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Q1 (Euler characteristic; Euler’s polyhedron formula).

To show FF'+V = E+2,or V — E+ F = 2: build up the polyhedron face
by face, and count V' — E + F after each face is added.
1st face. V' = E (a polygon has as many vertices as edges), so V —E+F = 1.
2nd face. 1f the face is a p-gon, only p — 2 vertices are ‘new’, and only
p — 1 edges are ‘new’; one face is new. So the (V-E+4F)-count increases by
(p—2)—(p—1)+1=0, and stays at 1.
3rd face. 1f this is a g-gon: ¢ — 3 new vertices, ¢ — 2 new edges, 1 new face:
count changes by (¢ = —3) — (¢ —2) + 1 =0, so stays at 1.
... Penultimate face. Similar;y: no change; count stays at 1.
Last face. No new vertices or edges; 1 new face; count up from 1 to 2. //

Q2 (Duality).

For projective geometry in the plane, the dual of a statement (involving
only incidence, not distance) interchanges the words ‘point’ and ‘line’.

For projective geometry in 3 dimensions, duality interchanges the words
point and plane, and leaves the word line unchanged.

So duality sends (V, E, F) — (F, E, V), so leaves V — E + F unchanged.
So of the Platonic solids, the tetrahedron is self-dual, the cube and octahe-
dron are dual, and the dodecahedron and icosahedron are dual.

Q3 (Truncated solids).

If ¢ faces meet at a vertex, and the vertex is truncated (‘shaved off’): 1
vertex is lost, ¢ are gained, so V increases by ¢ — 1; V — E + F increases by
(g —1)—q+1=0: x is unchanged by truncation (at any vertex, so at all
vertices).

For the Platonic solids (p g-gons meet at each vertex): truncation takes

Ve Vi=qV, E—E=E+qV, F—F=F+V,
x=V-Fter X' =V'-F+E = qV-E—qV+F+V =V-E+F = x =2

the Euler characteristic is unchanged by truncation (as we know from Q1).
Note. The Greeks had all 13 Archimedean solids, and the 5 Platonic solids
— considerable numerical evidence — and they still missed Euler’s formula!



Q4 (Stirlings’s formula: James Stirling (1692-1730) in 1730).
There are proofs in any decent Analysis book; this one is from
J. C. BURKILL, A first course in mathematical analysis, CUP, 1962, Ex.

7(e) Q6.
Consider d,, :=log(n!) — (n + 1)logn + n.
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But for |z| < 1,
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In particular, f(x) >0, so d,, — dpy1 > 0: d,, |
Also, for |z| < 1, by above
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So d,, is bounded below, and as it decreases, d,, converges — d,, | d, say. So
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e mn"t2

But (Solutions 6) (*").5% ~ \/Ln? (n — 00). Hence (check) A = /27, giving
Stirling’s formula.

Note. The V27 in Stirling’s formula is the V27 in the standard normal den-
sity of Probability Theory and Statistics.
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