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ABSTRACT. Kriging is a method for spatial prediction that, given observations of a spatial
process, gives the optimal linear predictor of the process at a new specified point. The Kkriging
predictor may be used to define a prediction interval for the value of interest. The coverage of the
prediction interval will, however, equal the nominal desired coverage only if it is constructed using
the correct underlying covariance structure of the process. If this is unknown, it must be estimated
from the data. We study the effect on the coverage accuracy of the prediction interval of substi-
tuting the true covariance parameters by estimators, and the effect of bootstrap calibration of
coverage properties of the resulting ‘plugin’ interval. We demonstrate that plugin and bootstrap
calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration
appears to have a significant effect in improving the rate of convergence of coverage error.
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1. Introduction

The purpose of predictive inference is the assessment of the values of a small number, typically
one, of as yet unobserved random variables, given a data sample. Data y represent the ob-
served value of a random variable Y, with density py(y; 0), depending on the unknown pa-
rameter 0, and the unobserved Z to be predicted has, conditionally on Y = y, the density
q(z | y;0). In this paper we will be concerned specifically with the construction of prediction
intervals for a scalar Z. The aim is the construction of an interval / = I(y) which contains Z
with some specified probability, say 1 —2y. In the more usual unconditional approach we
require:

PZel(Y)]=1=2y,

with the probability over the joint distribution of (Z,Y). Alternatively, we may adopt a
conditional approach, in which the coverage requirement is conditional on the observed y:

PlZzely)]=1-2,

where now the probability is with respect to the conditional distribution of Z, given Y = y.

Various approaches to predictive inference have been proposed, including notions of pre-
dictive likelihood and fully Bayesian solutions. A brief review is given by Barndorff-Nielsen &
Cox (1994, Section 9.4). In some circumstances, the prediction interval may be constructed via
a pivotal quantity, a function of (Z,Y) with a known distribution, not depending on 0. More
usually, however, an estimative approach is taken, in which an interval, depending on 0, is
constructed with the correct coverage properties, and then an estimate of 0 is substituted for
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2 S. Sjostedt-de Luna and A. Young Scand J Statist 29

the unknown true value. The resulting ‘plugin’ interval then has coverage properties which
differ from the nominal required coverage. In order for the prediction interval to achieve the
required coverage interpretation asymptotically it may be necessary for prediction limits to be
modified to account for the effects of parameter estimation. Beran (1990a, b) suggested the use
of bootstrap calibration to control the coverage probability of the prediction interval: see also
Hall et al. (1999) and Loh (1987, 1988). The idea is to use bootstrapping, simulating from a
model estimated from the data y, to estimate how the actual coverage of the prediction interval
varies as a function of the nominal desired coverage. The nominal coverage of the plugin
interval is then recalibrated to deliver an actual coverage closer to the desired coverage than
that obtained from the unmodified interval. Hall ez al. (1999) provide evidence that bootstrap
calibration of estimative approaches to predictive inference may be more effective than pre-
dictive likelihood approaches.

A key issue concerns the general effectiveness of bootstrap calibration as a means of ac-
counting for parameter uncertainty in construction of prediction intervals. The work of Beran
(1990a, b) and Hall et a/.(1999) is concerned with independent data settings, or those, such as
autoregressive time series and linear models, which can be expressed in terms of independent
errors. In this paper, the principal objective is to investigate the effectiveness of bootstrap
calibration in handling parameter uncertainty in a specific, dependent data, spatial setting,
that of kriging prediction. In this context, a point predictor is constructed for the value of a
Gaussian spatial process at a particular spatial location, given observations of the process at a
set of sampling locations. Kriging methods are described in detail by Cressie (1993, Chapter 3).
This setting is considered by Putter & Young (2001), who establish conditions under which the
kriging predictor constructed using estimates of the parameters of the covariance function is
asymptotically efficient with respect to the kriging predictor that utilizes the true values of the
parameters.

The present paper considers the effect of parameter estimation on the asymptotic cov-
erage accuracy of the plugin prediction interval constructed from the kriging predictor, and
considers the effect of bootstrap calibration in reducing the coverage error. In this context,
parametric bootstrapping from a fitted Gaussian process is used to estimate the effects of
parameter uncertainty on the accuracy of the prediction interval. Informally, it is reasonable
to expect that bootstrapping from a fitted model with parameter values ‘close’ to the true
values will provide evidence of the effects of parameter estimation and allow a recalibration
of the prediction interval, to yield a reduction in coverage error over that of the crude
plugin interval, which makes no attempt to allow for parameter uncertainty. We establish
that in some generality asymptotic accuracy is achieved by both the plugin and bootstrap
calibrated intervals, and demonstrate further that the bootstrap calibration does indeed
have a significant effect in reducing the order of magnitude of the coverage error. We
believe that these findings point to the value of bootstrap calibration as a means of mo-
difying an inference to accomodate parameter uncertainty in more general problems of
spatial prediction.

