
M3H/M4H/M5H HISTORY OF MATHEMATICS:
EXAMINATION SOLUTIONS, 2016

Q1. The Platonic solids
How many solid figures are there whose faces are congruent regular poly-

gons?
Triangular faces. How many faces (equilateral triangles) meet at a vertex?
If 3, we have a tetrahedron; if 4, an octahedron; if 5, an icosahedron (2 or less
would not give a solid; 6 gives instead a triangular tessellation of the plane,
again not a solid; there is no room for 7 or more).
Square faces: 3 gives a cube (4: square tessellation of the plane – ‘OS grid’).
Pentagonal faces. 3 gives a dodecahedron (4 is impossible, as the angle at
the vertex of pentagon is 3π/5 and 4× 3π/5 > 2π).
Hexagonal faces give a honeycomb tessellation of the plane, and not a solid.
So the list above is exhaustive. [3]

These 5 ‘regular polyhedra’ are called the Platonic solids, after Plato’s
use of them in the Dialogue of Timaeus. Apparently, according to a scholium
to Book XIII of Euclid’s Elements, the tetrahedron, cube and dodecahedron
were known to the Pythagoreans, while Theaetetus (d. 369 BC) found the
octahedron and icosahedron (he probably also proved the theorem above:
the list is exhaustive). This is perhaps surprising: it is the dodecahedron
and icosahedron that seem the hardest, while the octahedron is merely a
pyramid (!) reflected in its base-plane. But archaeological support exists:
an Etruscan dodecahedron made c. 500 BC of stone was found in 1885 on
Monte Loffa near Padua, and there are Celtic examples. Perhaps also the
idea of reflection is not as self-evident as it may seem today.

Unfortunately, Plato saw mystical significance here (earth: cube; air: oc-
tahedron; fire: tetrahedron; water: icosahedron; universe: dodecahedron) – a
throwback to the superstition of the Pythagoreans and the Babylonians. [3]
Natural occurrence
Crystals: Tetrahedron: sodium sulphantimoniate; cube: common salt; octa-
hedron: chrome alum [1]
Living forms: skeletons of radiolaria (microscopic sea creatures):
Circogonia: icosahedra; Circorrhegma: dodecahedra. [1]
Duality.

From the point of view of Projective Geometry: the tetrahedron is self-
dual; the cube and octahedron are dual; the dodecahedron and icosahedron
are dual. [Seen – lectures] [2]
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Q2. The Fundamental Theorem of Arithmetic, FTA.
Theorem (FTA). Every integer n ≥ 2 can be written uniquely (to within
order) as a product of prime factors. [1]
Proof. Existence. Induction. True for n = 2. Assume true for every integer
< n. If n is not prime (i.e. is composite), it has a non-trivial divisor d
(1 < d < n). So n = cd (1 < c < n). So each of c, d is a product of primes,
by the inductive hypothesis. So n is too, completing the induction. [1]
Uniqueness. Induction. True for n = 2. Assume true for every integer
< n. If n is prime, the result holds, so assume n is composite. If it has two
factorisations n = p1 . . . pr = q1 . . . qs,
to show r = s and each p is some q. As p1 is prime and divides the product
n = q1 . . . qs, it must divide at least one factor (w.l.o.g., q1): p1|q1. Then
p1 = q1 as both p1, q1 are prime. Cancel p1:

n/p1 = p2 . . . pr = q2 . . . qs.

As n is composite, 1 < n/p1 < n. Then the inductive hypothesis tells us
that the two factorisations above of n/p1 agree to within order: r = s, and
p2, . . . , pr are q2, . . . , qr in some order, as required. // [1]
Historical Note.

We owe Mathematics as a subject to the ancient Greeks. Of the 13 books
of Euclid’s Elements (EUCLID of Alexandria, c. 300 BC), three (Books VI,
IX and X) are on Number Theory. From the ordering of the material in
Euclid, it is clear that the Greeks knew that they did not have a proper
theory of irrationals (i.e. reals). Although they did not state FTA, it had
been assumed that they ”knew it really”, but did not state it explicitly. This
view is contradicted by Salomon BOCHNER (1899-1982) (Collected Papers,
Vol. 4, AMS, 1992). According to Bochner, the Greeks did not know FTA,
nor have a notational system adequate even to state it! [3]

L. E. DICKSON (1874-1954) (History of the Theory of Numbers Vols 1-3,
1919-23) does not address the question of the Greeks and FTA! [1]

The first clear statement and proof of FTA is in Gauss’ thesis (C. F.
GAUSS (1777-1855); Disquisitiones Arithmeticae, 1798, publ. 1801). So
we must attribute the result to Gauss. This is a wonderful example of the
excellent mathematical taste of the young man who went on to be the greatest
mathematician of all time. [3]
[Seen in less detail in lectures. The above is actually taken from my Analytic
Number Theory notes, Lecture 1.]
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Q3. The Fundamental Theorem of Algebra.
Carl Friedrich Gauss (1777-1855)

Gauss’ doctoral thesis (in Latin: ‘A new proof that every polynomial of
one variable can be factored into real factors of the first or second degree’)
was published in 1799.

