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20th C.: Early

We move now to the 20th C. Week 10 will focus on the first half, Week 11
(not taught – for info) on the second half. The core of the undergraduate
curriculum is based on the 19th C. The mathematics of the 20th C. is dif-
ferent: there is much more of it (in line with population growth, etc.); it is
much more technical (so harder to even sketch at this level). Consequently,
no single person can hope to have a proper understanding of all of 20th C.
mathematics. So inevitably, our treatment is incomplete, and reflects my
own knowledge and interests.

The 20th C. has seen the emergence of the modern world: from 1900
(electricity supply and the telegraph were both new) to the ‘global village’
of the world in the internet age.

In 1900, the UK had only a handful of universities, and most of them did
not admit women. Universal adult suffrage, even in the West, is post-WWI.
Only a tiny fraction of the school cohort went to university. Similarly in
Germany and France, the leading countries mathematically at that time.

US mathematics took off between the World Wars; before then, it was
normal for US academics to take their PhDs in Europe, usually Germany.

The great change in the mathematical world was the great change in the
world generally: the Nazis, and later WWII. A high proportion of leading
academics then as now were Jewish; they were forced out of their jobs in
Germany by state decree, and either fled to the US, UK etc. or (largely)
perished in the Holocaust. Intellectual leadership passed irrevocably from
Europe to the USA, as a direct result of Adolf Hitler (1889-1945).

WWI led to the collapse of four empires (German, Austrian, Russian,
Ottoman), and WWII to that of a fifth (British). The Russian Empire fell
in 1917; the USSR, which replaced it, fell in 1991. The resulting turmoil was
traumatic for the fSU – but had a wonderful effect on western mathematics,
as many brilliant and superbly educated mathematicians were able to seek
employment elsewhere, where they would be paid in hard currency. Hence
the large number of Russian names in the staff lists of western universities.
Note. Jewish scientists have always been prominent out of all proportion to
their numbers. Jews constitute 0.2% of the world’s population, but 20% of
Nobel prize-winners (presumably because of the Jewish respect for learning).
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ANALYSIS
Emile Borel (1871-1956)

Borel took his PhD in 1893, supervised by Darboux.
Leçons sur les séries divergentes, 1895 (2nd ed. 1928).
Leçons sur la theorie des fonctions, 1898 (2nd ed. 1914, 3rd ed. 1928).
Leçons sur les fonctions monogènes uniformes d’une variable complexe, 1917.

In these and other books, in his lectures and in the work of his students,
Borel seeks to systematise the treatment of analysis, post-Cantor. From
1905, he also worked on probability theory.

Henri Lebesgue (1875-1941)
Lebesgue took his PhD in 1902, supervised by Borel. In his pioneering

thesis ‘Intégrale, longueur, aire’ (Annali di Mat. 7 (1902), 231-259), Lebesgue
introduces the new subject of measure theory, and a new integral, now called
the Lebesgue measure. Despite being harder to set up than the Riemann
integral, it is much more general and powerful and much easier to manipulate
(e.g., in interchanging limit and integral – Lebesgue’s monotone convergence
theorem and Lebesgue’s dominated convergence theorem). Lebesgue measure
is the mathematics of length, area and volume. It is also the mathematics of
gravitational mass, electrostatic charge, and probability; in probability, the
total mass is one, and the integral is the expectation. The essence of measure
theory is countable additivity: for An disjoint measurable sets with measures
µ(An), the measure of their union is the sum of their measures:

µ(
∞⋃
0

An) =
∞∑
0

µ(An).

René Baire (1874-1932)
Baire’s thesis (1899) contains the Baire category theorem. This is now

stated in the language of General Topology, which did not then exist, so we
will not go into detail. Suffice to say here that category and measure are
closely linked. For a monograph comparing them, see
J. C. OXTOBY, Measure and category, Springer, 1971 (2nd ed. 1980).

Maurice Fréchet (1878-1973)
Fréchet’s thesis of 1906, written under Hadamard, introduced metric

spaces (not under that name). This is an important step towards General
Topology (below). Fréchet’s work marks a new level of abstraction in math-
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ematics; this will be characteristic of the 20th C.

Felix Hausdorff (1868-1942).
Grundzuge der Mengenlehre, 1914 (2nd ed. 1927, 3rd ed. 1937)

In this book, Hausdorff begins the subject of General Topology (including
as a special case metric spaces, which he named). This provides the right
language in which to discuss ‘open and ‘closed’ – crucial for Analysis, as we
have seen (e.g. Week 9, Heine’s theorem, Heine-Borel theorem).

