
M3H/M4H/M5H HISTORY OF MATHEMATICS:
EXAMINATION SOLUTIONS, 2017

The solutions given below are intended to be indicative rather than pre-
scriptive. Most of what follows is taken from the teaching material, with full
detail (dates etc.) included. This is for completeness and for information;
students are not expected to memorise dates accurately (except for the Prin-
cipia in 1687 – ”1066 and all that”.

Section A: answer 5 questions out of 10; 10 marks each.
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Q1. The pentagram.
The star pentagram (below) was known to the Pythagoreans, who flour-

ished in the 6th C. BC in Croton (now S. Italy). Linked with this is the
golden section (‘the section’ in antiquity; the term golden section is due to
Kepler, 17th C.: the ratio of the sides of a rectangle such that if a square on
the smaller side is removed, the remaining rectangle is similar to the original
one. This ratio is held to be visually pleasing in art and architecture. [2]
Star pentagram and golden section (Euclid Book 6, Prop. 30).

In a regular pentagon ABCDE of side a, join up each vertex to its two
opposite vertices. The resulting figure is the star pentagram, and contains
an inner pentagon A′B′C ′D′E ′ say (with A′ the vertex opposite A, etc.), of
side a− b say (so b = AD′ = AC ′, etc.).

∆AD′B is isosceles (AD′ = BD′ by symmetry), so ∠D′AB = ∠D′BA,=
θ say. Write θ′ := ∠EBD. Then 2θ + θ′ = 3π/5 (at B, the interior angle is
3π/5, as the complementary exterior angle is 2π/5). Angle ∠AD′B = π− 2θ
(angle-sum in ∆AD′B). So the complementary angle ∠AD′C ′ = 2θ. Tri-
angle ∆AD′C ′ is isosceles, by symmetry; its angle-sum gives 4θ + θ′ = π.
Eliminating θ′, π − 4θ = 3π/5 − 2θ: θ = π/5, and then θ′ = π/5. So the
interior angles are trisected. [2]
(i) Triangles ∆EAB and ∆EC ′A are similar (both isosceles, with angles
π/5, π/5, 3π/5), with sides a, a, a+ b and b, b, a. So

φ :=
a

b
=
a+ b

a
= 1 +

1

φ
: φ2 − φ− 1 = 0 : φ =

1

2
+

1

2

√
5

(we take the + sign in ± since φ > 0). [2]
(ii) The outer and inner pentagons have sides a, a− b, whose ratio is

(a− b)/a = 1− 1/φ = 2− φ =
1

2
(3−

√
5). [2]

(iii) Dropping the perpendicular C ′C ′′ from C ′ to AE, cos(π/5) = 1
2
a/b = 1

2
φ:

φ = 2 cos(π/5).

Dropping the perpendicular AA′′ from A to C ′D′, we get a right-angled
triangle with angle π/10 at A, hypotenuse b and opposite side 1

2
(a− b). So

sin(π/10) =
1
2
(a− b)
b

=
1

2
(φ− 1) : φ = 1 + 2 sin(π/10). [2]

[Seen – lectures and problems]
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Q2. The heliocentric theory.
Aristarchus (of Samos, fl. c. 280 BC)
T. L. HEATH: Aristarchus of Samos: The ancient Copernicus (1913; 1981).

By observations made of eclipses, etc., Aristarchus was able to estimate
the relative sizes of the earth, sun and moon. His estimates, though highly
inaccurate by modern standards, were a good deal better than previous ones.
He published his results in a book, ‘On the dimensions and distances of the
sun and moon’.

Both Archimedes (Dreyer, 138-8) and Plutarch (Dreyer, 138-140) gave
detailed accounts of Aristarchus’ views on the universe (the modern phrase
‘solar system’ is perhaps too coloured by hindsight here), in which they assert
that Aristarchus pictured the earth as rotating about the sun – the helio-
centric system of today. As for his book, Dreyer (p. 136) says flatly ‘This
treatise does not contain the slightest allusion to any hypothesis on the plan-
etary system ...’; Boyer asserts (p. 180) that the book takes a geocentric
view. But Heath, in his book on Aristarchus (p. iv) states that:
‘... there is still no reason to doubt the unanimous verdict of antiquity that
Aristarchus was the real originator of the Copernican hypothesis’.

Thus Aristarchus is a figure of tremendous importance; he has claims to
be regarded as ‘the ancient Copernicus’. [3]
Nicholas Copernicus (1473-1543) of Thorn (Niklas Koppernigk of Torun);
De revolutionibus orbium coelestium, 1543.

This work revolutionised astronomy by expounding the heliocentric theory
– that the earth and other planets revolve around the sun. With Copernicus,
the modern period of astronomy begins. See Dreyer Ch. XIII for a detailed
account of this epoch-making achievement (and Dreyer Ch. VI and Week 2
for a discussion of Aristarchus and the heliocentric theory). [4]
Galileo Galilei (1564-1642); Astronomy.

