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M3H SOLUTIONS 7. 10.3.2017

Q1 (Euler characteristic; Euler’s polyhedron formula).
To show F +V = E+ 2, or V −E+F = 2: build up the polyhedron face

by face, and count V − E + F after each face is added.
1st face. V = E (a polygon has as many vertices as edges), so V −E+F = 1.
2nd face. If the face is a p-gon, only p − 2 vertices are ‘new’, and only
p − 1 edges are ‘new’; one face is new. So the (V-E+F)-count increases by
(p− 2)− (p− 1) + 1 = 0, and stays at 1.
3rd face. If this is a q-gon: q − 3 new vertices, q − 2 new edges, 1 new face:
count changes by (q − 3)− (q − 2) + 1 = 0, so stays at 1.
... Penultimate face. Similarly: no change; count stays at 1.
Last face. No new vertices or edges; 1 new face; count up from 1 to 2. //

Q2 (Duality).
For projective geometry in the plane, the dual of a statement (involving

only incidence, not distance) interchanges the words ‘point’ and ‘line’.
For projective geometry in 3 dimensions, duality interchanges the words

point and plane, and leaves the word line unchanged.
So duality sends (V,E, F )→ (F,E, V ), so leaves V − E + F unchanged.

So of the Platonic solids, the tetrahedron is self-dual, the cube and octahe-
dron are dual, and the dodecahedron and icosahedron are dual.

Q3 (Truncated solids).
If q faces meet at a vertex, and the vertex is truncated (‘shaved off’): 1

vertex is lost, q are gained, so V increases by q − 1; V −E + F increases by
(q − 1) − q + 1 = 0: χ is unchanged by truncation (at any vertex, so at all
vertices).

For the Platonic solids (p q-gons meet at each vertex): truncation takes

V 7→ V ′ = qV, E 7→ E ′ = E + qV, F 7→ F ′ = F + V,

χ = V−F+e 7→ χ′ = V ′−F ′+E ′ = qV−E−qV+F+V = V−E+F = χ = 2 :

the Euler characteristic is unchanged by truncation (as we know from Q1).
Note. The Greeks had all 13 Archimedean solids, and the 5 Platonic solids
– considerable numerical evidence – and they still missed Euler’s formula!
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Q4 (Stirlings’s formula: James Stirling (1692-1730) in 1730).
There are proofs in any decent Analysis book; this one is from

J. C. BURKILL, A first course in mathematical analysis, CUP, 1962, Ex.
7(e) Q6.
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In particular, f(x) ≥ 0, so dn − dn+1 = f(1/(2n+ 1)) ≥ 0: dn ↓.
Also, for |x| < 1, by above
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So dn is bounded below, and as it decreases, dn converges – dn ↓ d, say. So
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2 (n→∞).

But (Solutions 6) (
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nπ
(n→∞).

Hence (check) A =
√

2π, giving Stirling’s formula.
Note. The

√
2π in Stirling’s formula is the

√
2π in the standard normal den-

sity of Probability Theory and Statistics, due to de Moivre in 1730 and 1733.
See A. HALD, History of Probability and Statistics and Their Applications
before 1750, Wiley, 1990, Ch. 24. NHB
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