Despite its name, this result is a theorem of analysis, not of algebra. Its
proof was less rigorous than Gauss’ usual standard: he assumed properties
of continuous functions later proved by Bolzano. [3]
Augustin-Louis Cauchy (1789-1857), Professor at the Ecole Polytéchnique
and later the Sorbonne.

Cauchy’s Cours d’analyse (Ecole Polytéchnique, 1821) contains a proof of
the Fundamental Theorem of Algebra: every complex polynomial of degree
n has n complex roots (counted according to multiplicity). [3]

The modern proof uses Liouville’s theorem (Joseph Liouville (1809-1882),
lectures in 1847 – actually published by Cauchy in 1844): an entire (i.e.
holomorphic throughout the complex plane C) bounded function is constant.
Thus it took over twenty years before the full power of Cauchy’s new subject
of Complex Analysis was properly brought to bear on the Fundamental The-
orem of Algebra – incidentally, revealing in so doing that the result, being a
theorem in Analysis, is a misnomer. [2]
N. H. Abel (1802-29): Insolubility of the quintic (1829).

Although the quintic has five roots, by the Fundamental Theorem of Al-
gebra above, Abel showed that – in contrast to polynomials of degree up to
four, which can be solved, as Cardano showed – quintics are not soluble by
radicals: there can be no formula/algorithm/method for expressing the roots
in terms of the coefficients. Similarly for polynomials of higher degree. So
there is a fundamental split: polynomial equations are soluble by radicals for
degree up to 4, but not for degree 5 or higher. [2]
[Seen – lectures]
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Q4. The mathematics of perspective.
Perspective in the Ancient World [3]

We know from the writings of classical authors, such as the Roman author
Vitruvius, and from surviving wall- and vase-paintings, that some elements
of perspective were known to the ancient Greeks. Agatharchos used it for
stage sets in the late 5th C. BC. Theoretical studies of perspective were made
by Anaxagoras (above) and Democritus (above).
W: Systematic attempts to evolve a system of perspective are usually consid-
ered to have begun around the fifth century BC. in the art of Ancient Greece,
as part of a developing interest in illusionism allied to theatrical scenery and
detailed within Aristotle’s Poetics as ’skenographia’.
Perspective in the Renaissance. [4]

As we have seen, perspective was known (at least in part) in the ancient
world, but was then lost.
Filippo Brunelleschi (1377-1446) discovered the main principle of perspective
– the use of vanishing points – and convinced his fellow-artists of this in a
famous experiament of 1420 involving the chapel outside Florence Cathedral.
Leon Battista Alberti (1404-72), Della pictura (1435, printed 1511) gave the
first written account of perspective.
Piero della Francesca (1410-92), De prospectivo pingendi (c. 1478). In his
book, and in his painting, Piero della Francesca did much to popularise per-
spective, which spread throughout the Western art world.
Leonardo da Vinci (1452-1519); Trattato della pittura. Leonardo is usually
regarded as the personification of Renaissance genius. He was a prolific in-
ventor, an artist who wrote on perspective, and a mathematician.
Albrecht Dürer (1471-1528) of Nuremburg; Investigations of the measurement
with circles and straight lines of plane and solid figures (1525-1538, German
and Latin). Like Leonardo, Dürer was both a mathematician and an artist.
He adopted perspective after visiting Italy.
Girard Desargues (1591-1661) and Projective Geometry. [3]

Desargues’ first important book was La Perspective (1636). This led him
on to his introduction of projective geometry in his Brouillon projet (d’une
atteinte aux evenements des rencontres d’une cone avec un plan) (1639) –
Rough draft (of an attempt to deal with the outcome of a meeting of a cone
with a plane). Projective geometry is the mathematics of perspective (van-
ishing point = ‘point at infinity’).
[Seen – lectures]
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Q5. The mathematics of the rainbow.
The rainbow is formed when the sun is behind the observer, and rain is

falling ahead of the observer. One needs two physical principles:
(a) The law of reflection: when light is reflected at a mirror, the angle of
incidence = angle of reflection. (b) Snel’s law of refraction: ”mu sin theta =
constant”, where mu is the refractive index (higher for water than for air, as
light travels more slowly in water than in air), and theta is the angle of inci-
dence): the Dutch scientist Willebrord Snel (1581-1625), 1618 and 1621. [2]

The rainbow has a definite ‘size’. This is the angle between the line L1

from the Sun through the observer and any line L2 from the observer to the
arc of the rainbow (any such line gives the same angle, as this arc is circular).

The rainbow is produced when light from the Sun is
(i) refracted when it enters falling raindrops in front of the observer (and is
bent towards the normal);
(ii) reflected at the back of the raindrop (which acts as a mirror);
(iii) refracted again when it exits the raindrops.