Galileo invented (as well as an air thermometer) a telescope. With this,
he began observations in 1609, observing
(i) the Mountains of the Moon; (ii) the four Moons of Jupiter;
(iii) the phases of Venus (incompatible with the geocentric system, since this
shows that Venus orbits round the Sun).
This provided crucial observational support for the Copernican theory.
The Two Chief Systems (1632). Written in the form of a dialogue between
three characters, this book supported the Copernican heliocentric theory,
and brought Galileo into conflict with the Inquisition. [3] [Seen – lectures]
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Q3. Alexandria.
Euclid (of Alexandria; fl. c. 300 BC). [2]

Ptolemy I succeeded Alexander the Great in Egypt, and consolidated
his rule by 306 BC. He established the Museum at Alexandria, the leading
academy (in effect, university) of its day. Here Euclid taught, and wrote,
around 300 BC, the most successful mathematics textbook ever written, the
Elements. This is divided into thirteen books: Books I-VI on elementary
plane geometry, VII-IX on the theory of numbers, X on incommensurables,
XI-XIII on solid geometry. He also wrote the Optics, the Phaenomea (on
spherical geometry), Division of Figures and other works, now lost.

Euclid (we speak of the author and his Elements interchangeably from
now on) expounds mathematics – particularly geometry – in what is essen-
tially the modern style – axiomatically. One begins with a list of axioms (as
few as possible, and as ‘obvious’, or ‘innocuous’, as possible). From these, one
deduces, by rigorous proof, theorems (as many as possible, as ‘non-obvious’
as possible).

Following the conquest of Greece by Rome in 146 BC, Greek mathematics
went into a decline, followed by a partial recovery. Its principal exponents
came much later, and were mainly based in Alexandria, e.g.:
Menelaus, c. 100 AD, [1]
Ptolemy, fl. c. 127-150 AD, [1]
Heron, 3rd C. AD, [1]
Diophantus, fl. c. 250 AD, [1]
Pappus (of Alexandria, fl. c. 290 AD) (B 11.7-10, Heath II, Ch. XIX).

So far as his original mathematics is concerned, Pappus is remembered for:
Focus-directrix(-eccentricity) theorem for conics (Coolidge, Conics and quadrics,
8-13): If F (focus) is a point, L (directrix) is a line, e (eccentricity) is a posi-
tive constant, the locus of a point P such that its perpendicular distance PL
to the line L satisfies PF = e.PL is a conic section.

Pappus was the last of the major Greek geometers, ending a tradition
spanning some eight centuries. He was also the last great Alexandrian math-
ematician (though we should also remember the martyrdom of Hypatia, 415
AD). No other centre of learning has ever dominated mathematics for as long
(the six centuries from Euclid to Pappus) as did Alexandria. [2]

Our knowledge of the history of Greek (and Alexandrian) mathematics is
largely due to Proclus (410-485), and his Eudemian Summary, of the account
of Eudemus (of Rhodes, fl. c. 320 BC, a student of Aristotle). [2]
[Seen – Lectures]
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Q4 Galileo (1564-1642)
‘Galileo was the first truly modern scientist – the first whose outlook and

methods would not be out of place even today. He made important dis-
coveries in astronomy and mechanics, but his greatest achievement was the
creation of the experimental-mathematical method that has lain at the basis
of all progress in physical science since his time’.
Professor of Mathematics at Pisa, 1589. He demonstrated that heavy and
light weights fall at the same speed by dropping them from the Leaning Tower
of Pisa. His experimental approach to science brought him into conflict with
the Church (below). He was driven out of Pisa in 1592, going to Padua as
Lecturer in Mathematics. He eventually returned to Pisa, becoming Philoso-
pher and Mathematician to the Grand Duke of Florence. [2]
Astronomy.

Galileo invented a telescope, and began observations in 1609, observing
(i) the Mountains of the Moon; (ii) the four Moons of Jupiter; (iii) the
phases of Venus (incompatible with the geocentric system, since this shows
that Venus orbits round the Sun). These discoveries gave the Copernican
theory crucial observational support. [2]
The Two Chief Systems (1632). Written (like Plato’s dialogues) in the form
of a dialogue between three characters, this book supported the Copernican
heliocentric theory, and brought Galileo into conflict with the Inquisition.
Under threat of torture, in 1633 he was forced to disavow it. The (Roman
Catholic) Church admitted it was wrong to condemn Galileo in 1992. [2]
The Two New Sciences (1638): on mechanics. He showed that
(i) a body falling under gravity does so with constant acceleration;
(ii) the trajectory of a projectile is a parabola.
Although the ancient Greeks had an excellent knowledge of conics, they were
capable of asserting that projectiles describe arcs of circles! This illustrates
both Greek limitations and the power of Galileo’ new scientific method. [2]
Infinite sets. Galileo noticed the characteristic property of an infinite set: it
can be put into one-one correspondence (bijection) with a proper subset of
itself (e.g., Z ↔ 2Z under n ↔ 2n). This was taken up in the 19th C. by
Dedekind. [1]
Epitaph. Galileo is reported to have withdrawn his forced recantation on his
deathbed with the words ‘E pur si muove’ (‘Eppur si muove’ – ‘And still it
moves’), which, apocryphal or not, may serve as an epitaph to one of the
giants of science. [1]
[Seen – lectures]
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Q5. Huygens.
Christiaan Huygens (1629-1695) was Dutch, a pupil of Frans van Schooten

(1615-1660), Professor of Mathematics at Leiden. Huygens moved from
the Netherlands to Paris in 1668, when the Académie des Sciences was
founded. [1]
Traité de la lumière (publ. 1690; read to the French Academy, 1678).

