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M3H SOLUTIONS 2. 30.1.2018

Q1 (Angle at centre twice angle at circumference).
Let the chord be AB,C be the point on the circumference, O the centre

of the circle. Required ∠AOB = 2∠ACB. Let θ := ∠OAC, φ := ∠OBC.
Triangles ∆AOC, ∆BOC are isosceles (two sides are the radius, r say). So
∠OCA = θ, ∠OBA = φ. So AB subtends ∠ACB = θ + φ at the cir-
cumference. In ∆AOC, ∠AOC = π − 2θ (angle sum is π), and similarly
∠BOC = π− 2φ. The three angles are O sum to 2π; the two just mentioned
sum to 2π − 2θ − 2φ. So ∠AOC = 2(θ + φ) = 2.∠ACB. //
Note that if the chord goes through the centre, the angle at the centre is
π, so the angle at the circumference (‘angle in a semi-circle’) is π, and we
recover the theorem of Thales.

Q2 (Angles in the same segment).
Both angles subtend the same angle at the centre, so by Q1 they are equal.

Q3 (Opposite angles of a cyclic quadrilateral sum to π).
If the opposite angles are θ := ∠ABC, φ := ∠ADC: by Q1, the arc ABC

subtends angle 2θ at ), and arc ADC subtends 2φ at O. But these angles
sum to 2π (the total angle at O). So θ + φ = π. //

Q4 Schläfli symbols and Platonic solids).
(i) As in the star pentagram: as we go round the perimeter of a regular
p-gon,the direction changes by 2π/p at each vertex. So the interior angle at
each vertex is π − 2π/p = π(1 − 2/p). But q of these can fit together in a
polyhedron iff q.π(1− 2/p) < 2π. So the requaired inequality is

q(1− 2/p) < 2.

(ii) Tetrahedron: triangular faces, 3 meet at a vertex: {3, 3}.
Octahedron: triangular faces, 4 meet at a vertex: {3, 4}.
Cube: square faces, 3 to a vertex: {4, 3}.
Dodecahedron: pentagonal faces, 3 at a vertex: {5, 3}.
Icosahedron: triangular faces, 5 at a vertex: {3, 5}.

Q5.
Tetrahedron: F = 4, V = 4, E = 6, F + V − E = 2.
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Octahedron: F = 8, V = 6, E = 12, F + V − E = 2.
Cube: F = 6, V = 8, E = 12, F + V − E = 2.
Dodecahedron: F = 12, V = 20, E = 30, F + V − E = 2.
Icosahedron: F = 20, 12, E = 30, F + V − E = 2.

Note. 1. That F +V = E+2 holds for all polyhedra: Euler’s formula (Week
7, L20). It is result on (combinatorial) topology (Weeks 9, 10).
2. There is a sense in which the octahedron and cube are dual, the dodecahe-
dron and icosahedron are dual, and the tetrahedron is self-dual. This involves
the ideas of projective geometry (Weeks 6 and 8).

Q6. Theorem (Euclid). There are infinitely many primes.

Proof (direct). List the primes in order of size: p1 = 2, p2 = 3, p3 = 5 etc.
For each n ∈ N, consider

N := 1 + p1p2 . . . pn.

Then p1 does not divide N : N has remainder 1 when divided by p1. Similarly,
p2, . . . , pn do not divide N . So, since N has a prime factor by FTA, either N
is prime (= pn+1), or there is a prime pn+1 between pn and N . Either way,
we can continue the list of primes, beyond the nth for each n. Keep going,
‘ad infinitum’! So, there are infinitely many primes. //

A direct proof is usually preferred to a proof by contradiction: “inside
every proof by contradiction there is a direct proof struggling to get out”.
See e.g. (a great book! – highly recommended)
George PÓLYA, How to solve it: A new aspect of mathematical method,
Princeton, 1945, p/b, 1971 (Penguin, p/b, 1990).

The proof by contradiction is essentially the same but slightly shorter:

Proof (by contradiction). Assume not. Then some list p1, . . . , pn exhausts
the primes. Consider

N := 1 + p1p2 . . . pn.

Then p1 does not divide N : N has remainder 1 when divided by p1. Simi-
larly, p2, . . . , pn do not divide N . So as these are all the primes, N does not
contain a prime factor, contradicting FTA. // NHB

2


