m3hsoln6.tex

M3H SOLUTIONS 6. 29.11.2013

- Q1 Viète's infinite product for π (Francois Viète (1540-1603) in 1593).
- (i) The *n*-gon divides the circle (area π) into *n* congruent triangles, each of angle $2\pi/n$. Each has area $\frac{1}{2}\sin \pi/n\cos \pi/n = \frac{1}{4}\sin(2\pi/n)$. So

$$A_n = \frac{1}{4}n \cdot \sin(2\pi/n), \qquad A_{2n} = \frac{1}{4} \cdot 2n \cdot \sin(\pi/n), \qquad A_n/A_{2n} = \cos(\pi/n).$$

Now $A_4 = 2$ (square of side $\sqrt{2}$), and $(\cos \theta = \sqrt{\frac{1}{2}(1 + \cos 2\theta)})$

$$\cos(\pi/4) = 1/\sqrt{2} = \frac{\sqrt{2}}{2}, \qquad \cos(\pi/8) = \sqrt{\frac{1}{2}(1 + \frac{1}{\sqrt{2}})} = \frac{\sqrt{2 + \sqrt{2}}}{2},$$

$$\cos(\pi/16) = \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2}, \dots$$

As $A_n \uparrow \pi$, Viète's product follows.

Q2 Girard's formula of spherical excess (Albert Girard (1595-1632), Invention nouvelle en algèbre, 1629).

On a sphere, a *lune* is the region between two great circles. The ratio of the area of the "A-lune" to that of the sphere is A/π (draw a diagram), and similarly for the B- and C-lunes. If we sum the areas of the three lunes, we cover the area of the sphere, but that of the spherical triangle ΔABC and its antipodal triangle three times (draw a diagram), giving a sum of $S+4\Delta$ (where S,Δ are the areas of the sphere and triangle). Divide by $S=4\pi r^2$:

$$\frac{A}{\pi} + \frac{B}{\pi} + \frac{C}{\pi} = 1 + \frac{4\Delta}{4\pi r^2}$$
: $\Delta = r^2(A + B + C - \pi)$.

Q3 (Wallis' product for π).

$$I_n = \int \sin^n x \, dx = -\int \sin^{n-1} x \, d\cos x = -\sin^{n-1} x \cos x + \int \cos x \cdot (n-1)\sin^{n-2} x \cos x \, dx$$
$$= -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x (1 - \cos^2 x) \, dx :$$

$$nI_n = -\sin^{n-1}x\cos x + (n-1)I_{n-2}.$$

Passing to the definite integral $J_n := \int_0^{\pi/2} \sin^n x \ dx$ gives

$$J_n = \frac{n-1}{n}.J_{n-2}.$$

So as $\int_0^{\pi/2} dx = \pi/2$, $\int_0^{\pi/2} \sin x \, dx = [-\cos x]_0^{\pi/2} = 1$,

$$J_{2m} = \frac{2m-1}{2m} \cdot \frac{2m-3}{2m-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \qquad J_{2m+1} = \frac{2m}{2m+1} \cdot \frac{2m-2}{2m-1} \cdot \dots \cdot \frac{2}{3}.$$

Dividing,

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2m}{2m-1} \cdot \frac{2m}{2m+1} \cdot \frac{J_{2m}}{J_{2m+1}}.$$

But as $0 \le \sin x \le 1$ in $[0, \pi/2]$, $\sin^{2m+1} x \le \sin^{2m} x \le \sin^{2m-1} x$; integrating gives $J_{2m-1} \le J_{2m} \le J_{2m-1}$. So

$$1 \le \frac{J_{2m}}{J_{2m-1}} \le \frac{J_{2m-1}}{J_{2m+1}} = 1 + \frac{1}{2m} \downarrow 1: \qquad \frac{J_{2m}}{J_{2m+1}} \to 1 \qquad (m \to \infty).$$

So

$$\frac{\pi}{2} = \lim_{m \to \infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2m}{2m-1} \cdot \frac{2m}{2m+1}$$

As $2m/(2m+1) \rightarrow 1$, this gives

$$\frac{2^2}{3^2} \cdot \frac{4^2}{5^2} \cdot \dots \cdot \frac{(2m-2)^2}{(2m-1)^2} \to \frac{\pi}{2},$$

which is Wallis' product.

Note.

Take square roots and multiply top and bottom by $2.4....(2m-2).2m.\sqrt{2m}$. In the numerator $2^2.4^2....(2m-2)^2(2m)^2=2^{2m}(m!)^2$, giving

$$\frac{2^{2m}(m!)^2}{(2m)!\sqrt{m}} \to \sqrt{\pi}: \qquad \binom{2m}{m} \cdot \frac{1}{2^{2m}} \sim \frac{1}{\sqrt{m\pi}} \qquad (m \to \infty),$$

useful in Probability Theory.

NHB