A visible effect – the rainbow – is obtained when the angle of deviation
has an extremum (minimum). For here, many rays will emerge parallel. [2]

Light of different colours (wavelengths) have different refractive indices,
so are separated by the two refractions, and one sees the colours of the rain-
bow. The red end of the visible spectrum subtends an angle of 42.25o, the
violet end an angle of 40.58o, giving a bow of width c. 1.7o. This is the
primary rainbow. [1]

Sometimes one can see a secondary rainbow, with two reflections rather
than one: larger, fainter, and with the order of the colours reversed. [1]

The first qualitatively correct explanation is due to M. A. de Dominis
(1564-1624) in 1611 (there is also work by Kepler in 1611). [1]

This was taken further by Snel in 1618 and 1621. [1]
René Descartes (1596-1650); Discours de la Méthode ..., 1637; (first appendix,
La Géométrie, cartesian geometry;) second appendix, La Dioptrique. This
gave a treatment of the rainbow, including an estimate of the angle, 42o.
Descartes did not have calculus, so could not give an analytic solution. [1]
(Sir) Isaac Newton (1642-1727). Newton lectured in Cambridge (1669-71)
on the rainbow, and wrote a paper for the Royal Society in 1672 on the com-
posite nature of white light. His Principia of 1687 contains all this. [1]

Source: C. B. BOYER, The rainbow: From myth to mathematics, Prince-
ton UP, 1987 (1st ed. 1959).
[Mentioned in lectures, though less detail was given there.]
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Q6. The formula of spherical excess.
Albert Girard (1590-1633) of Flanders (B 16.4)
Invention nouvelle en l’algèbre (1629): Negative and imaginary roots of poly-
nomials; irreducible case of the cubic; sums of roots, of squares of roots, etc.
Girard also conjectured the Fundamental Theorem of Algebra.

The book also contains Girard’s formula, or the formula of spherical ex-
cess. For a spherical triangle with angles A,B,C, A + B + C > π, and
A+B +C − π is called the spherical excess. If the sphere has radius r, then
the area ∆ of the triangle is given by

∆ = r2(A+B + C − π).

Note: So for small spherical triangles on the earth’s surface, the sum of the
angles is approximately π. This just says that we may neglect the Earth’s
curvature for triangles small in relation to the Earth, and this is of course
used in map making (recall the trig points on OS maps!). [4]

On a sphere, a lune is the region between two great circles. The ratio
of the area of the ”A-lune” to that of the sphere is A/π (draw a diagram),
and similarly for the B- and C-lunes. If we sum the areas of the three lunes,
we cover the area of the sphere, but that of the spherical triangle ABC and
its antipodal triangle three times (draw a diagram), giving a sum of S + 4∆
(where S,∆ are the areas of the sphere and triangle). Divide by S = 4πr2:

A

π
+

B

π
+

C

π
= 1 +

4∆

4πr2
: ∆ = r2(A+B + C − π). [3]

C. F. Gauss (1777-1855) and Differential Geometry.
Disquisitiones generales circa superficies curvas (1827).

This covers parametric representation of surfaces; curvilinear coordinates;
conformal property; Gaussian curvature K; the Gauss-Bonnet theorem (ex-
tended by Pierre Bonnet (1819-1892)in 1848). For geodesic triangles with
angles A, B, C, A + B + C − π =

∫
KdS, with dS the ‘element of surface

area’. For a sphere (constant positive curvature), one recovers Girard’s for-
mula of spherical excess. The plane has zero curvature, and A+B + C = π
(Euclid, Book I Prop. 32). The case K < 0 involves non-Euclidean geometry,
a possibility that Gauss hinted at in a letter of 1799 to Wolfgang Bolyai, fa-
ther of Johan (Janos) Bolyai (co-discoverer of non-Euclidean geometry, with
Lobachevski). [3]
[Seen – lectures]
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Q7. The emergence of the decimal system.
Aryabhata, author of Aryabhatiya (499 AD) [2]

Here we find decimal-place notation: ‘from place to place each is ten
times the preceding’. The modern decimal numerals 1,2,3,4,5,6,7,8,9 are
loosely called Arabic in English, but are called Hindu in Arabic; perhaps
‘Hindu-Arabic’ would be better. These evolved gradually; the key recogni-
tion that by use of place notation the same symbol could be used for three
as for thirty, etc., had taken place by 595 AD (Indian source: date 346 in
decimal notation), and in Western sources by 662 (Sebokt of Syria).

The zero symbol 0 came later. It had emerged by 876 in India (on an
inscription in Gwalior), with the modern 0 for zero. The key components
of (i) decimal base, (ii) positional notation, (iii) symbols for 0,1,2,...,9 were
thus all in place. It seems that the Hindus did not invent any of them, but
they did integrate them into (essentially) their modern form.
Fibonacci, Leonardo of Pisa (c.1180-1250) [2]

Leonardo of Pisa, son of Bonaccio (hence ‘Fibonacci’) wrote the Liber
Abaci (Book of the Abacus) in 1202. This was the most influential European
mathematical work before the Renaissance, and was the first such book to
stress the value of the (Hindu-)Arabic numerals (Fibonacci had studied in
the Muslim world and travelled widely in it).
Nicholas Chuquet (fl. c. 1500) [2]
Triparty en la science des nombres, 1484: the most important European
mathematical text since the Liber Abaci.
Part I: Hindu-Arabic numerals; addition, subtraction; multiplication; divi-
sion; Part II: Surds; Part III: Algebra; laws of exponents; solution of equa-
tions.
Simon Stevin (1548-1620) of Bruges (Brugge), Flemish military engineer. [2]
Die Thiende, La disme (‘the tenth’), 1585.