Huygens advocated the wave theory of light; the work also covers reflec-
tion and refraction, and polarisation. [1]
Pendulum clock, 1656 (Galileo is said to have proposed this in 1641).
Horologium oscillatorium (1673): [1]
Centripetal force for circular motion. Principle of Conservation of Energy.
This book was an important precursor of Newton’s Principia.
Telescopes: Observation of the rings of Saturn. [1]
Thermometers: suggested 0 and 100 for freezing and boiling points – the
Centigrade scale (long before Anders Celsius (1707-1744) in 1742). [1]
Huygens’ Principle: [1]

Light travels along paths of shortest time. Kline (579-582) discusses the
history of this idea, from the Greeks (Heron) through Fermat and Huygens
to Euler.
The cycloid. He knew from his work on the pendulum clock that the period
of a pendulum is only approximately constant, but depends on the displace-
ment. He sought a curve such that a particle sliding on it has exactly the
same period regardless of displacement, and showed this was a cycloid. [1]
Envelopes and wavefronts. His work on the wave theory of light led Huygens
to regard propagation of light as a continuous process of ‘ripple formation’:
subsidiary wavelets released at time t from, through their envelope, the wave-
front at time t+ dt. For background, see e.g.
J. L. SYNGE, Geometrical optics: An introduction to Hamilton’s method.
Cambridge Tracts in Math. 37, CUP, 1937. [1]
De ratiociniis in ludo aleae (1657) (On reasoning in dice games). This was
the first important book on Probability Theory (recall Cardano’s De ludo
aleae was written c. 1526 but only published in 1663). [1]
Gravitation. Huygens opposed Newton’s Law of Gravity, which he regarded
as unphysical (‘action at a distance’). For background, see e.g.
Sir Edmund WHITTAKER, A history of the theories of the aether and elec-
tricity. Dover, 1989 (Nelson, 1910/1951), Volume I, Ch. 1: The theory of
the aether to the death of Newton. [1]
[Seen – lectures]
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Q6. The electromagnetic theory of light.
James Clerk Maxwell (1831-1879) [Whittaker, Ch. VIII: Maxwell].
A treatise on electricity and magnetism, Vol. 1, 2, OUP, 1891/1998.
Maxwell’s Equations. If E, H are the electric intensity and the magnetic
field in ES (electrostatic) units, cE in EM (electromagnetic) units, Maxwell’s
equations (in a vacuum) are

div E = 0, curl E = −c−1∂H/∂t; div H = 0, curl H = c−1∂E/∂t. [2]

Whitaker (p. 245) writes: ‘In this memoir (of 1865) the physical importance
of the operators curl and div first became evident. These operators had,
however, occurred frequently in the writings of Stokes ...’. Applying curl
(recall curl curl = grad div - ∇2, = −∇2 here):

−∇2E = curl curlE = −1

c

∂

∂t
(curlH) = − 1

c2

∂2E

∂t2
: ∇2E = c−2∂2E/∂t2,

and similarly
∇2H = c−2∂2H/∂t2. [2]

This is the wave equation, for propagation of E, H with velocity c, the ratio
of EM to ES units. This was known experimentally (c. 3 × 1010 cm/sec.,
c. 186,000 miles/sec.) to be (approx.) the speed of light. Thus, electromag-
netic forces are propagated with the speed of light. This suggested (correctly)
to Maxwell that light waves are electromagnetic. Recall the modern electro-
magnetic spectrum: in increasing order of wavelength, ..., x-rays, ultra-violet,
visible spectrum, infra-red, radio waves, .... [2]

To do the mathematics above, one needs:
(i) The wave equation, the prototypical hyperbolic (linear, 2nd order) PDE:
J. d’Alembert (1717-1783) in 1746.
(ii) Vector calculus: grad, div and curl: the divergence theorem, or Gauss’
theorem (1813); Green’s theorem (George Green (1793-1841; Essay on ma-
genetism and electricity, 1828); Stokes’ theorem (the curl theorem), 1854. [2]

Maxwell’s EM theory of light builds on the work of Faraday on electro-
magnetic induction; together these constitute the two greatest advances of
19th C. Physics. From them flow the essentials of our modern life: electric
power; radio, television, etc. [2]
[Seen – lectures]
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Q7. The calculus of variations.
Christiaan Huygens (1629-1695). [2]
Huygens’ Principle: Light travels along paths of shortest time. This idea can
be traced from the Greeks (Heron – as paths of shortest distance) through
Fermat and Huygens to Euler.
Leonhard Euler (1707-1783); born in Basel, a pupil of Jean Bernoulli and
colleague of Daniel Bernoulli. [3]
Calculus of Variations (CoV). To maximise (or minimise) an integral

