasing sample size n, as well as the benefits of bootstrap calibration, are evident.

An infill asymptotic regime was specified by taking an ¼ n, with the process now being pre-
dicted at 1=

ffiffiffi
2

p
. Results for this regime are shown in Fig. 1(b). The plugin interval is seen to

yield low coverage error for small sample sizes n, and the benefits of calibration are, contrary

to theoretical expectation, not realised for this particular regime. In both the increasing do-

main and infill cases, coverage properties of the two prediction intervals were simulated from

10,000 Monte Carlo replications, with B ¼ 500 bootstrap samples being drawn for each
bootstrap calibration.

Our second example concerns a two-dimensional stationary process of mean zero, and with

covariance function of the form (33), and true parameter values r2 ¼ k ¼ h ¼ 1. The process

Fig. 1. Empirical coverage, as a function of sample size n, of 90 per cent equal-tailed prediction intervals

obtained for the one-dimensional example in Section 8, under: (a) increasing domain asymptotics; and

(b) infill asymptotics.
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was observed at a regular lattice of sampling locations xik ¼ ½ði� 1=n� 1Þ; ðk � 1=n� 1Þ	;
i ¼ 1; . . . ; n; k ¼ 1; . . . ; n, the effects of infill asymptotics being studied by increasing n, and
the process was predicted at ð1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
Þ. Coverage figures for this case were approximated

from 2000 Monte Carlo replications at each value of n, with B ¼ 200 bootstrap samples being
drawn for each bootstrap calibration. Results are presented in Fig. 2. Again, the effectiveness

of bootstrap calibration in eliminating coverage error is clear.

Our final example concerns a two-dimensional stationary process of mean zero, and with

isotropic covariance function

CðtÞ ¼ Cov½Zðxþ tÞ; ZðxÞ	 ¼ r2 e�hktk;

where t ¼ ðt1; t2ÞT, with x; t 2 R2, and ktk denotes the Euclidean length of t. In the simulations
we specified r2 ¼ h ¼ 1. The process was observed at random sampling locations

xi ¼ bnUi; i ¼ 1; . . . ; n, where U1; . . . ;Un are independent, identically distributed on the unit
disc ft : ktk < 1g, and predicted at (0,0). As the sample size n was varied, nested sampling
locations were used, so that, for example, the sampling locations for n ¼ 10 consisted of the
sampling locations for n ¼ 9, together with another uniformly random sampling location.

An infill asymptotic regime was specified by taking bn ¼ 1, while an increasing domain regime
was specified by taking bn ¼ n1=2. Coverage figures were approximated from 2000 Monte

Carlo replications, with B ¼ 200 bootstrap samples being used for the calibration. Results are
presented in Figs 3(a) and (b) for the increasing domain and infill cases, respectively. Again the

effectiveness of bootstrap calibration is striking.

9. Final remarks

In this paper, we have studied plugin and bootstrap calibrated prediction intervals for kriging

predictors. It is shown that, in some generality, both intervals give the correct coverage

asymptotically. We have focused our attention on Gaussian random fields. It would be of

Fig. 2. Empirical coverage, as a function of sample size n
 n, of 90 per cent equal-tailed prediction
intervals obtained for the two-dimensional lattice example in Section 8, under infill asymptotics.
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interest to study whether the same type of results remain valid if distributional assumptions

are avoided and some form of non-parametric block bootstrap is used instead of the para-

metric bootstrap in the calibration. However, we doubt that similar infill asymptotics results

can be shown for the non-parametric bootstrap: infill sampling implies a long range de-

pendence structure in the data, for which block bootstrap methods are known to perform

poorly (cf. Lahiri, 1993).
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Appendix