Stevin’s elementary book did more than any other to popularise the use
of decimal fractions (decimals), and to spread awareness of their computa-
tional value and superiority.
Napoleon Bonaparte (1769-1821). [2]

Napoleon’s main contribution to science was that his conquests spread
the new metric system, in universal use today.
[Seen – lectures]
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Q8. The mathematics of heat.
Joseph Fourier (1768-1830); Fourier became a Prefect under Napoleon.
Théorie Analytique de la Chaleur (1822) (The analytical theory of heat).

The propagation of heat in a medium is governed by the heat equation:
with k the thermal diffusivity, the temperature u satisfies

∇2V := ∂2V/∂x2 + ∂2V/∂y2 + ∂2V/∂z2 = k−1∂V/∂t.

This is the prototypical parabolic partial differential equation (PDE). [3]
The theory of Fourier series – representing a function f(θ) by a trigono-

metric series
∑

(an cosnθ + bn sinnθ) – is closely connected with the study
of heat propagation, and both were developed by Fourier, in his pioneering
book and earlier. The continuous analogue of this is the Fourier integral,

f̂(t) :=

∫ ∞

−∞
eixtf(x)dx.

Applying the Fourier transform can transform a PDE into an ordinary
differential equation (ODE) – much easier to solve. Example: solution of the
heat equation. [2]

Just as heat diffuses through a conducting medium, so the mathemat-
ics of diffusion is dominated by the Fourier transform. Example: diffusions
in Probability Theory – prototype: Brownian motion. This originates in
the work of Robert Brown in 1828 (observing the movement of pollen parti-
cles suspended in water); the mathematical theory of Brownian motion as a
stochastic process is due to Norbert Wiener (1894-1964) in 1923. [2]
Rudolf Clausius (1822-1888) and Thermodynamics
Über die bewegende Kraft der Wärme (1850) [On the moving force of heat]
This closes with the most famous two-sentence passage in the history of sci-
ence: Die Energie der Welt ist konstant.

Die Entropie der Welt strebt einem Maximum zu.
[The energy of the world is constant. The entropy of the world strives to-
wards a maximum. (Read ‘universe’ for ‘world’ in each here.)]

These are the First and Second Laws of Thermodynamics. The first is
the Law of Conservation of Energy. The second is that entropy increases.
Entropy is a measure of disorder: nature ‘moves towards disorder’, as the
vast majority of possible states are disordered. Thermodynamics is at the
heart of heat transfer, which is a large part of Chemical Engineering.
[Seen – lectures] [3]
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Q9. The Prime Number Theorem (PNT).
PNT states that

π(x) :=
∑

p≤x
1 ∼ li(x) :=

∫ x

2

dt/ log t ∼ x/ log x (x → ∞) (PNT )

This was conjectured on numerical grounds by GAUSS (c. 1799; letter of
1848) and A. M. LEGENDRE (1752-1833; in 1798, Essai sur la Théorie des
Nombres). [2]

PNT was proved independently in 1896 by J. HADAMARD (1865-1963,
French) and Ch. de la Vallée Poussin (1866-1962, Belgian). Both used Com-
plex Analysis and ζ. [2]

In 1737 L. EULER (1707-1783) found his Euler product, linking the
primes to

∑∞
n=11/n

σ for real σ (later the Riemann zeta function). [1]
In 1859 B. RIEMANN (1626-66) studied

ζ(s) :=
∑∞

n=1
1/ns (s ∈ C)

using Complex Analysis (M2PM3), then still fairly new, developed by A. L.
CAUCHY (1789-1857), 1825-29. He showed the critical relevance of the zeros
of ζ(s) to the distribution of primes. One can show that:
(i) ζ can be continued analytically from Re s > 1 to the whole complex plane
C, where it is holomorphic except for a simple pole at 1 of residue 1 (III.3);
(ii) The only zeros of ζ outside the critical strip 0 < σ = Re s < 1 are the
so-called trivial zeros −2,−4, . . . ,−2n, . . . (trivial in that they follow from
the functional equation for ζ;
(iii) PNT is closely linked to non-vanishing of ζ on the 1-line: ζ(1 + it) ̸= 0.