Section 2 of the paper describes the problem of kriging prediction, and the procedure of
ordinary kriging, which is the primary focus of the rest of the paper. Plugin and bootstrap
calibrated unconditional prediction intervals are defined in Section 3, with conditional pre-
diction intervals described in Section 4. Coverage properties and our main theoretical results
are described in Section 5. Extension of our results to the technique of universal kriging is
detailed in Section 6. Section 7 considers a number of specific covariance models, while a
numerical study, which includes illustration of examples of Section 7, as well as more general
models, is reported in Section 8. Concluding remarks are given in Section 9 and proofs of the
main results are given in the Appendix.
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2. Ordinary kriging

Kriging is a method for (spatial) prediction, widely used in mining, hydrology, forestry and
other fields. Given a spatial process, observed at sampling locations xi,...,x,, it gives the
optimal (minimum Mean Squared Error, MSE) unbiased linear predictor of the process at a
given new point, xp, taking into account the spatial dependence of the observations. In ordinary
kriging, it is assumed that the mean of the process {Z(x),x € R?} is constant but unknown, and
that the covariance structure is known. In particular we consider a stationary Gaussian process
{Z(x),x € R} with E[Z(x)] = u and covariance function C:(¢) = Cov[Z(x + ?), Z(x)], depend-
ing on some parameter ¢. Given the observations Z = (Z(xi),...,Z(x,))", we wish to find
weights o« = (a1, .., ocn,,)T with Y7, sy = 1 such that the MSE

2
E [Z 0 (x;) — Z(x,) (1)
i1
is minimized. The restriction on the weights ensures that the kriging predictor
Z(xp) = > anZ(x),
=1
is unbiased. The n x n covariance matrix of Z is denoted by
Q= Cov[Z,7] = {Ce(x; — x/)}i,jzl,...,rﬁ
the n-dimensional covariance vector by
o = Cov[Z(xp), Z] = {Ce(x, _xl')}izlt...,m
and the variance of the process by ¢> = Var[Z(x;)]. Then,
_ (1— ITQ’lw))
a=a(@)=Q ' o+1——2), 2
=o' (o105 @

defines an n-vector which minimizes (1) given C:(-), and satisfies 1T¢ = 1. The theoretical
kriging prediction error in terms of minimum MSE, for the (theoretical) kriging predictor
Z (xp), using the weights in (2), is

1’ 'w—1)?

Vv =V (&) = Var[Z(x) — Z(xp)] = 0" — 0" Qo + 1"o™ 1

(3)
Note that (2) and (3) depend uniquely on the covariance structure. In this paper we will
consider prediction intervals for Z(x,) under two types of asymptotics; infill asymptotics, where
samples are taken from a fixed bounded region and the sampling locations become
increasingly dense, and increasing domain asymptotics, where the distance between neigh-
bouring sampling locations remains bounded from below and the domain from which
sampling takes place necessarily increases.

3. Unconditional prediction intervals

Let ®(z,) = 1 — y, where @ denotes the standard normal distribution function. If the covari-
ance structure is known, it follows that

L(&) = Z(xp) £2z,v,

is an exact 1 — 2y prediction interval for Z(x,). Hence, we have
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4 S. Sjostedt-de Luna and A. Young Scand J Statist 29

Pi(2(xp) € L&) = 1 2y,

Note that the probability is over the joint distribution of (Z(x,), Z), and that the interval Z,(£)
does not depend on u. The coverage is exactly 1 — 2y only if constructed using the correct
underlying covariance structure. In practice, this covariance structure will be unknown and is
estimated from the data. We will study how the coverage of the prediction interval is affected
when the true covariance parameters are substituted by estimates, so called plugin prediction
intervals. We will also study the effect of bootstrap calibration of coverage properties of plugin
intervals.

3.1. Plugin prediction intervals

When ¢ is unknown, the bootstrap substitution principle replaces ¢ by an estimator &, cor-
responding to estimating the covariance function C¢(¢) by C; (¢). The plugin prediction interval
of nominal coverage 1 — 2y is I,(&,). Write

(7, €) = PelZ(xp) € L,(E,)],

for the true coverage, under &, of the prediction interval L,(E”). This is not in general equal to
the nominal coverage 1 — 2y. The probability n,(y, &) does not depend on u if &, is a location
invariant estimator, since

PAZ(xy) € L&) = Pel|Z(xp) — p— 67(Z — p1)| <29
= P{|Z(x,) — 77| <zl = 0],

1]

Here, and in the sequel a ~ denotes when the parameters ¢ have been replaced by &, in any
function. In this paper we will focus on Maximum Likelihood (ML) estimators, which for a
Gaussian process makes &, location invariant.

3.2. Bootstrap calibrated prediction intervals

Ideally, we want to recalibrate the plugin prediction interval L,(&,,) by seeking a 9 such that

ma(3, &) = P[Z(xp) € ()] =1 - 2y.

We would hence use the plugin prediction interval of nominal coverage 1 — 2j. Since j is
unknown we construct a bootstrap estimator. Because 7,(y, &) is monotonically decreasing
and continuous in 7 (see the proof of Lemma 1), we define 7, ! (-, ¢) to be the inverse of 7, (-, &)
with respect to y. We estimate 7 by m;!(1 — 2y, %,,), where

(7, &) = P 127 (%) € (&),

is a bootstrap estimator of m,(y,¢). The bootstrap sample Z*(xp),Z*(x1),...,Z*(x,) is a
realization of a Gaussian process with covariance parameters E,, = &,,(Z) and mean zero.
Furthermore, EZ =¢&,(Z*) denotes the parameter estimator as constructed from
7* = (Z*(x1),-..,Z"(x»))". The bootstrap calibrated prediction interval Is 17[;.(172},1&")(5,1).
Monte Carlo simulation can be used to approximate the function =,(y,¢&,) to arbitrary
accuracy. In practice, we use a finite number, B, say, of bootstrap samples, to approximate
(7, &,,) for a set of values of y close to the nominal desired coverage, and approximate the
bootstrap estimator 7 by simple quadratic interpolation.
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4. Conditional prediction intervals