I :=

∫ b

a

F (x, y, y′)dx (y′ = dy/dx)

with respect to variation in the function y = y(x): Euler showed in 1744 that
the solution satisfies the ‘Euler-Lagrange equation’

∂F

∂y
− d

dx
(
∂F

∂y′
) = 0. (EL)

Example: the Brachistrochrone. One formulation is: a particle slides un-
der gravity along a smooth curve from A to B. Find the curve for which the
time taken is a minimum (brachos = short, brachistos = shortest + chronos =
time, Greek). The problem (in one form or another) was solved by Bernoulli
(Jean and/or Jacques; also by Newton and Leibniz, Acta Eruditorum) in
1696: the solution is a cycloid (the locus of a point on a circle rolling without
slipping on a plane – also often used for the arches of bridges). This problem
led to the development of the CoV. It may easily be solved by (EL).
Joseph-Louis Lagrange (1736-1813) (Turin; Berlin Academy;
French Academy). [3]
Calculus of Variations (CoV). This was Lagrange’s earliest (and possibly
best) work. In 1755 he wrote to Euler about his work on CoV. Euler gener-
ously held up publication of his own work, so that Lagrange’s work – which
Euler thought superior – should get full credit, and advised Frederick to
bring Lagrange to Berlin. The ‘Euler-Lagrange equations’ date from this
time. The name Calculus of Variations is due to Euler in 1766
Sir William Rowan Hamilton (1805-1865), Professor of Astronomy, Trinity
College Dublin, 1827-65. [2]
Hamilton’s Principle (1834): With L the Lagrangian,

∫
Ldt is an extremum.

This includes the Principle of Least Action, which can be traced back to
Maupertuis (1744).
[Seen – lectures and problems]
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Q8. Projective geometry.
Girard Desargues (1591-1661) and Projective Geometry. [4]

Desargues’ first important book was La Perspective (1636). This led him
on to his introduction of projective geometry in his Brouillon projet (d’une
atteinte aux evenements des rencontres d’une cone avec un plan) (1639)
Rough draft (of an attempt to deal with the outcome of a meeting of a cone
with a plane). As background, recall:
(i) Many results in geometry concern only incidence properties (whether lines
meet, point lie on a line, etc.); these are preserved under projection.
(ii) Often one has to qualify statements because of exceptional cases involv-
ing ‘infinity’ – e.g., two lines in a plane meet in a point (unless parallel).
Recall perspective (vanishing point = ‘point at infinity’).

All this led to Projective Geometry, in which it is incidence properties
rather than metrical ones that count. Here one works projectively, using ho-
mogeneous coordinates (in which point in a plane has three coordinates rather
than two, determined up to a constant multiple). This powerful tool allows
much simplification, but involves a thorough-going change of viewpoint.

The Brouillon Projet, though pioneering, had little impact at the time:
too far ahead of its time; too badly written; too few copies.

Projective methods in geometry, together with analytic (= coordinate)
and synthetic (= classical) methods, complete the main tools needed to treat
the geometric problems studied up to that time.
Conics. Projective methods allow a simple interpretation of conics as sec-
tions of circular cones by planes: the conic are the projections of circles. [1]

Projective geometry is of great practical importance: it is the basis of
computer graphics, hence of virtual reality etc.
Blaise Pascal (1623-1662).
Essay pour les coniques (1640) (one page!) Pascal’s theorem (on hexagons
inscribed in a conic), inspired by Desargues’ work. [1]
Charles Jules Brianchon (1785-1864); Victor Poncelet (1788-1867).

Poncelet (MS c. 1812, publ. 1862-4, Works I, II) emphasised duality
in Projective Geometry: in two dimensions, one may interchange the words
‘point’ and ‘line’; in three dimensions one may interchange ‘point’ and ‘plane’,
leaving ‘line’ the same. A prime example of duality is Pascal’s theorem on
hexagons inscribed to conics, and Brianchon’s theorem on hexagons circum-
scribed about conics – discovered by duality. [3]
The Platonic solids. The cube and octahedron are dual; the dodecahedron
and icosahedron are dual; the tetrahedron is self-dual. [1] [Seen – lectures]
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Q9. The Fundamental Theorem of Algebra.

Carl Friedrich Gauss (1777-1855)
Gauss’ doctoral thesis (in Latin: ‘A new proof that every polynomial of

one variable can be factored into real factors of the first or second degree’)
was published in 1799.

Despite its name, this result is a theorem of analysis, not of algebra. Its
proof was less rigorous than Gauss’ usual standard: he assumed properties
of continuous functions later proved by Bolzano. [3]

Augustin-Louis Cauchy (1789-1857), Professor at the Ecole Polytéchnique
and later the Sorbonne.