The Riemann Hypothesis (RH) of 1859 is that the only zeros of ζ in the
critical strip are on the critical line σ = 1

2
. RH is still open, and is the most

famous and important open question in Mathematics. Its resolution would
have vast consequences for prime-number theory (especially error terms in
PNT). [4]

Since counting primes relates to N (⊂ Z ⊂ Q ⊂ R ⊂ C), it seemed
strange and unaesthetic to use complex methods. Great efforts were make
to provide an elementary proof, over half a century.This was done in 1948 by
A. SELBERG (1917-2009) and P. ERDÖS (1913-1996) (published indepen-
dently in 1949). [1]
[Seen in lectures, in less detail. The above is taken from my Analytic Number
Theory notes, Lecture 15.]
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Q10. The mathematics of length, area and volume.
Greek geometry.

Geometry was one of the strengths, and main interests, of (ancient) Greek
mathematics. They knew a great deal (several of Euclid’s books are on geom-
etry), including many highly non-trivial area and volume calculations. Thus
they knew integral calculus, without the name (and without differential cal-
culus) – Archimedes’ method of exhaustion, etc.

Greek definitions of geometrical entities were sketchy: a point is that with
no extent; a line is that with no thickness, etc. [3]
Henri Lebesgue (1875-1941)

Lebesgue took his PhD in 1902, supervised by Emile Borel (1871-1956).
In his pioneering thesis ‘Intégrale, longueur, aire’ (Annali di Mat. 7 (1902),
231-259), Lebesgue introduces the new subject of measure theory, and a new
integral, now called the Lebesgue measure. Despite being harder to set up
than the Riemann integral, it is much more general and powerful and much
easier to manipulate (e.g., in interchanging limit and integral – Lebesgue’s
monotone convergence theorem and Lebesgue’s dominated convergence the-
orem). Lebesgue measure is the mathematics of length, area and volume.
It is also the mathematics of gravitational mass, electrostatic charge, and
probability; in probability, the total mass is one, and the integral is the ex-
pectation. The essence of measure theory is countable additivity: for An

disjoint measurable sets with measures µ(An), the measure of their union is
the sum of their measures:

µ(
∞∪
0

An) =
∞∑
0

µ(An). [5]

Non-measurable sets.
With the development of modern set theory, beginning with Cantor, foun-

dational questions such as the Zermelo-Fraenkel axioms (ZF), the Axiom of
Choice (AC), and their union (ZFC) (the ordinary assumptions of modern
mathematics) were studied. It was shown by Vitali that, assuming (AC),
there exist non-measurable sets. Thus some subsets of the plane are too ir-
regular to have an area, etc. Indeed, there is a sense in which (under (AC))
most sets are non-measurable. On the other hand, it is consistent to assume
axioms other than (AC), under which all sets are measurable. [2]
[Seen – lectures.]
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Section B.

Q1 Conics and orbits: Kepler and Newton.
(i) Polar equation of a conic.

With focus F , directrix L distant ℓ (the latus rectum) from P , the focus-
directrix property PF = e.PL (Pappus, c. 290 AD) is r = ℓ− er cos θ:

r(1 + e cos θ) = ℓ,
1

r
=

1

ℓ
(1 + e cos θ). [4]

(ii) We need the components of velocity and acceleration along and perpen-
dicular to the radius vector OP in polar coordinates:

x = r cos θ, y = r sin θ;

ẋ = ṙ cos θ − r sin θθ̇, ẏ = ṙ sin θ + r cos θθ̇;

ẍ = r̈ cos θ − 2ṙθ̇ sin θ − r cos θ(θ̇)2 − r sin θθ̈,

ÿ = r̈ sin θ + 2ṙθ̇ cos θ − r sin θ(θ̇)2 + r cos θθ̈.

So the components of velocity along and perpendicular to OP are ẋ cos θ +
ẏ sin θ = ṙ and −ẋ sin θ + ẏ cos θ = rθ̇ (both obvious). The components of
acceleration are:

ẍ cos θ + ÿ sin θ = r̈ − r(θ̇)2 along OP, [2]

−ẍ sin θ + ÿ cos θ = 2ṙθ̇ + rθ̈ =
1

r

d

dt
(r2θ̇) perpendicular to OP [2]

(no r̈ – 1st – term; 2nd term 2ṙθ̇ (cos2 + sin2 = 1); no r(θ̇)2 – 3rd – term;
4th term rθ̈ (cos2 + sin2 = 1)).
(iii) If the force is central (along OP ), then there is no acceleration perpen-
dicular to OP . So h := r2θ̇ is constant (the angular momentum per unit
mass). But if A is the area swept out by the radius vector, dA = 1

2
r.rdθ:

Ȧ = 1
2
r2θ̇. So

Ȧ =
1

2
h = constant :

the radius vector sweeps out equal areas in equal times (Kepler’s Second Law
– equivalent to central forces). [4]

For a central force: write u := 1/r. So by (ii), θ̇ = h/r2 = hu2,

dr

dt
=

d

dt
(1/u) =

d

du
(1/u)

du

dt
= − 1

u2
.
du

dθ
.
dθ

dt
= − 1

u2
.
du

dθ
.hu2 : ṙ = −hdu/dθ.
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d2r

dt2
=

d

dt
(−h

du

dθ
) = −h

d

dθ
(
du

dθ
).
dθ

dt
= −h2u2d

2u

dθ2
: r̈ = −h2u2d2u/dθ2.