A conditional prediction interval is constructed in such a way that the coverage probability,
computed conditional on the observed values, corresponds to the desired coverage 1 — 2.
Therefore, it will in general not be equivalent to an unconditional prediction interval, which is
formed to have coverage 1 — 2y without holding the observed values fixed. In this section we
will consider conditional prediction intervals for Z(x,) given Z. The distribution of Z(x,) given
Z is Gaussian with mean value

n=Ee[Z(xp)|Z) = p+ 0" Q'E,
where F = Z — ul, and variance
= Var[Z(x,)|Z, ¢ = ¢* — 0" Q' w.
A conditional prediction interval for Z(x,) given Z with true coverage 1 — 2y is given by
Crey
(&) =n+tzrt

The corresponding conditional plugm prediction interval with nominal coverage 1 — 2y is
[C(é,,) Inserting the ML estimators &, and = 17Q~'Z/17Q "1 gives us IC(?,‘,,) =aT7 £ z,%.
The true coverage of Ic(ﬁ,,) given 7 is

PeZ(xy) € IT(&,)|Z] = D(4y +2,B5) — D4, — 2,B5), )
where 4, satisfies

1(O)4,(8) = (@"Q — T E+ (1 - 0" ), (5)
with fip = 1 — = 1TQ'"E/1"Q 71, and

B = BS (&) = (&) /(%) (6)

The coverage of the plugin prediction interval I.,(&,,), that was proposed in Section 3.1, given
Z,is

P:Z(xp) € I/(E,,)|Z] =04, +z,B,) — ©(4, — z,B,), (7
where
Bn = Bn(é) = V(%n)/r(é) (8)

5. Coverage properties

In order to say something about the (asymptotic) coverage of the different plugin prediction
intervals we need to know some properties of the parameter estimators. Contiguity is one
such property, which can be defined as follows (for more details see e.g. Roussas, 1972). For
every n, let (%,,.97,) be a measurable space and let {Q,},-, and {Q,},., be two sequences
of probability measures on {(%,,-/,)},>,- Then the sequence {Q,},-, is said to be conti-
guous with respect to {0y}, if for every D, € «7,,, 0,(D,) — 0 implies that 0, (D,) — 0, as
n — oo. Let E denote the parameter space of &, and let M(&) denote the set of all sequences
{&,},>, in Z such that {P; ,},-, is contiguous with respect to {P:,},- . Here P;, denotes
the joint distribution of Z given &, and similarly P, , denotes the joint distribution of Z given
¢,. In both cases we assume that the mean of the process is zero. This implies no restriction
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6 S. Sjostedt-de Luna and A. Young Scand J Statist 29

in the reasoning below as long as the estimators En are location invariant. We have from (7)
that

P [Z(xp) € I,(E,)1Z) = G(y, 4u(&,), Bu(£,)), )

where the function G is continuous in all its arguments and G(y,0,1) =1 — 2.

Lemma 1
Assume that

A,(&,) — 0 and B,(¢,) — 1 in P:,-probability, (10)
Sor some {&,} € M(&). Then

P [Z(xp) € I~,(E,,)|Z] — 1 =2y in P:,-probability, (11)

(. &) = Pe,[Z(xp) € L,(E,)] — 1 =2y asn— o0, (12)
and

n;1(1—2y,§n)—>y as n — oo. (13)

The above lemma, with &, = &, ensures that both the unconditional and the conditional plugin
prediction intervals for Z(x,) asymptotically give the correct coverage 1 —2y. A similar
property holds for the bootstrap calibrated plugin intervals. Let Ms(&) be some subset of M ().

Lemma 2
Assume that (10) holds for all {&,} € Ms(&), and that {¢,} € Ms(&)a.s. Then for any
{&} € Ms(8),

P lZ(xp) €1, 11y )(&,,)\Z} — 1 =2y in P:,-probability, (14)
and
Pe[Z(xp) €11y gy (&) = 1 =2y asn— . (15)

Lemmas 1 and 2 also hold if L(%n) and B, are replaced by IC(E,I) and BS, respectively.

Remark 1. The condition {&,} € Ms(¢) a.s. in Lemma 2 can be relaxed to the following
condition: For each subsequence {n;} there is a subsequence {n} such that {Enk“)} € Ms(&)
a.s., which is equivalent to that {P; } is contiguous with respect to {P:,} a.s. for that sub-
sequence. This is useful if we know how the estimator &, behaves in probability (see Section 7).

5.1. Convergence rates

The convergence rate of the bootstrap calibrated prediction intervals turns out to be faster
than for the plugin prediction intervals under some additional assumptions. The following
lemmas will summarize these properties. First we state two important assumptions.

(A1) Suppose that there are functions {a;;(£)} such that
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Ecd,(&)] = an(&)/n+o(n™"),
E¢[B, (&) — 1] = ann(&)/n+o(n™"),

E:[(Bu(&) — 1)°] = an(&)/n+o(n™).

(A2) Assume that the sequences {n42(¢)} and {n(B,(&) — 1)*} are uniformly integrable.

Lemma 3
Suppose that (Al) and (A2) hold. Then, under the assumptions of Lemma 2,

(7, E) =1 =2y +b(y, &) /n+o(n '), (16)
where

b(y,8&) = z,0(z,)[2a12(&) — an (&) — z%agz(é)],

and @(-) is the density of a standard normal distribution. Moreover,

Ri(p,&) =, (1= 29,8) —y = b(y,&)/2n=o(n™"). (17)
This lemma implies that the (unconditional) plugin prediction interval 1},(%,,) typically has
coverage 1 — 2y + O(n™").