General Topology was systematically studied by the new Polish school of
mathematics1, principally by Kazimierz Kuratowski (1896-1980). In honour
of this, a complete separable (i.e., having a countable dense set, like the ra-
tionals) metric space – the right setting in which to do Analysis – is called a
Polish space.

Constantin Carathéodory (1873-1950).
Theory of functions of a complex variable, I, II 1950/1960.;
Conformal representation, Cambridge Tracts 28, CUP, 1932 (2nd ed. 1958)

Carathéodory was the greatest Greek mathematician since antiquity, though
he spent most of his career in Germany. He was basically an analyst, but
had a wide range, and was regarded as the natural successor to Hilbert in
German mathematics. The Carathéodory extension theorem is the key to
technical Measure Theory. He also worked on thermodynamics, conformal
representation, and calculus of variations.

FUNCTIONAL ANALYSIS (FA)
As we have seen (Week 9), Hilbert space emerged in 1905 in Schmidt’s

work, and Hilbert-Schmidt operators on them in 1908. This led to a new
ability to expand solutions of ODEs, PDEs and integral equations in series
of eigenvalues and eigenfunctions. This led to the subject of spectral the-
ory, and the Courant-Hilbert book of 1924. This was just the mathematics
needed to handle the demands of quantum theory, which began its modern
form in 1925. The year 1932 saw three very different key books:
M. H. STONE, Linear transformations in Hilbert space, AMS Coll. Publ.
15 (1932);
J. von NEUMANN, Mathematische Grundlagen der Quantenmechanik, Springer

1Poland achieved independence after WWI, having been partitioned between Austria,
Prussia and Russia.
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(1932);
S. BANACH, Théorie des opérations linéaires, Warsaw (1932).

Stefan Banach (1882-1945)
The modern era of FA begins with Banach’s book. Hilbert space is a

generalisation of Euclidean space to infinitely many dimensions; in both one
has an inner product (generalising the ordinary dot product of vectors), and
the length (or norm), metric and topology stem from that, Banach recog-
nised that this is too special, and studied complete normed vector spaces
(topological vector spaces in which the topology is given by a norm and is
complete). These spaces are very important, and are named Banach spaces.
The Hahn-Banach theorem is one of the cornerstones of FA.

Laurent Schwartz (1915-2002)
Schwartz was an analyst, best known for his generalised functions (or

Schwartz distributions) of 1950/51. These made rigorous the ”Dirac delta”
of quantum mechanics, used freely in Physics from 1930 on. This broadening
of the definition of a function leads to a much cleaner theory of PDEs.

ANALYTIC NUMBER THEORY
We met the Prime Number Theorem (PNT in Week 8, with Gauss and

Legendre, where it remained a conjecture. Just as 1872 saw two indepen-
dent constructions of R, so 1896 saw two independent proofs of PNT, due
to the Frenchman Jacques Hadamard (1865-1962) and the Belgian Charles
de la Vallée Poussin (1866-1962) (Cours d’analyse 1 (1902), 2 (1906), 7th ed.
1938; Intégrales de Lebesgue, fonctions d’ensemble, classes de Baire, 1916).

Edmund Landau (1877-1938), PhD 1899, Berlin (Frobenius and Fuchs)
Handbuch der Lehre von der Verteilung der Primzahlen (1909) [Handbook
on the theory of the distribution of prime numbers]
Vorlesungen über Zahlentheorie (3 vol.) (1927) [Lectures on number theory].

Landau is credited (by Hardy) with having created Analytic Number The-
ory as a subject. For details, see e.g. NHB, M3P16.

Landau’s extensive mathematical writings were admired for their style as
well as their content. The Satz-Beweis (theorem-proof) style usual today –
though traceable back to the ancient Greeks – takes its modern form as much
from Landau as from anyone.

Landau’s Ergebnisse (1916, 2nd ed. 1986) was an excellent and influential
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book on Complex Analysis.

HARDY and LITTLEWOOD
G. H. Hardy (1877-1947); Works I-VII;
J. E. Littlewood (1885-1977); Works I, II.

When Hardy was a student in Cambridge in the 1890s, Britain was not
known for analysis. Hardy, an analyst and number theorist, became the best-
known British mathematician of the 20th C. Littlewood too was an analyst.
The Hardy-Littlewood collaboration (95 papers, from 1912 to 1948) is the
longest and most famous in mathematical history. Both wrote excellent au-
tobiographies:
G. H. HARDY, A mathematician’s apology, CUP, 1940 (repr. 1979);
J. E. LITTLEWOOD, A mathematician’s miscellany, 1953 (2nd ed., Little-
wood’s Miscellany, ed. B. Bollobás, 1986).