So by (ii), with a the acceleration a along OP towards O,

−a = r̈ − r(θ̇)2 = −h2u2d
2u

dθ2
− 1

u
.h2u4 :

d2u

dθ2
+ u =

a

h2u2
. (∗)

Newton’s Inverse Square Law of Gravity is that the acceleration a = c/r2 =
cu2 for c constant: c = a/u2 is constant. So by (∗), this is

d2u

dθ2
+ u =

c

h2
= b, (DE) [4]

say.
(iv) The differential equation (DE) has general solution u = b + c1 cos θ +
c2 sin θ. We may choose the initial line θ = 0 to make du/dθ = 0 there; then
c2 = 0, and u = b+ c1 cos θ:

1/r = b+ c cos θ.

But the polar equation of a conic of eccentricity e and latus rectum ℓ is

r(1 + e cos θ) = ℓ :
1

r
=

1

ℓ
(1 + e cos θ).

This identifies the path of a particle moving under the inverse square law as
a conic. // [4]
(v) This is the most important single result in Newton’s Principia (1687),
itself the most important book in the history of science. Our orbit round the
Sun is closed, so being a conic, it is an ellipse. The eccentricity of the ellipse
gives us our seasons.

Johannes Kepler (1571-1630): Assistant to Tycho Brahe (1546-1601) at
Prague Observatory from 1600; succeeded him in 1601; Astronomia Nova,
1609, Kepler’s first and second laws (Harmonices mundi, 1619, Kepler’s third
law). Brahe spent twenty years observing planetary orbits; Kepler spent
twenty years analysing his data.

Newton’s derivation was geometrical. He avoided calculus (his ‘method
of fluxions’), preferring to solve an old problem by established methods.

The geometrical content, as noted, is Pappus’ focus-directrix property
of conics (Alexandria, c. 290 AD), used via polar coordinates (cartesian
geometry, 17th C.).

The differential equations method above (technically easier for a modern
audience) belongs to the 18th C. (the Bernoullis, Euler etc.). [5]
Seen – lectures + problem sheets.
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Q2 Normal distribution; Central Limit Theorem; Least Squares.
Abraham de Moivre (1667-1754)
The Doctrine of Chances (DC; 1718; 2nd ed. 1738; 3rd ed. 1756, posth.)

De Moivre was born in France, a Huguenot (= Protestant). He fled to
England to escape religious persecution after the revocation of the Edict of
Nantes in 1685 by Louis XIV. He was elected FRS in 1697.

In 1733 de Moivre derived the normal curve (”error curve”: the term
”normal” came later)

ϕ(x) := e−
1
2
x2

/
√
2π

in a 7-page note in Latin Approximatio ... (circulated, but not published).
An English translation of the Approximatio was incorporated in the 2nd
and 3rd editions of DC. De Moivre showed that in n Bernoulli trials with
parameter p

P ((Sn/n− p)
√
n/

√
pq ∈ [a, b]) →

∫ b

a

ϕ(x)dx (n → ∞)

(recall that P (Sn = k) =
(
n
k

)
pkqn−k, so the LHS is this summed over k with

np+a
√
npq ≤ k ≤ np+b

√
npq). This is the special case for Bernoulli trials of

the ”Law of Errors”, or Central Limit Theorem (CLT). Note that this refines
Bernoulli’s theorem (Ars conjectandi, 1713) by telling us how fast Sn/n tends
to p: at rate 1/

√
n, with a normal limit: in modern terminology,

((Sn/n)− p)
√
n/

√
pq ∼ N(0, 1). [6]

One can see that this result will need an estimate for the large factorials
occurring in

(
n
k

)
= n!/(k!(n− k)!), as in Stirling’s formula, 1730:

n! ∼
√
2πe−nnn+ 1

2 (n → ∞). [1]

Adrien-Marie Legendre (1725-1833), Professor at the Ecole Militaire
Nouvelles méthodes pour la détermination des orbites des comètes (1805)
(supplement 1806, 2nd suppl. 1820).

The orbits of planets and comets, being ellipses and so conics, are deter-
mined by two parameters. For flexibility in choice of frame of reference, it
may be useful to use p parameters, θ1, . . . , θp, where p is small. With exact
measurements, these could be determined by p observations, y1, . . . , yp say,
but in practice the yi are polluted by measurement error. However, we may
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take n readings where n is large (the larger the better – much larger than p).
The usual set-up is

yi =

p∑
j=i

xijθj + ϵi (i = 1, . . . , n),

where the xij are known, the ϵi are independent errors of measurement, and
the θj are to be estimated. How should one estimate the θj? Legendre
suggested the method of least squares: minimise the sum of squares

SS :=
∑
i

(yi −
∑
j

xijϵj)
2 =

∑
(observed - expected)2.