Proof of Lemma 1. The contiguity and (10) imply that AnðnnÞ ! 0 and BnðnnÞ ! 1 in Pnn;n-

probability. Since G is continuous in all its arguments it follows that Gðc;An;BnÞ !
Gðc; 0; 1Þ ¼ 1� 2c in Pnn;n-probability, that is, (11) holds. By dominated convergence it then

follows that (12) holds. Further, note that pnðc; nnÞ is continuous in c for each n, motivated by
the following reasoning. We have that

pnðc; nnÞ ¼ Enn ½Gðc;An;BnÞ	 ¼
Z
Rn
Hðc; nn; EÞdE;

where Hðc; nn; EÞ ¼ Gðc;Anðnn; EÞ;Bnðnn; EÞÞf ðE; nnÞ and f ðE; nnÞ is the normal density of E
with mean zero and covariance parameters nn: Let fcmgmP1 be a sequence converging to c: The
continuity of H in c guarantees that Hðcm; nn; EÞ ! Hðc; nn; EÞ as m! 1 pointwise for all

E 2 Rn and nn 2 N. Further 0OHðcm; nn; EÞOf ðE; nnÞ for all m and f ðE; nnÞ is integrable. Then,
by dominated convergence, pnðcm; nnÞ ! pnðc; nnÞ as m! 1, and hence pn is continuous in c:
Because Gðc;An;BnÞ is decreasing in c it follows that pn is decreasing in c as well. Since (12)
holds for each c 2 ð0; 0:5Þ it ensures that for any fnng 2 MðnÞ, the equation

½pnðp�1
n ð1� 2c; nnÞ; nnÞ � 1þ 2p�1

n ð1� 2c; nnÞ	=2 ¼ p�1
n ð1� 2c; nnÞ � c;

tends to zero as n! 1:

Proof of Lemma 2. Suppose that (14) does not hold. Then there is a subsequence fn1ðkÞg
and �; d > 0 such that

Pn½jGðp�1
n1ðkÞð1� 2c; n̂nn1ðkÞÞ;An1ðkÞðnn1ðkÞÞ;Bn1ðkÞðnn1ðkÞÞÞ � 1þ 2cj > �	 > d; ð39Þ

for some sequence fnng 2 MSðnÞ: By going to a further subsequence fn2ðkÞg � fn1ðkÞg we have
from the assumptions that fPn̂nnn;n

g is contiguous with respect to fPn;ng a.s. for that subsequence.
This implies that p�1

n2ðkÞð1� 2c; n̂nn2ðkÞÞ ! c a.s., as k ! 1: From (10) and knowing that

fnn2ðkÞg 2 MSðnÞ it follows that An2ðkÞðnn2ðkÞÞ ! 0 and Bn2ðkÞðnn2ðkÞÞ ! 1 in Pn;n-probability.

Therefore, it is possible to find a further subsequence fn3ðkÞg � fn2ðkÞg such that

An3ðkÞðnn3ðkÞÞ!
a:s:
0 and Bn3ðkÞðnn3ðkÞÞ!

a:s:
1 as k ! 1: From this and the assumed properties of

G it follows that

Gðp�1
n3ðkÞð1� 2c; n̂nn3ðkÞÞ;An3ðkÞ;Bn3ðkÞÞ ! Gðc; 0; 1Þ ¼ 1� 2c a.s.;

which contradicts (39). Hence (14) holds. By dominated convergence it then follows that (15)

holds.

16 S. Sjöstedt-de Luna and A. Young Scand J Statist 29

� Board of the Foundation of the Scandinavian Journal of Statistics 2002.



Let Gði;j;kÞðc; a; bÞ denote a partial derivative of Gðc; a; bÞ.