Lemma 4
Suppose that 0G(y, A, B,) /0y and b(y, &) are bounded. If

EclnRy(7,8,)] = 0, and &, = b(3,&,) = b(7,) >0, as n — oo, (18)
then, under the assumptions of Lemma 3,

TE,,(TE;I(I _2V7 &n)7é) =1- 2"/'4‘0(7!71).

Remark 2. Lemmas 3 and 4 hold even if the functions {a;;(¢)} depend on n, when the
functions are uniformly bounded with respect to n.

Here, we conclude that the (unconditional) bootstrap calibrated prediction interval
[n;,(liz},f”)(én) has coverage 1 —2y +o(n™"), and thus a faster convergence rate than the
plugin prediction interval.

6. Universal kriging

Suppose that the mean of the process {Z(x),x € R’} changes with x in a way such that
Z(x) = u(x) + €(x),

where
q
ux) =Y Bifi),
=1

and €(x) is a mean zero Gaussian stationary process with covariance parameters £. Here f;(x),
j=1,...,q, are known functions of the coordinates, and f = (ﬂl,...,ﬁq)T, are unknown
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8 S. Sjostedt-de Luna and A. Young Scand J Statist 29

coefficients. Suppose that we have observed the process at n locations, giving us the observed
values Z = X + E, where X = {f;(x;)} is an n x ¢ matrix and E = (e(x1), ... Le(x,))". We want
to predict the value of the process at a new location x,,, corresponding to Z(x,,) = ﬁTfp + €(xp),
where f, = (fi(xp),...,/q (xp))T. Assuming that the covariance structure is known, the
universal kriging predictor corresponds to the best linear unbiased predictor of Z(x;,), given Z,
minimizing (1). It is given by 2 (x,) = «1Z, where

o= Qo+ X(XTQ X)) (f, - XTQ o).
The unbiasedness of Z,(x,) implies that I X = 'f,. The MSE is
ve = E[(Zu(x) - Z(xp))z] = -0'Q'o
+(f, —xTQ o) (xTQ X)) (f, - XTQ ). (19)
Hence, an exact 1 — 2y (unconditional) prediction interval for Z(x;) is

L(E) =l Z +z,v,, (20)

/

and the corresponding plugin  prediction interval I»,,(En), with  coverage
7a(y, &) = P:[Z(xp) € I,(&,)]. We further have that

{=E:[Z(xp)|Z]) = B, + 0" Q7'E,
and

Var[Z(xy)|Z, ¢ = (&) = 0> — o' Q' w.
From this we can construct an exact 1 — 2y prediction interval conditional on Z as
Lc(ﬁ) = {+z,7, assuming that & and f are known. The corresponding conditional plugin
prediction interval with nominal coverage 1 — 2y is Lc(én) Inserting the ML estimators &, and
B=XTQ'X)'XTQ 7 gives us

I€(8) =032 £zt
The true coverage of IF(En) given Z corresponds to (4) with BS(¢) = r(Zf,,)/'c(C) and 4, (&)
satisfying

W()4,(8) = (O — 0"TQTE+ (] — &'Q7'X) By, (21)
where ﬁE = B, p= (XTQ’IX)AXTQ’I[E. The coverage of the plugin prediction interval of
(20), given Z, equals (7), with 4, satisfying (21) and B, = vy(¢&,)/t(&). The ML estimators &,
are location invariant, which implies that the coverage probabilities of all the plugin prediction
intervals are the same whether or not 8 = 0. For example, using the fact that al X = [fop,

P:[Z(xy) € L,(E0)|Z, B = P(1Z(xy) — B3 8 — 8 (Z = X )| <z,9ulZ. f]

— P|Z(y) — 81Z] <z,3,[2,p = 0.

Hence, Lemmas 1-4 hold for universal kriging situations as well, with the corresponding
changes of 4, and B,.

7. Examples

In this section, two examples with exponentially decaying covariance functions are discussed.
Both infill and increasing domain asymptotics are considered. We will show that the plugin
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and the bootstrap calibrated prediction intervals have the correct coverage asymptotically for
these examples.

7.1. A one-dimensional example

Consider a stationary Gaussian process, {Z(x) € R}, on the real line with expected value x and
covariance function

Ce (i —x7) = CovlZ(x), Z(x))] = o> e ™, 62,0 >0, (22)

with & = (62,0)". Suppose that the process is observed at locations x; = i/a,,i = 1,...,n. If
a, = O(1) it corresponds to increasing domain asymptotics and if a, = O(n) it corresponds to
infill asymptotics. We will consider these two cases separately, demanding that there are
constants 0 < K] <K, < oo such that K <a,<Kpn. Let xy = —00,x,.1 = 0o, and define
k = k(n) to be an integer satisfying x; <xp <xx+1, wWhere x;, is the location where we want to
predict the process. This gives us information about whether or not the point of prediction is
an interior point, in between the observed locations. The coverage of the prediction intervals
depends on several items. From Lemma 1 in Ying (1993) and the notation ¢, = e ?t%»—%),
d, = e 0@a—%) and F = (€1,--s e,,)T, where ¢; = Z(x;) — u, it follows that

1" o = (¢, +d,)/ (1 + e, (23)
T 1 &en(l —d2) 4+ eadi(1 — cp)
EQ o= 1 — o 20/a, ; (24)
o (=) -d?
Z(C) :%7 (25)
and
1 —e0/an)e 4 e=0/an
oleQfl[E:n( e Je+e (el—i-en)7 (26)

1 4+e0/m

where e =Y, &/n. Let By be a compact region in Ri (positive orthant) that contains the
true parameters ¢ = (¢2,0)" as an interior point.

