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M3H SOLUTIONS 7. 4.3.2016

Q1 (Euler characteristic; Euler’s polyhedron formula).
To show F +V = E+2, or V −E+F = 2: build up the polyhedron face

by face, and count V − E + F after each face is added.
1st face. V = E (a polygon has as many vertices as edges), so V −E+F = 1.
2nd face. If the face is a p-gon, only p − 2 vertices are ‘new’, and only
p − 1 edges are ‘new’; one face is new. So the (V-E+F)-count increases by
(p− 2)− (p− 1) + 1 = 0, and stays at 1.
3rd face. If this is a q-gon: q − 3 new vertices, q − 2 new edges, 1 new face:
count changes by (q − 3)− (q − 2) + 1 = 0, so stays at 1.
... Penultimate face. Similarly: no change; count stays at 1.
Last face. No new vertices or edges; 1 new face; count up from 1 to 2. //

Q2 (Duality).
For projective geometry in the plane, the dual of a statement (involving

only incidence, not distance) interchanges the words ‘point’ and ‘line’.
For projective geometry in 3 dimensions, duality interchanges the words

point and plane, and leaves the word line unchanged.
So duality sends (V,E, F ) → (F,E, V ), so leaves V −E + F unchanged.

So of the Platonic solids, the tetrahedron is self-dual, the cube and octahe-
dron are dual, and the dodecahedron and icosahedron are dual.

Q3 (Truncated solids).
If q faces meet at a vertex, and the vertex is truncated (‘shaved off’): 1

vertex is lost, q are gained, so V increases by q − 1; V −E + F increases by
(q − 1) − q + 1 = 0: χ is unchanged by truncation (at any vertex, so at all
vertices).

For the Platonic solids (p q-gons meet at each vertex): truncation takes

V 7→ V ′ = qV, E 7→ E ′ = E + qV, F 7→ F ′ = F + V,

χ = V−F+e 7→ χ′ = V ′−F ′+E ′ = qV−E−qV+F+V = V−E+F = χ = 2 :

the Euler characteristic is unchanged by truncation (as we know from Q1).
Note. The Greeks had all 13 Archimedean solids, and the 5 Platonic solids
– considerable numerical evidence – and they still missed Euler’s formula!
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Q4 (Stirlings’s formula: James Stirling (1692-1730) in 1730).
There are proofs in any decent Analysis book; this one is from

J. C. BURKILL, A first course in mathematical analysis, CUP, 1962, Ex.
7(e) Q6.
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In particular, f(x) ≥ 0, so dn − dn+1 = f(1/(2n+ 1)) ≥ 0: dn ↓.
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f(x) ≤ 1

3
(1 + x2 + x4 + . . .) =

x2

3(1− x2)
:

dn−dn+1 ≤
(2n+ 1)−2

3[1− (2n+ 1)−2]
=

1

3[(2n+ 1)2 − 1]
=

1

3(4n2 + 4n)
=

1

12n(n+ 1)

=
1

12

( 1
n
− 1

n+ 1

)
: dn −

1

12n
↑ .

So dn is bounded below, and as it decreases, dn converges – dn ↓ d, say. So
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2
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But (Solutions 6) (
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.
1
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Hence (check) A =
√
2π, giving Stirling’s formula.

Note. The
√
2π in Stirling’s formula is the

√
2π in the standard normal den-

sity of Probability Theory and Statistics.
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