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M3H SOLUTIONS 1. 22.1.2016

Q1 (Theorem of Thales). Let the triangle be ABC, with AB a diameter
of a circle, with centre O and radius r say. Join CO. Triangle ∆AOC
is isosceles (AO = CO = r), so with θ the angle ∠CAO, θ = ∠ACO
also. So ∠AOC = π − 2θ (to make the angle sum of ∆AOC π). So
the complementary angle ∠BOC = 2θ. But ∆BOC is also isosceles, so
∠OCB = ∠OBC = 1

2
π − θ (to make the angle sum of ∆OCB π). So

∠ACB = ∠ACO + ∠OCB = θ + (1
2
π − θ) = 1

2
π. //

Q2 (Theorem of Pythagoras).
First proof (Draw a diagram). Let ∆ABC be right-angled, with right angle
at A, hypotenuse BC = ℓ and other sides AC = ℓ1 and AB = ℓ2. The area b
of ∆ABC is the sum of the areas b1, b2 of ∆ACD,∆ABD, namely b(ℓ1/ℓ)

2,
b(ℓ2/ℓ)

2:
b = b((ℓ1/ℓ)

2 + (ℓ2/ℓ)
2) : ℓ21 + ℓ22 = ℓ2.

This is Pythagoras’ theorem. //
The same ‘similarity and scaling’ argument applies to each of the three

‘triangle + square’ figures, just as to the triangles. It gives the same conclu-
sion, but more in the Greek style of geometry, as now ℓ2 is interpreted as the
area of the square on the hypotenuse, etc.
Second proof (Draw a diagram). (i) Using the notation of the first proof,
draw a square of side ℓ1 + ℓ2, with vertices P1, . . . , P4 (with P1P2 horizontal,
say). Mark off points Q1, . . . , Q4 with P1Q1 = . . . = P4Q4 = ℓ1 (with each
Qi to the right of Pi, say). The Qi form the vertices of a square, with side ℓ.
(ii) Draw the vertical through Q1, meeting P3P4 in R1, and the horizontal
through Q4, meeting P2P3 in R4, say; let Q4R4 and Q1R1 meet in S. The
four right-angled triangles ∆P1Q1Q4, ∆P2Q2Q1, ∆P3Q3Q2, ∆P4Q4Q3 are
congruent to the triangles ∆P1Q1Q4, ∆Q1SQ4, R4P3R1, ∆SR4R1. So their
two area-sums are the same, a say. The square Q4SR1P4 has area ℓ21; square
Q1P2R4S has area ℓ22; square Q1Q2Q3Q4 has area ℓ2.
(iii) The area of square P1P2P3P4 is a + ℓ2 in (i) and a + ℓ21 + ℓ22 in (ii).
Equating these gives Pythagoras’ theorem. //

Q3 (Angle-sum of a plane triangle: Draw a diagram). If the triangle is
∆ABC, draw through C the line L parallel to AB. If θ := ∠CAB, θ is
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also the angle between AC produced and L (as L and AB are parallel),
and so also between AC and L on the same side of L as ∆ABC) (∠LCA
is called the alternate angle to ∠CAB). Similarly, ϕ := ∠ABC = ∠LCB,
again by alternate angles. But at C, ∠LCA + ∠ACB + ∠BCL = π, i.e.
θ + ∠ACB + ϕ = π, i.e. ∠CAB + ∠ACB + ∠ABC = π. So ∆ABC has
angle-sum π. //

Q4 (Star pentagram and golden section: Euclid, Book 6 Prop. 30).
∆AD′B is isosceles (AD′ = BD′ by symmetry), so ∠D′AB = ∠D′BA,=

θ say. Write θ′ := ∠EBD. Then 2θ + θ′ = 3π/5 (at B, the interior angle
is 3π/5, as the complementary exterior angle is 2π/5). Angle ∠AD′B =
π − 2θ (angle-sum in ∆AD′B). So the complementary angle ∠AD′C ′ = 2θ.
Triangle ∆AD′C ′ is isosceles, by symmetry; its angle-sum gives 4θ + θ′ = π.
Eliminating θ′, π − 4θ = 3π/5 − 2θ: θ = π/5, and then θ′ = π/5. So the
interior angles are trisected.
(i) Triangles ∆EAB and ∆EC ′A are similar (both isosceles, with angles
π/5, π/5, 3π/5), with sides a, a, a+ b and b, b, a. So

ϕ :=
a

b
=

a+ b

a
= 1 +

1

ϕ
:

ϕ2 − ϕ− 1 = 0 : ϕ =
1

2
+

1

2

√
5

(we take the + sign in ± since ϕ > 0).
(ii) The outer and inner pentagons have sides a, a− b, whose ratio is

(a− b)/a = 1− 1/ϕ = 2− ϕ =
1

2
(3−

√
5).

(iii) Dropping the perpendicular C ′C ′′ from C ′ to AE, cos(π/5) = 1
2
a/b = 1

2
ϕ:

ϕ = 2 cos(π/5).

Dropping the perpendicular AA′′ from A to C ′D′, we get a right-angled
triangle with angle π/10 at A, hypotenuse b and opposite side 1

2
(a− b). So

sin(π/10) =
1
2
(a− b)

b
=

1

2
(ϕ− 1) : ϕ = 1 + 2 sin(π/10).
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