Srinivasan Ramanujan (1887-1920), FRS and Fellow of Trinity College, Cam-
bridge, 1918.

Ramanujan was a self-taught genius and the greatest of Indian math-
ematicians. He was principally a number theorist. In 1913, as a clerk in
Madras, he wrote to Hardy listing some of his best results. Hardy and Lit-
tlewood recognised his talents, and got him to Cambridge in 1914. He fell ill
there in 1917, and returned to India in 1919, where he died the next year.

Ramanujan’s work is too technical even to attempt to summarise here.
Hardy’s lectures on Ramanujan’s work were published in 1936 (Inst. Adv.
Study, Princeton). More recently, the mathematicians G. E. Andrews and
B. C. Berndt have developed his work, edited his notebooks, etc.

Norbert Wiener (1894-1964); The Fourier integral, CUP, 1933
Wiener was a wonderful analyst and an all-round genius, who contributed

to many areas. For appreciations of his work, see e.g.
Proc. Norbert Wiener Centenary Congress, 1994, PSAM 52, AMS, 1997;
The legacy of Norbert Wiener: A centennial Symposium, AMS 1997.
See also his autobiography, Ex-prodigy and I am a mathematician, MIT
Press, 1953, 1956.

RUSSIAN ANALYSIS
N. N. Luzin (Lusin) (1883-1950)
Les ensembles analytiques, 1930 (with a foreword by Lebesgue).
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Luzin was an analyst, and (with his student M. Ya. Suslin (Souslin)
(1894-1919), who died tragically young of typhus) one of the creators of the
theory of analytic sets. These arose out of a mistake in Lebesgue’s work, and
now play a key role in descriptive set theory. See e.g.
A. S. KECHRIS, Classical descriptive set theory, Springer, 1995.

Andrei Nikolaevich Kolmogorov (1903-1987)
Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, 1933 [Foundations
of probability theory].

Kolmogorov was one of the greatest mathematicians of the 20th C., and
the greatest probabilist ever. He was a pupil of Luzin, and began as an
analyst. He became famous early for his work on Fourier series. His Grund-
begriffe founded modern Probability Theory as a part of Measure Theory,
where the (probability) measure has total mass 1. His deepest single result
is probably his solution to Hilbert’s 13th problem. For details of his extraor-
dinary career, see e.g.
D. G. KENDALL, Obituary, A. N. Kolmogorov, Bull London Math. Soc. 22
(1990), 31-100.
This contains ten pieces on different aspects of his work.2 For an account of
the passage from Lebesgue to Kolmogorov here, see e.g.
NHB, Studies in the history of probability and statistics XLVI. Measure into
probability: from Lebesgue to Kolmogorov. Biometrika 87 (2000), 145-156.

LOGIC AND FOUNDATIONS
Following Cantor’s introduction of set theory in the late 19th C., it was

soon noticed (by Burali-Forte and others) that one can be led into contra-
diction if one proceeds naively. An example is the ‘paradox of the liar’. To
see one form of this, write ‘The statement on the other side of this piece of
paper is false’ on both sides of a piece of paper. Now read one side, and
ask yourself whether what you read is true or false (it can be neither). For
another form, the ‘barber’s paradox’, see Kline, 1183.

This has become known as Russell’s paradox, after the work of Bertrand
Russell (1872-1970). Russell developed his ‘theory of types’ to avoid this.
[See e.g. Halmos’ Naive set theory.] Russell set out his theory in Principles
of Mathematics (1903), and later (with A. N. Whitehead (1861-1947)) Prin-

2NHB, Kolmogorov’s work on limit theorems in probability theory, 51-58; see also Th.
Probab. Appl. 34 (1989), 129-139.
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cipia Mathematics (3 volumes, 1910-13). See also Hilbert’s second problem.
The axioms of 19th C. mathematics needed to be augmented for technical

reasons. One way to do this is via the Axiom of Choice (AC), introduced by
Ernst Zermelo (1871-1953). It is more usually employed in an equivalent for-
mulation, Zorn’s Lemma (Max Zorn (1906-93)) (cf. Hilbert’s first problem).
AC is needed for the Hahn-Banach theorem, so in Functional Analysis, etc.