The p conditions ∂SS/∂θj = 0 give p simultaneous linear equations in p

unknowns, the normal equations NE; the solutions θ̂j give the least-squares
estimators for the parameters. The method of least squares, in Statistics, is
of enormous practical importance. [6]
Carl Friedrich Gauss (1777-1855)

Gauss published his work, on the orbit of Ceres (1801), Pallas (another
planetoid) and least squares in
Theoria motus corporum coelestium in sectionibus conicus solem ambientem
(1809) (TM).

Legendre’s book of 1805 presented and named the method, but did not
link it to Probability Theory. Gauss, however, linked least squares with the
normal law. He said in TM ‘On the other hand, our principle (principium
nostrum), which we have made use of since the year 1795, has lately been
published by Legendre ...’. No doubt Gauss was telling the literal truth.
Understandably, however, Legendre felt slighted that Gauss should thus seek
to claim priority for something first published by Legendre, and protested,
first in private correspondence, and in 1820 publicly in a Second Supplement
to his 1805 book. [6]
Pierre-Simon de Laplace (1749-1827), Professor at the Ecole Normale and
the Ecole Polytéchnique.
Théorie Analytique des Probabilités (1812) (TAP) (2nd ed. 1814, 3rd 1820).
Laplace gave (Ch. IV of TAP) a thorough treatment of the method of least
squares (due to Legendre and Gauss). He brought together the roles of the
normal distribution in the Central Limit Theorem and the Method of Least
Squares, thus achieving the Gauss-Laplace synthesis. [6]
[Seen – lectures.]

14



Q3. The development of linear algebra.
Determinants. [5]

Determinants (which in modern language technically belong to Multi-
linear Algebra) may be traced to the work of Leibniz (1646-1716) of 1693
(unpublished till 1880), Maclaurin (1698-1746, Treatise on Algebra, 1748,
posth.), Cramer (1704-1752: Cramer’s rule for solution of linear equations,
1752) and Lagrange (1736-1813; geometric work of 1775).

The subject came of age with the 84-page paper of 1812 by Cauchy
(1789-1857); the term determinant comes from the Disquisitiones arithmeti-
cae (1801) by Gauss (1777-1855).
Matrices. [5]

Logically, matrices precede determinants, but historically the order was
reversed.
Arthur Cayley (1821-1895);
J. J. Sylvester (1814-1897).

The term ‘matrix’ was introduced in 1850 by Sylvester, and the theory
was developed by Cayley in a series of papers in the 1850s, particularly 1858.
This is the source – with Hamilton’s lectures of 1853 on quaternions – of the
Cayley-Hamilton theorem: a matrix satisfies its own characteristic equation.

Other sources from this time include Sylvester’s Law of Inertia (1852) and
Law of Nullity (1884), and the introduction of Hermitian matrices [Hermite,
1855] and orthogonal matrices [Hermite, 1854; Frobenius, 1878].

Hermann Grassmann (1809-1877); Ausdehnungslehre (1844) [Theory of Ex-
tensions]. [4]

Grassmann’s work, which was geometrically motivated, was a major source
from which linear algebra – the theory of v ector spaces, linear transforma-
tions between them, and the matrices representing these, etc. – developed.
Grassmann’s work is also the source of Grassmann algebras – important in
modern multilinear and tensor algebra.

Another source was the work of the English geometer W. K. Clifford
(1845-1879).
Giuseppe Peano (1858-1932), Calcolo geometrico secondo l’Ausdehnungslehre
de Grassmann, preceduto dalle operazioni della logica deduttiva, Torino,
1888. [2]

Here Peano, explicitly building on Grassmann’s work, gives the axiomatic
definition of a vector space (whether of finite dimension or not) over the re-
als, and of linear transformations between them, all in modern notation.
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Quaternions. [2]
Sir William (Rowan) Hamilton (1806-1865) discovered quaternions in

1843, and published his Lectures on Quaternions in 1853. Quaternions be-
came widely used, especially in applied mathematics, e.g. Thomson and Tait,
Treatise on Natural Philosphy, 1867.
Vectors. [2]

The American physicist Josiah Willard Gibbs (1839-1903) (Elements of
Vector Analysis, 1881) saw that the sub-theory of quaternions giving ordinary
3-dimensional vectors is adequate for most purposes in applied mathematics.
The standard machinery of vector algebra (vector products, scalar products,
triple vector products etc.) and vector calculus (grad, div, curl, ∆2; theorems
of Stokes, Gauss and Green) developed so successfully as to have generally
superceded quaternions by the end of the 19th C.

The 20th C. [5]
Linear Algebra now forms one wing, with Abstract Algebra (groups, rings,

fields etc.) of Modern Algebra, a core part of the undergraduate curriculum.
This subject took shape with
B. L. van der Waerden, Moderne Algebra, Vol. I (1930), II (1931).

Van der Waerden (1903-1996, PhD 1925, H. de Vries) was a Dutch mathe-
matician much influenced by Emmy Noether (1882-1935, PhD 1907, P. Gor-
dan). Noether and van der Waerden are the main originators of modern
algebra, together with their Göttingen colleague David Hilbert (1862-1943).