Cauchy’s Cours d’analyse (Ecole Polytéchnique, 1821) contains a proof of
the Fundamental Theorem of Algebra: every complex polynomial of degree
n has n complex roots (counted according to multiplicity). [3]

The modern proof uses Liouville’s theorem (Joseph Liouville (1809-1882),
lectures in 1847 – actually published by Cauchy in 1844): an entire (i.e.
holomorphic throughout the complex plane C) bounded function is constant.
Thus it took over twenty years before the full power of Cauchy’s new subject
of Complex Analysis was properly brought to bear on the Fundamental The-
orem of Algebra – incidentally, revealing in so doing that the result, being a
theorem in Analysis, is a misnomer. [2]

N. H. Abel (1802-29): Insolubility of the quintic (1829).
Although the quintic has five roots, by the Fundamental Theorem of Al-

gebra above, Abel showed that – in contrast to polynomials of degree up to
four, which can be solved, as Cardano showed – quintics are not soluble by
radicals: there can be no formula/algorithm/method for expressing the roots
in terms of the coefficients. Similarly for polynomials of higher degree. So
there is a fundamental split: polynomial equations are soluble by radicals for
degree up to 4, but not for degree 5 or higher. [2]

[Seen – lectures]
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Q10. Mathematics and Biology: Darwin, Mendel and Fisher.
Charles DARWIN (1809-1882): On the Origin of Species by means of Natu-
ral Selection, 1859 – The Origin of Species). [2]

Darwin based his theory on decades of thought and observation. He de-
layed publishing his work for years, for fear of upsetting his wife, who was
deeply religious. Of course, Darwinian evolution contradicted the account of
the Creation in the Bible (Genesis). His theory was accordingly attacked,
e.g. in the famous debate between Bishop Wilberforce and T. H. Huxley
(‘Darwin’s bulldog’), after whom the building containing the Imperial Col-
lege Mathematics Department is named.

Darwinian evolution by natural selection is widely regarded as the great-
est single idea in the history of human thought.
Gregor MENDEL (1822-1884): [2]
Experiments on plant hybridization, 1866).

Mendel was a Bohemian monk. His most famous experiment was on the
numbers of smooth and wrinkled peas produced when different strains of
pea are crossed: these occur in simple arithmetic proportions. His work was
published in an obscure journal, where it went unnoticed and was largely
forgotten, until it was rediscovered in 1900. It laid the foundations for the
modern science of genetics.
R. A. (Sir Ronald) FISHER (1890-1962). [3]

Fisher was the greatest statistician ever, and one of the greatest geneti-
cists. He did his greatest work at the Rothamsted Experimental Station in
Harpenden, Herts in the 1920s (studying crop yields, for which he developed
much of modern Statistics). He was Galton Professor of Eugenics at UCL
(1933-43) and Arthur Balfour Professor of Genetics at Cambridge (1943-59).

The two foundations of modern biology are the Darwinian theory of nat-
ural selection and Mendelian genetics. It was thought at first that Mendelian
genetics and Darwinian natural selection were incompatible, but this is not
so; the two were synthesized by three people: the American Sewall Wright
(1889-1988) and the Englishmen Fisher (above) and J. B. S. Haldane (1892-
1964). The resulting Darwin-Mendel synthesis is the basis of modern biology.

The relevant mathematics used Markov chains (A. A. Markov (1856-1922)
in 1907). These give models for stochastic processes (random phenomena un-
folding with time) in which there is no memory. The Fisher-Wright model of
math. genetics is one of the most important classical Markov chains. [3]
[Seen – lectures]
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Section B. Answer two questions; 25 marks each

Q1. The Renaissance and its mathematics
Background [3]

The Renaissance, or re-birth, marks the end of the Dark Ages and the
re-emergence of European culture dormant since the classical period. The
history of mathematics, and science, will be primarily concerned with Europe
(and later, its offshoots in America) from now on.

The Renaissance (the term dates back only to 1855, in Michelet’s Histoire
de France) is a broad term covering the 14th-17th centuries, but is regarded
as having begun in Florence in the 14th C. One factor here was the role
of the Medici family, who were originally bankers before going into politics.
Banking and finance (of which more below) flourished on contact between
civilisations, which tended to have a cross-fertilising effect; also, the Medici’s
money enabled them to become great patrons of the arts. Later, the influx of
Greek scholars after the Fall of Constantinople in 1453, bringing with them
many texts and much learning, was also an important factor.
Perspective [5]

As we have seen, perspective was known (at least in part) in the ancient
world, but was then lost.
Filippo Brunelleschi (1377-1446) discovered the main principle of perspective
– the use of vanishing points – and convinced his fellow-artists of this in a
famous experiament of 1420 involving the chapel outside Florence Cathedral.
Leon Battista Alberti (1404-72), Della pictura (1435, printed 1511) gave the
first written account of perspective.
Piero della Francesca (1410-92), De prospectivo pingendi (c. 1478). In his
book, and in his painting, Piero della Francesca did much to popularise per-
spective, which spread throughout the Western art world.
Leonardo da Vinci (1452-1519); Trattato della pittura. Leonardo is usually
regarded as the personification of Renaissance genius. He was a prolific in-
ventor, an artist who wrote on perspective, and a mathematician.
Albrecht Dürer (1471-1528) of Nuremburg; Investigations of the measurement
with circles and straight lines of plane and solid figures (1525-1538, German
and Latin). Like Leonardo, Dürer was both a mathematician and an artist.
He adopted perspective after visiting Italy.
Printing and books [2]