As noted (Week 9), Hilbert’s views on the nature of mathematics and
its foundations were too naive. Kurt Gödel (1906-78) showed in 1931 that
mathematics is incomplete: any mathematical theory rich enough to contain
the set N of natural numbers must contain statements which can be nei-
ther proved nor disproved. As a corollary, the consistency question raised
by Hilbert is undecidable (Kline, 1206-7; B 27.10). Gödel also showed in
1940 that AC is consistent with the other axioms of set theory. Alfred Tarski
(1902-83) was a Polish Jew who was in the US at the start of WWII, and
stayed there; he was a logician, working on e.g. model theory. He and Ba-
nach introduced the Banach-Tarski paradox in 1924 (not really a paradox!).

Alan M. Turing (1913-54) showed in 1937 that Hilbert’s question on decid-
ability has a negative answer. His work led to the development of computable
numbers, and later to the development of the computer. See e.g.
A. HODGES, Alan Turing – the enigma of intelligence. Counterpoint, 1983.

TOPOLOGY
We have discussed General Topology above under Analysis, and the work

of Hausdorff and Kuratowski. For a full history of topology, see
I. M. JAMES (ed.), A history of topology, North-Holland, 1999 (40 ch.).
See also the topologists in James’ Remarkable mathematicians (W 0).
L. E. J. Brouwer (1881-1966)

Brouwer was a Dutch topologist, who in 1909 proved his fixed-point the-
orem; see e.g. Th. 1.9 of A. HATCHER, Algebraic topology, CUP, 2002.
Brouwer lost faith in his early work, and in mathematics in general, and
devoted himself to intuitionism, a movement in Mathematical Logic (which,
like Constructivism, sought to avoid non-constructive proofs, proof by con-
tradictiion, etc.). This led to a struggle with Hilbert, who was editor-in-chief
of the Mathematische Annalen; Hilbert got Brouwer expelled from the edi-
torial board (the Annalenstreit).

A definitive early classic was
P. Alexandroff & H. Hopf, Topologie, Springer, 1935.
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ALGEBRA
Our general references are

G. BIRKHOFF & S. Mac LANE, A survey of modern algebra, Macmillan,
1953;
P. M. COHN, Algebra, Vols 1-3, Wiley (1, 1974/82; 2, 1977/89; 3, 1991).

Group representations (Frobenius, Burnside, 19th C.) were taken further
by Issai Schur (1875-1941). They are widely used in quantum mechanics:
B. L. van der WAERDEN, Die gruppentheoretische Methode in der Quan-
tenmechanik, Springer, 1932.
Emmy Noether (1882-1935)

Emmy Noether, a German Jewess, was arguably the greatest woman
mathematician of all time; her work was of prime importance in the devel-
opment of modern algebra. She eventually obtained an academic post at
Göttingen, with support from Hilbert, in the teeth of opposition to the ap-
pointment of a woman. Then, being Jewish, she had to flee Germany, and
worked in the US until her untimely death.
B. L. van der Waerden (1903-96)
Moderne Algebra, I (1937), II (1940), Springer.

Van der Waerden was a Dutch mathematician who spent most of his ca-
reer in Germany. He was much influenced by Noether, and much of her work
is incorporated in his Volume II.3

We return to the links between Algebra and Topology in Week 11; cf.
Ch. A. WEIBEL, History of homological algebra, his webpage, Rutgers U.
GEOMETRY

The 19th C. work on geometry was continued by the Italian school. In
particular, Ricci and Levi-Civita revolutionised differential geometry by in-
troducing tensor methods in the early 20th C. This provided the mathematial
machinery needed for Einstein’s General Theory of Relativity (below).

H. F. Baker (1866-1956) of Cambridge continued and developed these
ideas; see e.g. his obit. [JLMS 32 (1957), 112-128, Hodge]. He was suc-
ceeded in 1936 by W. V. D. (Sir William) Hodge (1903-75) [obit. BLMS
9 (1977), 99-118, Atiyah]. The non-technical parts of this article provide
a good account of the increasingly close connections between geometry and
topology; the two subjects are now all but inseparable. Note the interpreta-
tion of Maxwell’s equations in terms of Hodge’s theory of harmonic forms.