7.1.1. Infill asymptotics
For a mean =zero Gaussian process, Putter & Young (2001) showed that if
{&, = (02,0,)"} € Ms(¢&), where

Mg(&) = {{¢, €50} :0,—0=0(1) and 620, —d*0=0(n""?)},

then {P;, ,} is contiguous with respect to {P:,} under infill asymptotics. Furthermore, Ying
(1991) showed that the ML estimators E,, € Ey are not consistent estimators of ¢ but that
620, — 020 a.s. and &ﬁén — 620 = O,(n~'/?). Hence, for each subsequence of {&,}, there is a
subsequence that belongs to Ms(&) a.s. Assume that x,, is an interior point, which implies that
xie1 —x = O(n~1). By (25) and Taylor expansions, we then have

(&) = 26%0(xp — xi) (W1 — Xp)an[1 + O(n~?)] = O(n™"). (27)

Hence, BS(&,) = 1(&,)/(&,) — 1 as. if {&,} € Mg(¢). Let us now consider 4,(&,) and let
w, = w(¢,) and Q, = Q(&,). From (24) and Taylor expansions, we conclude that

© Board of the Foundation of the Scandinavian Journal of Statistics 2002.



10 S. Sjostedt-de Luna and A. Young Scand J Statist 29

(@"Q7 — I QNE = qo(n™!) + es10(n7 ). (28)
Equation (26), with E = 1, implies that &ngfz’ll >1, and further that

e = (&1 + €,)O(1) +€0(1). (29)
From (23), we conclude that 1 — @TQ 1 = O(n2). This, together with (27)~(29) implies that

An(&) = ero(n™' ) + e 10(n7 ) + (61 4 €,)0(n %) + e0(n~3/?), (30)

when {&,} € Ms(£). We thus conclude that 4,(&,) — 0 in P; ,-probability, since the variance of
€ is bounded. Furthermore, (1 — ®@TQ'1)?/1TQ"'1 = O(n*), which from (3) implies that

Ba(&,) = v(é,) /(&) — 1 as..

All the above ensures that both the conditional and the unconditional prediction intervals,
Iﬂi,,) and 7,(&,), as well as their bootstrap calibrated versions, have the correct coverage
asymptotically. A similar reasoning shows that the same holds if x, is not an interior point.

Remark 3. In order to understand the convergence rates of the plugin and bootstrap cal-
ibrated prediction intervals, we need to study the conditions of Lemma 4. For this example,
the derivative

5G(y7A,,7B,§)/5v = _B;(z: [p(4, + ZanC) + (4, — ZVBS)]/(P(Z?)7

is bounded, since BS is bounded. Conditions (A1) and (A2) are also verifiable for 4,: From
(30) we have that E:[4%] = o(n~!), which implies that a;;(¢) = 0. Moreover, since {¢} is
Gaussian with finite variance, (30) implies that {n42} is uniformly integrable. Turning our
attention to Bff, we have that

ey 1= PE) 2@ (@)

(&) - a20 +0().

It is possible to verify that the bias and MSE of &ﬁ@n is of order O(nfl), and that
{n((BE)2 — 1)2} is uniformly integrable (see Sjostedt-de Luna, 2002). More specifically,
an (&) = 2¢*6%, and

n

Y o 1
(&) =5 (E26302 — 024] - #°0°) +

a, 2a,

ZEi[ﬂEén(Gi +e€i1) — 9;2161‘2—1}7
=2

which implies that b(y, £) is bounded. However, since (62, 0,) are not consistent estimators of
(62,0) (cf. Ying, 1991) the rest of the assumptions in Lemma 4 are difficult to verify.

7.1.2. Increasing domain asymptotics

For increasing domain asymptotics the distance between neighbouring observations is
bounded from below such that for some ¢ > 0 it always holds that |x; —x;| >0 for any two
locations. Let

Mg(&) = {{& €50} : 0, —0=0(n""?) and o0, —c°0 = O(n~"?)}.

Putter & Young (2001) showed that {P: ,} is contiguous with respect to {P:,} if
{&,} € Ms(&), for 1 =0. The ML estimators are asymptotically normally distributed, and
such that &, — &= 0,(n"/?) and ji— u= Op(n~"/), when x; = i/a,, and a, = O(1). This
follows by checking the conditions of Theorem 3 given by Mardia & Marshall (1984).

Therefore, \/ﬁ(&ﬁén —¢%0) is also asymptotically normally distributed. Hence, for every
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subsequence of { En}, there is another subsequence that belongs to Mg (&) a.s. Assume that x, is
an interior point such that x;; — x; = O(1). It follows from (24) that
(O™ — 0l Q) E= e [h(0,, @, xp — Xp, X1 —%p) — (0, @, Xy — X, Xpes 1 — Xp)]
+ kit 10, @, xp1 —Xp,Xp = X0) = (O, Xp 1 —Xp,xp —xp)],  (31)
where 4(-) represents the continuous function

e—()s( 1 — e—zaz)

h(0,a,s,t) = T o20/a

Note that (a,, X1 — xp,%p — x) are bounded, and that (e, €) = Op(1). This implies that
(31) converges in probability to zero if {,} € Ms(&), since a continuous function always is
uniformly continuous on a compact set. A similar argument shows that

‘c(%,,) —1(&,) L0 asn— 00,
if {&,} € Ms(¢). Knowing that jiz = O,(n~"/?), it follows from (23), that
(1-0" 0 )iy 50 asn — co.

