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M3H SOLUTIONS 8. 13.3.2018

Q1 (Fundamental Theorem of Arithmetic, FTA: Gauss, Disquisitiones arith-
meticae, 1801).
Proof. Existence. Induction. True for n = 2. Assume true for every integer
< n. If n is not prime (i.e. is composite), it has a non-trivial divisor d
(1 < d < n). So n = cd (1 < c < n). So each of c, d is a product of primes,
by the inductive hypothesis. So n is too, completing the induction.
Uniqueness. Induction. True for n = 2. Assume true for every integer
< n. If n is prime, the result holds, so assume n is composite. If it has two
factorisations

n = p1 . . . pr = q1 . . . qs,

to show r = s and each p is some q. As p1 is prime and divides the product
n = q1 . . . qs, it must divide at least one factor (w.l.o.g., q1): p1|q1. Then
p1 = q1 as both p1, q1 are prime. Cancel p1:

n/p1 = p2 . . . pr = q2 . . . qs.

As n is composite, 1 < n/p1 < n. Then the inductive hypothesis tells us
that the two factorisations above of n/p1 agree to within order: r = s, and
p2, . . . , pr are q2, . . . , qr in some order, as required. //

Historical Note. We owe Mathematics as a subject to the ancient Greeks.
Of the 13 books of Euclid’s Elements (EUCLID of Alexandria, c. 300 BC),
three (Books VI, IX and X) are on Number Theory. From the ordering of
the material in Euclid, it is clear that the Greeks knew that they did not
have a proper theory of irrationals (i.e. reals). Although they did not state
FTA, it had been assumed that they ”knew it really”, but did not state it
explicitly. This view is contradicted by Salomon BOCHNER (1899-1982)
(Collected Papers, Vol. 4, AMS, 1992). According to Bochner, the Greeks
did not know FTA, nor have a notational system adequate even to state it!

L. E. DICKSON (1874-1954) (History of the Theory of Numbers Vols 1-3,
1919-23) does not address the question of the Greeks and FTA!

The first clear statement and proof of FTA is in Gauss’ thesis (C. F.
GAUSS (1777-1855); Disquisitiones Arithmeticae, 1798, publ. 1801).
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Q2 (Basel problem: Leonhard Euler (1707-1783) in 1735 ).
(i) By Fourier Analysis (Joseph Fourier (1768-1830), Théorie analytique de
la chaleur, 1822).

Write an for the Fourier cosine coefficients of |x| on [−π, π] (|.| is even, so
we do not need sine terms). Then
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(ii) By Complex Analysis (Cauchy, 1820s). See e.g. M2P3, L32 (2011).
The infinite product for sin is

sin z

z
= Π∞1 (1− z2

n2π2
) (∗)

Taking z = π/2 gives Wallis’ product of 1656 (Problems 6 Q3 by Real Anal-
ysis)
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).

By (∗) and the power series for sin,
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Equate coefficients of z2:
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