Van der Waerden’s book was in German, and used Fraktur for the equa-
tions, as did its eventual English translation. For such reasons, and through
passage of time, it has been supplanted as a text by later books, e.g.
Garrett Birkhoff and Saunders MacLane, A survey of modern algebra, 1941/1953;
P. M. Cohn, Algebra, Vol. 1 (1974/82), 2 (1977/89), 3 (1991).

In the computer age, Numerical Linear Algebra has become a subject in
its own right. Classics include Wilkinson’s The algebraic eigenvalue problem
and Golub & van Loan’s Matrix computation.

Multivariate Analysis in Statistics makes heavy use of Linear Algebra
and Matrix Theory. In particular, singular values decomposition (SVD), not
found in Algebra texts a generation ago, is now widely used in Statistics
(approximation by rank-one matrices) and Numerical Analysis (because of
its good numerical stability).
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Q4. The development of the real number system R.
The Greeks.

Beginning with Pythagoras (c. 580 – c.500 BC) and his school at Croton,
the Greek mathematicians dealt with:
(a) numbers: first natural numbers N, then integers Z and rationals Q by the
arithmetic operations;
(b) lengths: of geometric line-segments.

No tension between these two was noticed at first, but – perhaps by Hip-
pasus (c. 400 BC) – it was observed that such natural geometric entities as
the length

√
2 of the diagonal of the unit square are irrational, and so out-

side the domain of the number system Q. The same proof [by contradiction]
shows that

√
p is irrational for all primes p. [2]

Eudoxus (of Cnidus, c. 408 – c. 335 BC) introduced his theory of proportion:
”a/b = c/d iff ∀ m,n ∈ N, ma ≤ / = / ≥ nb ⇒ mc ≤ / = / ≥ nd”. This
enabled a rigorous treatment of proportionality of numbers, or of similarity
of geometric figures, to be given. [2]

Euclid of Alexandria wrote his Elements, Books I-XIII, c. 300 BC. The
ordering of the material [esp. Books V, Theory of proportions, and X, In-
commensurability and surds] was much affected by the technical problems of
being unable to treat incommensurables [or irrationals] rigorously.

The Greeks had problems, because they
(a) did not have an adequate theory of irrationals, but
(b) demanded rigorous proofs. [2]

The Middle ages.
Thomas Bradwardine (c. 1290-1349), Archbishop of Canterbury. [1]
Tractatus de continuo – regarding the real line as a continuum.
Nicole Oresme (1323-1382). [1]
De proportionibus proportionum: contains laws of exponents, and suggesting
irrational exponents. The book also contains (Ch. III, Prop. V) a realisation
that a ‘typical’ real number is irrational.

Calculus and analysis: Newton and Euler. [5]
Issac Newton (1642-1727), De analysi (MS 1669, publ. 1711); Leonhard Eu-
ler (1707-1783), Introductio ad analysin infinitorum, 1748.

Newton systematically handled infinite processes (power series expan-
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sions, calculus) avoided by the Greeks. Euler’s Introductio took this rather
loose manipulation with infinite processes further. Various people raised
questions about rigour – e.g. Bishop Berkeley (1685-1753: The Analyst,
1734 – infinitesimals are ”the ghosts of departed quantities”), and Bernhard
Bolzano (1781-1848: Paradoxien des Unendlichen, 1851, posth.).

The construction of the reals R in 1872.
Richard Dedekind (1831-1916), Stetigkeit und die Irrationalzahlen. [4]

Dedekind’s construction of R centres on the idea of a Dedekind cut or
section (Schnitt). The irrational

√
2 divides the rationals Q into two classes,

those <
√
2 and those >

√
2, either of which serves to identify

√
2. The

arithmetic operations can be defined on such cuts, turning the class of cuts
into a field.
Georg Cantor (1845-1918). [4]
Cantor’s construction of the reals (Math. Annalen 4 (1972), 123-132 and 21
(1883), 545-591).

Call a sequence a = (an) of rationals fundamental, or Cauchy, if
am+n − an → 0 (m,n → ∞), i.e.

∀ϵ > 0 ∃N = N(ϵ) s.t. n > N, m ≥ 0 ⇒ |am+n − an| < ϵ.

Call a = (an), b = (bn) equivalent if a− b := (an − bn) → 0 (this is an equiv-
alence relation – check). Cantor defines a real number to be an equivalence
class of Cauchy sequences of rationals.

Dedekind’s construction is specific to R, as it depends on the total or-
dering of the reals. Cantor’s construction is by completion, and extends to
any metric space. We quote that any complete ordered field is algebraically
isomorphic to R, and so may be identified with it. [2]

The 20th Century. [2]
Modern Mathematical Logic and Model Theory threw new light on R –

e.g., through the independence of the Axiom of Choice on Zermelo-Fraenkel
set theory (Paul J. Cohen (1934-2007) in 1963). See e.g.
T. BARTOSZYNSKI and H. JUDAH, On the structure of the real line, Tay-
lor & Francis, 1995.
[Seen – lectures] N. H. Bingham
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