Because 0 < 1,(,) = O(1), together with the above, we have that BS(&,) = 1.(&,) /(&) — 1
and 4,(&,) — 0 in P:,-probability for {&,} € Ms(&). It follows from (26), with E =1, that
&21TQ "1 >1+n(1 — e %)/2, and hence,

10 'o - 121" "1 50 asn — co. (32)

Thus, B,(&,) = v(¢,)/1(E,) converges to 1 in P;,-probability. Therefore, (11)~(15) hold for
I}C(E,,) as well as for I,(E,,) Also in this case similar reasoning shows that the plugin prediction
intervals and the bootstrap calibrated prediction intervals have asymptotically correct
coverage if xp is not an interior point.

7.2. A two-dimensional example

Consider a stationary Gaussian process on R?, {Z(x),*€R?}, with mean zero and covariance

function

Ce(t) = Cov[Z(x + 1), Z(x)] = g% e HI=0l 52 9 ) > 0, (33)
where ¢ = (a2, 0, A)T,t = (tl,tz)T, and ¢,x € R, Suppose that the process is observed on a
lattice, at locations x; = (u;, vk)T, i=1,....m, k=1,... n This gives us the nm observation
vector Z = Zyy = [ZIT, e Z;]T, where Zl.T =[Zu,...,Zi) and Zy = Z(u;, v;). Without loss of

generality, both {u;} and {v;} are arranged in ascending order. The design need not be nested,
i.e. it is not assumed that Z,, C Z,/,y, where n<n' and m<m'. The coverage of the plugin
(bootstrap calibrated) prediction intervals of the ordinary kriging predictor at an interior
point x,p, = (up, vp) Will be studied under infill asymptotics such that

max{A; = u; —u;_1} = O(m™"), m]?X{Ck = -0} =0,
1
and n/m — p < oo, as n,m — oo. Define s = s(m) and ¢ = #(n) to be integer values satisfying
uy < up < tlsy1, and v, < v, < vy41. The covariance matrix of Z is
Q = Cov[Z,Z] = 6°4(2) @ B(H),

where 4(2) = {e el . B(0) = {e” 1}, ;. and ® denotes the Kronecker
product. We further have that
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o = Cov[Z, Z(xpp)] = d?a(2) @ b(0),

wherea(2) = {e" !} . andb(0) = {e"wl}, _, _ . Usingthe notationa,, = e~*w"),
by = e A=) o = e 0tp=t) and d, = e %1 =%) from Lemma I in Ying (1993) we have that

[an(1 = B2)ZT + bu(1 — a2)ZT,,]B(0)"'5(0)

To-1 's+1
7'Q 'w = [ o An , (34)
ZT 7).szT
P77 = (ZT JFZHfA1 B(0)™'1, (35)
Ta-1,. (cn + dn)(am + bm)
1o o= (1 + e )(1 +eAm)’ (36)
and
2 2 2 2 2 2

TH-1 2 am(libm)+bm(liam) (1 d)+d(1*C)
o Q 'o=0c ( (= e VA T o 200 (37)

Let By be a compact set in Ri that contains the true parameters ¢ as an interior point. The ML
estimator of & over &y is location invariant, strongly consistent and asymptotically normally
distributed such that (& &= OP(n*I/z) (see Ying, 1993). Moreover, van der Vaart (1996)
showed the Local Asymptotic Normality (LAN) property for this model which implies that
{P:, »} is contiguous with respect to {P:,} for all {&,} € Ms(¢) ={{&, €50} : (&, —¢&) =
O(n~'/%)} (see Bickel et al. 1993, pp. 16-17). Hence, for each subsequence of {&,}, there is
another subsequence that belongs to Mg (&) a.s. We have by Taylor expansions of (34), noting
the close relationship between ZIB(0) 'b(6) and (24), that

ZT[Q_ICAU - Q;lwn] = tho(nil) + Zx,t+10(n71) + ZH»l,tO(nil) + Zx+l,t+10(n71)-

By inserting Z = 1, in (35) and comparing with (29) we conclude that 6%1TQ’11 >1. In order
to confirm that jt = O,(1) it is therefore sufficient to show that ZTB(6,) "1 = Op(1), which
then by similar reasoning implies that ErﬁZsz’l 1= 0,(1). By Lemma 1 in Ying (1993) we have

- ik — € "é‘Z‘,k—l) IR _
20 =20 Y BT = S -z
= =

n

1 . be 1< b
+ E > (e—Hél; _ e*ﬂnék )Zk—l + 5 ;(ka _ e’e"*"Z,;kfl )O(CK)
Each of the three sums above has bounded variance, and thus ZiTB(@),,)fll = Op(1). Further,
Taylor expansions of (36) and (37) yield, respectively, that 1 —1TQ '@ = O(n~?), and

Uz/lf(AHl) + Uzeg(étﬂ) + 0(”72)
(1 = A1 + O(n2))(1 — 0L,y + O(n~2))

2(¢) = = 0@, (38)

where
F(Agr) = [AZ) = (up — 1) — (41 — up)’]/Agpr = O(n™"),
and
9(Cn) = (G = (1 = 0" = (vt = 0p)’]/ G = On7").
All this implies that 4,(&,) = O(n~1/?) in P ,-probability for all {&,} € Ms(&). We further
have from (38) and the consistency of &,, that Bg(én) — 1 in P;,-probability if &, € Mg(¢).
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Also, from the above, (32) divided by 7(¢,) tends to zero a.s. at the rate O(n~"/?) which implies
that B,(¢,) — 1 in P:,-probability. Thus, the correct asymptotic coverage for plugin and
bootstrap calibrated intervals for Ic(fn) as well as ,(£,) is verified.