An important turning-point was the invention of the printing-press. Mov-
able type was introduced by Johannes Gutenberg (1395-1468) of Mainz, in his
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Bible of 1455. The first printed book in English was produced by William
Caxton in Bruges in 1476 (he then moved to London and established the
first printing press in Britain). Printing and books enormously increased the
scope for the rapid dissemination of knowledge.
Universities [3]

Learning was now dominated by the universities, focussing on mediae-
val Latin for theology etc. and Latin translations from the Arabic in science.
Printing and books led to more emphasis on Greek culture, both in literature
and in science. The Greek classics in both could now be read in the original,
translated directly (from the Arabic), printed, and distributed widely.
Regiomontanus (1436-76) [2]

Born Johann Müller of Königsberg (now Kaliningrad in Russia), he was
known as Regiomontanus (king’s mountain, Latin, Königsberg, German). He
completed a new Latin translation of Ptolemy’s Almagest (begun by Peuer-
bach), which was mathematically superior to previous versions.
De triangulis omnimodis (1464). Probably influenced by the work of the
Arab mathematician Nasir Eddin, this was the first major European work
on trigonometry, and helped as a subject, independent of astronomy.
Nicholas Chuquet (fl. c. 1500) [2]
Triparty en la science des nombres, 1484: the most important European
mathematical text since the Liber Abaci.
Luca Pacioli (1445-1514) [2]
Summa de arithmetica, geometrica, proportioni et proportionalita, 1494 (B
15.7). This was an elementary text (more influential than the Triparty) on
arithmetic, algebra and geometry. It is notable for double-entry book-keeping,
and use of the decimal point.
Geronimo Cardano (1501-76); Ars Magna, 1545. [3]

Cardano’s solution of the cubic (published here in 1545) marks ‘the be-
ginning of the modern period in mathematics’ (del Ferro and Tartaglia also
solved the cubic). Cardano introduced complex numbers in the Ars Magna.
Nicholas Copernicus (1473-1543) of Thorn (Niklas Koppernigk of Torun,
Poland); De revolutionibus orbium coelestium, 1543. [3]

This work revolutionised astronomy by expounding the heliocentric the-
ory. With Copernicus, the modern period of astronomy begins.

The Renaissance evolved gradually into the early modern period; we re-
gard complex numbers and the heliocentric theory as good markers for the
transition. The term Renaissance is surprisingly late (19th C.).
[Seen – lectures]
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Q2 Differential equations
Early history [3]

Study of differential equations (DEs) goes back to the discoverers of the
differential and integral calculus, Isaac Newton (1642-1727) and Gottfrfied
Leibniz (1646-1716). Newton solved a DE by infinite series in 1676, only
11 years after his discovery of the fluxional form of differential calculus in
1665. This was published in 1693, the year Leibniz first published a DE (his
differential calculus was published in 1684).
Jean Bernoulli (1667-1748) introduced separation of variables in 1694-97.
Jakob Bernoulli (1654-1705) introduced and solved Bernoulli’s equation.

Leonhard Euler (1707-1783). [5]
Institutiones calculi differentialis (1755);
Institutiones calculi integralis (1768-70, Vol I-III)

Euler began the systematic study of ordinary DEs (ODEs – one indepen-
dent variable). He introduced the idea of an integrating factor, now standard.
He studied linear DEs with constant coefficients, reducing them to the famil-
iar characteristic polynomial. For linear DEs, he studied the homogeneous
and non-homogeneous cases, showing in particular that the arbitrary con-
stants belong with the general solution (GS) of the homogeneous equation.
Thus one obtains the familiar

GS (non-homogeneous) = GS (homogeneous) + particular integral (PI).

Euler also introduced and solved the Euler DE

xny(n) + a1x
n−1y(n−1) + · · ·+ an−1xy

′ + any = 0.

The first partial differential equation (PDE) to be studied was thkat of the
vibrating string. This second-order PDE, the wave equation in one dimension,

∂2u/∂t2 = c2∂2u/∂x2,

GS u(x, t) = f(x+ ct) + g(x− ct) (representing waves propagating forwards
and backwards) was solved by Euler and d’Alembert (1717-83) in 1747.

In higher dimensions, the wave equation becomes

∇2V = c−2∂2V/∂t2

(∇2 := ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, the Laplacian).
Euler method for numerical solution of DEs, now used also for stochastic
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differential equations (SDEs).

P. S. de Laplace (1749-1827). [3]
Laplace’s equation: ∇2V = 0 (1789: memoir on Saturn’s rings).
S.-D. Poisson (1781-1840). [2]
Poisson’s equation: ∇2V = −4πρ (1812).
This generalises Laplace’s equation for the (gravitational) potential V from
empty space to the presence of matter.
J. Fourier (1768-1830). [3]
Théorie analytique de la chaleur (1822).
Heat equation: ∇2V = k−1∂V/∂t (k: thermal diffusivity).
This describes the flow of heat in a conducting body.