Proof of Lemma 3. Taylor expansions of G over ðAn;BnÞ around the point ð0; 1Þ, where
An ¼ AnðnÞ and Bn ¼ BnðnÞ yield

Pn½ZðxpÞ 2 Icðn̂nnÞjE	 ¼ Gðc;An;BnÞ ¼ 1� 2c þ 2zcuðzcÞðBn � 1Þ
� zcuðzcÞA2n � z3cuðzcÞðBn � 1Þ

2 þ A2n½Gð0;2;0Þðc; �AAn; �BBnÞ
� Gð0;2;0Þðc; 0; 1Þ	=2þ AnðBn � 1ÞGð0;1;1Þðc; �AAn; �BBnÞ
þ ðBn � 1Þ2½Gð0;0;2Þðc; �AAn; �BBnÞ � Gð0;0;2Þðc; 0; 1Þ	=2: ð40Þ

Here, �AAn is between An and 0, and �BBn is between Bn and 1. The second moments in (A1) and the
continuity of the derivatives of G entail that

nA2n½Gð0;2;0Þðc; �AAn; �BBnÞ � Gð0;2;0Þðc; 0; 1Þ	 ! 0 in Pn;n-probability: ð41Þ

A uniform integrability argument, based on (A2) and the boundedness of Gð0;2;0Þ, shows that

the convergence (41) also occurs in expectation. Similar arguments give

En½nAnðBn � 1ÞGð0;1;1Þðc; �AAn; �BBnÞ	 ! 0 as n! 1;

and

En½nðBn � 1Þ2½Gð0;0;2Þðc; �AAn; �BBnÞ � Gð0;0;2Þðc; 0; 1Þ		 ! 0 as n! 1:

Hence, conclusion (16) follows from the fact just established, by taking expectations over (40).

By substituting p�1
n ð1� 2c; nÞ for c into (16) and rearranging terms, we have

p�1
n ð1� 2c; nÞ ¼ c þ bðc; nÞ=2nþ ½bðp�1

n ð1� 2c; nÞ; nÞ � bðc; nÞ	=2nþ oðn�1Þ
¼ c þ bðc; nÞ=2nþ oðn�1Þ;

since bðc; nÞ is continuous in c, which implies (17).

Proof of Lemma 4. Let Knðc; nÞ ¼ p�1
n ð1� 2c; nÞ and Kn0ðc; nÞ ¼ c þ bðc; nÞ=2n: Then

pnðp�1
n ð1� 2c; n̂nnÞ; nÞ ¼ En½GðKnðc; n̂nnÞ;An;BnÞ	:

By Taylor expansions around Kn0ðc; n̂nnÞ, we have

GðKnðc; n̂nnÞ;An;BnÞ ¼ GðKn0ðc; n̂nnÞ;An;BnÞ þ Rnðc; n̂nnÞGð1;0;0Þðkn;An;BnÞ;

where kn is between Knðc; n̂nnÞ and Kn0ðc; n̂nnÞ: Taking expectations and using (18) and the
boundedness of Gð1;0;0Þ we get

En½GðKnðc; n̂nnÞ;An;BnÞ	 ¼ En½GðKn0ðc; n̂nnÞ;An;BnÞ	 þ oðn�1Þ:

We further have that

GðKn0ðc; n̂nnÞ;An;BnÞ ¼ GðKn0ðc; nÞ;An;BnÞ þ dnGð1;0;0Þð�kkn;An;BnÞ=2n;

where �kkn is between Kn0ðc; n̂nnÞ and Kn0ðc; nÞ: From (18) and the boundedness of bðc; nÞ and
Gð1;0;0Þ, by dominated convergence, we have that

En½dnGð1;0;0Þð�kkn;An;BnÞ	 ! 0 as n! 1: ð42Þ

Taking expectations and using (42) we get
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En½GðKn0ðc; n̂nnÞ;An;BnÞ	 ¼ En½GðKn0ðc; nÞ;An;BnÞ	 þ oðn�1Þ:

Finally,

En½GðKn0ðc; nÞ;An;BnÞ	 ¼ En½GðKnðc; nÞ;An;BnÞ	

�Rnðc; nÞEn½Gð1;0;0Þð~kkn;An;BnÞ	 ¼ 1� 2c þ oðn�1Þ;

by (17). Therefore, pnðp�1
n ð1� 2c; n̂nnÞ; nÞ ¼ 1� 2c þ oðn�1Þ:
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