8. Numerical illustrations

In this section, we provide three numerical illustrations of the coverage properties of plugin
and bootstrap calibrated prediction intervals of nominal 90 per cent coverage, for a stationary
mean zero Gaussian process. In each case the coverages were estimated by Monte Carlo
simulation, for a range of sample sizes n. Parameters were estimated by maximum likelihood,
in each case the mean of the process being treated as a nuisance parameter and estimated
together with the covariance function parameters. Bootstrap calibration was carried out by
estimating coverages at three nominal coverage levels, 0.90, 0.95 and 0.99, with the recali-
brated level estimated to yield the nominal desired coverage 0.90 being obtained by simple
quadratic interpolation.

Our first example, illustrated graphically in Fig. 1, concerns the one-dimensional example
considered in Section 7.1. The covariance function (22) was specified, with parameter values
0®> = 0 = 1. The process was observed at sampling locations x; = i/a,, i = 1,...,n, for a range
of sample sizes n. An increasing domain asymptotic regime was specified by taking a, = 1,
with the process being predicted at 0. Results are shown in Fig. 1(a). The reduction of coverage
error with increasing sample size n, as well as the benefits of bootstrap calibration, are evident.
An infill asymptotic regime was specified by taking a, = n, with the process now being pre-
dicted at 1/+/2. Results for this regime are shown in Fig. 1(b). The plugin interval is seen to
yield low coverage error for small sample sizes n, and the benefits of calibration are, contrary
to theoretical expectation, not realised for this particular regime. In both the increasing do-
main and infill cases, coverage properties of the two prediction intervals were simulated from
10,000 Monte Carlo replications, with B = 500 bootstrap samples being drawn for each
bootstrap calibration.

Our second example concerns a two-dimensional stationary process of mean zero, and with
covariance function of the form (33), and true parameter values 6> = 1 = 0 = 1. The process
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e
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o o
g o 4 g
5 @ . g
> o . >
3 e 3
o . 3 «
w o 0
™~ o - 0 -
=} - L= et Plugin
---- Bootstrap calibrated
o o
R
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-~~~ Bootstrap calibrated
[Te] o
© 4 @ -
e T T T T T T T T T T T © T T T T T T T T T T T T
5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 20
n n
(a) (b)

Fig. 1. Empirical coverage, as a function of sample size n, of 90 per cent equal-tailed prediction intervals
obtained for the one-dimensional example in Section 8, under: (a) increasing domain asymptotics; and
(b) infill asymptotics.
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was observed at a regular lattice of sampling locations x; = [i — 1/n— 1), (k—1/n—1)],
i=1,....n; k=1,...,n, the effects of infill asymptotics being studied by increasing n, and
the process was predicted at (1/v/2,1/+4/2). Coverage figures for this case were approximated
from 2000 Monte Carlo replications at each value of n, with B = 200 bootstrap samples being
drawn for each bootstrap calibration. Results are presented in Fig. 2. Again, the effectiveness
of bootstrap calibration in eliminating coverage error is clear.

Our final example concerns a two-dimensional stationary process of mean zero, and with
isotropic covariance function

C(1) = Cov[Z(x + 1), Z(x)] = % e Il

where 1 = (11,1,)", with x,7 € R?, and ||7|| denotes the Euclidean length of 7. In the simulations
we specified 6> =0=1. The process was observed at random sampling locations
x; =b,U;,i=1,...,n, where Uj,..., U, are independent, identically distributed on the unit
disc {: ||7]] < 1}, and predicted at (0,0). As the sample size n was varied, nested sampling
locations were used, so that, for example, the sampling locations for n = 10 consisted of the
sampling locations for n = 9, together with another uniformly random sampling location.
An infill asymptotic regime was specified by taking b, = 1, while an increasing domain regime
was specified by taking b, = n'/?. Coverage figures were approximated from 2000 Monte
Carlo replications, with B = 200 bootstrap samples being used for the calibration. Results are
presented in Figs 3(a) and (b) for the increasing domain and infill cases, respectively. Again the
effectiveness of bootstrap calibration is striking.

9. Final remarks

In this paper, we have studied plugin and bootstrap calibrated prediction intervals for kriging
predictors. It is shown that, in some generality, both intervals give the correct coverage
asymptotically. We have focused our attention on Gaussian random fields. It would be of
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Fig. 2. Empirical coverage, as a function of sample size n x n, of 90 per cent equal-tailed prediction
intervals obtained for the two-dimensional lattice example in Section 8, under infill asymptotics.
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Fig. 3. Empirical coverage, as a function of sample size n, of 90 per cent equal-tailed prediction intervals
obtained for the two-dimensional example with isotropic covariance function in Section 8, under:
(a) increasing domain asymptotics; and (b) infill asymptotics.

interest to study whether the same type of results remain valid if distributional assumptions
are avoided and some form of non-parametric block bootstrap is used instead of the para-
metric bootstrap in the calibration. However, we doubt that similar infill asymptotics results
can be shown for the non-parametric bootstrap: infill sampling implies a long range de-
pendence structure in the data, for which block bootstrap methods are known to perform
poorly (cf. Lahiri, 1993).
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Appendix