Linear second-order PDEs. [5]
Poisson’s/Laplace’s equation: ∇2V = −4πρ [= 0]: elliptic, relevant to po-
tential theory (gravitational or electromagnetic).
Heat equation, ∇2V = k−1∂V/∂t: parabolic.
Wave equation, ∇2V = c−2∂2V/∂t2: hyperbolic.

Much of 19th C. mathematical physics is concerned with properties of
these PDEs or their relatives – e.g.
Equation of telegraphy: ∂2V/∂x2 = CL∂2V/∂t2 + CR∂V/∂t
(Sir William Thomson, Lord Kelvin (1824-1907); translatlantic telephone ca-
ble, 1866).

Much of the 19th C. work on special functions (Bessel functions, Legendre
polynomials, etc.) grew from the study of ODEs derived from such PDEs,
by techniques such as separation of variables. Eigenvalue problems were also
discussed at length (Sturm-Liouville theory, etc.).
20th C.
Aeronautics. Subsonic flight is described by an elliptic PDE. Supersonic flight
is described by a hyperbolic PDE: shock wave. [2]
Navier-Stokes equation. [2]

The Navier-Stokes equation for viscous fluids, ubiquitous today, is due to
Claude-Louis Navier (1785-1863) in 1822 and Sir George Stokes (1819-1963)
in 1845. It is a semi-linear PDE, of the form

∂u/∂t+ (u.∇)u− ν∇2u = −∇h.

[Seen – lectures]
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Q3 Solution of polynomial equations.
Egypt: Linear equations are found in the Rhind (or Ahmes) Papyrus, c. 1650
BC. [1]
Mesopotamia: Some quadratic equations were studied c. 2000 BC (also some
cubics). [1]
Diophantus of Alexandria, c. 250 AD: For positive rational solutions, Dio-
phantus dealt with quadratic equations completely, and some cubics. [1]
India: Brahnagupta (c. 628 AD): General solution of quadratics. [1]
al-Khwarizmi (d. 850), Al-Jabr wa al-Muqabala. [1]

This book synthesised the Mesopotamian, Greek and Hindu algebra tra-
ditions, and was the first to do so. [1]
Omar Khayyam (c. 1100): Algebra – quadratics and cubics. [1]

Thus pre-modern work on the solution of polynomial equations was re-
stricted to real (and sometimes, to positive) roots. Within this framework,
it is impossible to account for the fact that a polynomial of degree n (recall
that n ≤ 3 here) may not have n real (or positive) roots).

Turning to the modern European period:
Gerolamo (or Geronimo) Cardano (1501-1570); Ars Magna, 1545.

Cardano’s solution of the cubic (published here in 1545) marks ‘the be-
ginning of the modern period in mathematics’. Scipione del Ferro (c. 1465-
1526), Professor of Mathematics at Bologna, solved the cubic but did not
publish his results. Niccolo Tartaglia (c. 1500-1557) (b. Niccolo Fontana;
Tartaglia = stammerer), knowing of del Ferro’s solution, found one himself,
by 1541. Predictably, this led to a priority dispute with Cardano.
Complex numbers.

Cardano, in Ch. 37 of Ars Magna, solves

x(10− x) = 40,

obtaining roots 5±
√
−15, and notes that

(5 +
√
−15)(5−

√
−15) = 25− (−15) = 40.

Thus ‘Without having fully overcome their difficulties with irrational and
negative numbers, the Europeans added to their problems by blundering
into what we now call complex numbers’ (Kline). Though complex numbers
were not properly assimilated into mathematics till much later, they enter
the stage with Ars Magna.

Also: ‘whenever the three roots of a cubic are real and non-zero, the
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Cardan-Tartaglia formula leads inevitably to square roots of negative num-
bers’. [3]
Carl Friedrich Gauss (1777-1855)
Fundamental Theorem of Algebra (1799)

Gauss’ doctoral thesis (in Latin: ‘A new proof that every polynomial of
one variable can be factored into real factors of the first or second degree’)
was published in 1799.

Despite its name, this result is a theorem of analysis, not of algebra. Its
proof was less rigorous than Gauss’ usual standard: he assumed properties
of continuous functions later proved by Bolzano. [3]
Augustin-Louis Cauchy (1789-1857), Professor at the Ecole Polytéchnique
and later the Sorbonne.

Cauchy’s Cours d’analyse (Ecole Polytéchnique, 1821) contains a proof of
the Fundamental Theorem of Algebra: every complex polynomial of degree
n has n complex roots (counted according to multiplicity). [3]

The modern proof uses Liouville’s theorem (Joseph Liouville (1809-1882),
lectures in 1847 – actually published by Cauchy in 1844): an entire (i.e.
holomorphic throughout the complex plane C) bounded function is constant.
Thus it took over twenty years before the full power of Cauchy’s new subject
of Complex Analysis was properly brought to bear on the Fundamental The-
orem of Algebra – incidentally, revealing in so doing that the result, being a
theorem in Analysis, is a misnomer. [3]
N. H. Abel (1802-29): Insolubility of the quintic (1829).