Proof of Lemma 1.  The contiguity and (10) imply that 4,(¢,) — 0 and B,(&,) — lin Py ,-
probability. Since G is continuous in all its arguments it follows that G(y,4,,B,) —
G(y,0,1) =1 — 2y in P ,-probability, that is, (11) holds. By dominated convergence it then
follows that (12) holds. Further, note that n,(y, £,) is continuous in y for each n, motivated by
the following reasoning. We have that

m(0.6) = Ex (GO An Ba)) = [ HO. 6, EIE,

where H(y,&,,E) = G(y,4,(&,, E), Ba (&, E))f(E, &,) and f(E, &,) is the normal density of E
with mean zero and covariance parameters &,. Let {y,,},,~ be a sequence converging to y. The
continuity of H in y guarantees that H(y,,, &,, E) — H(y,&,, E) as m — oo pointwise for all
E e R"and ¢, € E. Further 0<H (y,,, &, E) <f(E, &,) for all m and f(E, £,) is integrable. Then,
by dominated convergence, 7, (7,,, £,) — 7, (7, &,) as m — oo, and hence 7, is continuous in y.
Because G(y,A4,,B,) is decreasing in y it follows that =, is decreasing in y as well. Since (12)
holds for each y € (0,0.5) it ensures that for any {&,} € M (&), the equation

[TL’,,(TE;I(I - 2V7 én)v fn) -1 + 271-;1(1 - 2?7 én)}/z = 7.[;1(1 - 2?7 én) -7

tends to zero as n — oo.

Proof of Lemma 2. Suppose that (14) does not hold. Then there is a subsequence {n;(k)}
and ¢,0 > 0 such that

Pf[|G(nr711(k)(l - 2% %nl(k))vAn](k)(énl(k))aBnl(k)(énl(k))) -1+ 2V| > 6] > 57 (39)

for some sequence {&,} € Mg(€). By going to a further subsequence {n,(k)} C {n;(k)} we have
from the assumptions that {P; }Ais contiguous with respect to {P;, } a.s. for that subsequence.
This implies that nnzl(k)(l =29,&,00) — 7 as., as k— oo. From (10) and knowing that
{6"2(/{)} € Mg(¢) it follows that Ang(k)(énz(/c)) — 0 and an(k>(é,,2(k)) — 1 in P¢,-probability.
Therefore, it is possible to find a further subsequence {n3(k)} C {m2(k)} such that
A,,3(k)(é,13(k))g0 and Bm(k)(fns(k))gl as k — oco. From this and the assumed properties of
G it follows that

G(n;;(k)(l - 2% &n;(k))vAm(k)ang(k)) - G(V707 1) =1- 2V a.s.,

which contradicts (39). Hence (14) holds. By dominated convergence it then follows that (15)
holds.
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Let G (y,a, b) denote a partial derivative of G(y,a, b).

Proof of Lemma 3. Taylor expansions of G over (d4,,B,) around the point (0, 1), where
A, = A4,(&) and B, = B,(&) yield

P:[Z(xp) € L,(E,)|E] = G(7,44,B,) = 1 — 27 + 22,0(z,) (B, — 1)
—2,0(z)A42 — Z(z,) (B, — 1)° + A2[G**)(y,4,,B,)
—G029(3,0,1)]/2 + 4,(B, — NGV (y, 4,,B,)
+ (B, — 1)’[G"*2(y,4,,B,) — G (3,0,1)] /2. (40)

Here, 4,, is between 4,, and 0, and B, is between B, and 1. The second moments in (A1) and the
continuity of the derivatives of G entail that

nA2 G029 (y, 4,,B,) — G°*9(7,0,1)] — 0 in P ,-probability. (41)

A uniform integrability argument, based on (A2) and the boundedness of G(“2%) shows that
the convergence (41) also occurs in expectation. Similar arguments give

Ei[nAn(Bn - ])G(O’l'l)(yvgmgn)] —0 asn— 0,
and
E:[n(B, — 1)* ]GV (3, 4,,B,) — G*%V(7,0,1)]] - 0 as n — oc.

Hence, conclusion (16) follows from the fact just established, by taking expectations over (40).
By substituting ;' (1 — 2y, &) for y into (16) and rearranging terms, we have

(1= 29,8) =y +b(y, &) /2n+ [b(m, (1 = 29,8), &) = b(y, &)]/2n + o(n™")
=y+b(y,&)/2n+o(n"),

since b(y, &) is continuous in y, which implies (17).

Proof of Lemma 4. Let K,(y,&) = n; (1 — 2y, &) and Ko(y, &) =y + b(y, E)/2n. Then
(7, (1= 29,8,),€) = Ec[G(Ko(7, &), 4, Bo)].
By Taylor expansions around Ko (7, Zf,,), we have

G(Ku(7, &), Any Bu) = G(Ko(7, &), Ans By) + Ra(y, €,)GI00 (k,, 4,, B,),

where &, is between K,(y,¢&,) and K,(y,&,). Taking expectations and using (18) and the
boundedness of G0 we get

E[G(Ka (7, &,), An, Ba)] = Ec[G(Kuo(7,€,), An, By)] + 0(n™").
We further have that
G(KnO(yv %n)vAmBn) = G(Kno(% é):AmBn) + 5nG(L0>0) (I;mAmBn)/zn»

where k, is between K,o(y, %,,) and K,o(y, ¢). From (18) and the boundedness of 5(y, &) and
G109) by dominated convergence, we have that

Eé[énG(l.O,m(l}mAn,Bn)] — 0 asn— oo. (42)

Taking expectations and using (42) we get
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Ei [G(Kn()(yv &n)ﬂ‘lna Bn)] = Ei [G(Kn()(% 5)714717 Bn)} + 0(1’[71).
Finally,
Eé [G(Kno(% é),An, Bn)} = Ei [G(Kn(% €)7Anan)]

—Ra(7, OE[G (ky, Any B = 1 = 2y 4 0(n ™),
by (17). Therefore, m,(m,' (1 —29,&,),&) =1 =2y +o(n").
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