Although the quintic has five roots, by the Fundamental Theorem of Al-
gebra above, Abel showed that – in contrast to polynomials of degree up to
four, which can be solved, as Cardano showed – quintics are not soluble by
radicals: there can be no formula/algorithm/method for expressing the roots
in terms of the coefficients. Similarly for polynomials of higher degree. So
there is a fundamental split: polynomial equations are soluble by radicals for
degree up to 4, but not for degree 5 or higher. [3]
Evariste Galois (1811-1832).

Galois was the first to study field extensions systematically. This is the
key to the algebraic closure of the complex plane C, but not of the real line
R: a polynomial of degree n with coefficients in C has n roots in C, but one
with coefficients in R need not have n roots in R. [3]
[Seen – lectures]
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Q4 Number Theory
Euclid of Alexandria; Elements, c. 300 BC. [3]
Book VII: Elementary number theory.
Prop. 2: h.c.f., by the Euclidean algorithm.
Prop. 24: a, b coprime to n implies ab coprime to n.
Book IX: Primes.
Prop. 20. There are infinitely many primes.
Proof (Modern version). Let p1, p2, · · · , pn be the first n (the n smallest)
smallest in the list of primes. Write N := 1 + p1p2 · · · pn. Then no pi divides
N . So by the Fundamental Theorem of Arithmetic, there is another prime
pn+1 which does divide N . So the list can always be extended.

Diophantus of Alexandria; Arithmetica, c. 350 AD, Books I-XIII (VII on
lost). [2]

Book VI contains a treatment of indeterminate equations (with more un-
knowns than equations, so with infinitely many solutions), in which one seeks
integer solutions. This has developed into the subject of Diopohantine equa-
tions.

Pierre de Fermat (1601-1665). [3]
Fermat was the founder of modern number theory, inspired by Diophantus’s
Arithmetica (translated 1621).
(i) ‘Method of infinite descent’ for proving irrationality.
(ii) ‘Fermat’s theorem’: if p is prime, ap ≡ a mod p.
(iii) Fermat numbers, Fn := 22n +1 (Fermat conjectured these were all prime;
F1 to F4 are, but Euler showed that F5 is composite).
(iv) Fermat’s conjecture: if n > 2, xn + yn = zn has no solutions (x, y, z all
non-zero integers) (n = 2: Pythagorean triples – there are infinitely many of
these!). The problem was the most famous unsolved problem in mathemat-
ics, until the conjecture was proved by (Sir) Andrew Wiles (1963-) in 1995.

Leonhard Euler (1707-1783). [3]
Euler products: ζ(s) :=

∑∞
1 1/ns =

∏
p 1/(1− p−s) (p prime).

ζ(2) = π2/6 (Basel problem).
Euler’s totient function: φ(n) := number of integers k, 1 ≤ k ≤ n, coprime
to n. If n =

∏
pni
i (FTA), φ(n) = n

∏
(1− 1/pi).

Euler’s theorem: If y is coprime to n, yφ(n) ≡ 1 mod n.
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A.-M. Legendre (1752-1833). [2]
Essai sur la théorie des nombres (1797-98), Vols I, II – the first book(s)
devoted entirely to number theory. Here he conjectured:
The Law of Quadratic Reciprocity, later proved by Gauss (below);
The Prime Number Theorem (PNT): If π(x) is the number of primes p ≤ x,

π(x) ∼ x/ log x (x→∞); equivalently, pn ∼ n log n (n→∞).

C. F. Gauss (1777-1855). [2]
Gaus conjectured PNT in 1792 (aged 15!); he proved the Law of Quadratic
Reciprocity in 1795 (publ. 1796).
Disquisitiones Arithmeticae (1801): Gauss’s master work on number theory.

P. G. L. Dirichlet (1805 - 1854). [3]
Dirichlet’s theorem (1837): There are infinitely many primes in every arith-
metic progression in N. From NHB, M3P16, Dramatis Personae:
Dirichlet series, 1838, 1839; Dirichlet’s test; Dirichlet convolution; Dirichlet’s
Hyperbola Identity.

G. F. Riemann (1826-66). [3]
Über die Anzahl der Primzahlen unter einer gegeben Grössen (1858).

The series ζ(s) :=
∑∞

1 1/ns goes back to Euler, but is called the Riemann
zeta function in honour of Riemann. He showed the importance of taking s
complex, s = σ + it (of course, Riemann had Cauchy’s creation of Complex
Analysis in the late 1820s to help him!). He introduced the famous Riemann
Hypothesis (RH), still open: ζ(s) = 0, s = σ + it, t 6= 0 implies σ = 1

2
, and

showed its relevance to the distribution of primes.
The zeta function, and Complex Analysis, played key roles in the proof

of PNT in 1896 by (independently!) C. J. de la Vallée Poussin (1866-1962)
and J. Hadamard (1865-1963). [2]

In the 20th C., Analytic Number Theory was turned into a systematic
subject by Edmund Landau (Handbuch der Lehre von der Primzahlen, 1909).
The PNT was proved by elementary means (no Complex Analysis) in 1937
by Atle Selberg (1917-2007) and Paul Erdős (1913-1996). [2]
(There is no intention to neglect Algebraic Number Theory here, but we did
not cover it.)
[Seen – lectures] N. H. Bingham
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