3Moderne Algebra uses Fraktur, or ‘Gothic letters’ (‘backslash mathfrak’ in TeX). See
W for this, and a history of the ‘Antiqua-Fraktur’ controversy under the Nazis.
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QUANTUM THEORY
Black-body radiation. Classical physics in the 19th C. had many successes,
including the discovery of the electron in 1897 by J. J. Thomson (1856-1940).
However, it failed to explain some phenomena, such as the observed variation
of energy with frequency in black-body radiation. Max Planck (1858-1947)
inaugurated modern physics in 1900 by proposing a quantum theory of radi-
ation (in which energies take discrete rather than continuous values). Using
thermodynamic arguments, he introduced Planck’s constant ~, and measured
it experimentally. His work led Kuhn towards his theory of paradigm shifts:
Th. S. KUHN, Black-body theory and the quantum discontinuity, 1894-1912.
U. Chicago Press, 1978.
Photoelectric effect. Hertz (1886/7), while experimentally confirming Maxwell’s
electromagnetic theory of light, discovered the photoelectric effect: ultravio-
let light causes electrons to be omitted from a metallic surface. Experiment
shows that there is a minimum (threshold) frequency below which emission
ceases. Classical physics cannot explain this, but Einstein (below) proposed
a quantum explanation (radiation is itself discrete: the packets are called
photons) in 1905. This led him to a value of ~ in agreement with Planck’s.
Atomic spectra. It was known classically that atoms emit electro-magnetic
radiation (e.g. when heated), and that the frequencies are discrete and char-
acteristic of the type of matter. Following the nuclear model of the atom
proposed by Ernest Rutherford (1871-1937) in 1911, Niels Bohr (1885-1962)
suggested that electrons have stationary orbits around the nucleus, their an-
gular momenta being quantised (i.e. discrete). This was explained in 1924
by Louis de Broglie (1892-1987) in terms of wave-particle duality: both radi-
ation and matter can be considered as either waves or particles.

Modern quantum theory began in 1925 with the work of Werner Heisen-
berg (1901-1976) and Erwin Schrödinger (1887-1961). Their approaches were
formulated differently, Heisenberg’s in terms of matrices, 4 Schrödinger’s in
terms of PDEs/waves, but were shown to be equivalent by Schrödinger in
1926. Heisenberg’s main contribution is his Uncertainty Principle: it is im-
possible to measure both the position and the momentum of a particle ex-
actly. Schrödinger’s main contribution is his PDE, Schrödinger’s equation.

When written as an eigenvalue problem, the eigenvalues give the allowed
energies of the system. Pauli’s exclusion principle (Wolfgang Pauli (1900-58)

4When Heisenberg found his matrix formulation, he didn’t know what a matrix was.
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also dates from 1925, as do the Pauli spin matrices (cf. quaternions).
Paul Dirac (1902-84); Principles of quantum mechanics (1930), Nobel

Prize 1933 (with Schrödinger): Dirac gave a relativistic treatment of the
electron, and predicted the positron and anti-matter.
Group theory in quantum mechanics

The representation theory of topological groups (particularly the classical
compact groups) play a key role in quantum mechanics (via the Peter-Weyl
theorem). This led to group theory invading physics, and to physicists of the
time talking about the Gruppenpest (group plague). The first book on this
was by Hermann Weyl (1885-1955):
H. WEYL, Theory of groups and quantum mechanics, (German, 1928, 1930);
Eng. tr. 1931.
H. WEYL, The classical groups: Their invariants and representations, 1939/53;
symplectic group (arising from Hamiltonian mechanics); Lie algebras.

Spin entered Quantum Mechanics in 1927 with Pauli; Dirac used it in
1928. Spinors were studied by Elie Cartan (1869-1951) (The theory of
spinors, 1937/66/81, Dover). He also worked on classification of Lie alge-
bras, and introduced the exterior derivative in differential geometry.
RELATIVITY
Tullio Levi-Civita (1873-1941), pupil of Ricci.

Riemann’s theory of manifolds was developed by Christoffel, Bianchi and
others. Ricci and Levi-Civita (Math. Ann. 54 (1901), 125-201) studied
differential invariants on manifolds: invariant under changes of coordinate
system, and so properties of the manifold (or the physical system it repre-
sents). The name tensor calculus is from Einstein in 1916.
Albert Einstein (1879-1955)

Einstein worked in the Swiss Patent Office in Berne from 1902. He be-
came Associate Professor of Theoretical Physics at ETH, Zürich in 1909,
and Professor in Berlin in 1914. He won the Nobel Prize for Physics in 1921
(for work on the photoelectric effect – relativity theory was considered too
controversial still). A Jew, he left Germany in 1933 for the new Institute for
Advanced Study in Princeton, New Jersey.

Einstein was born in Ulm, which celebrated Einstein Year in 2005, for
his three great papers of 1905: on the photoelectric effect, the molecular
explanation of Brownian motion, and the Special Theory of Relativity. This
introduces the Einstein equation E = mc2, and unifies Newtonian mechanics
and Maxwellian electrodynamics for bodies in uniform (relative) motion).

The General Theory of Relativity (GTR) (announced 1915, publ. 1916)
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extends the Special Theory to cover acceleration, e.g. under gravity.
The GTR makes three key testable predictions:

1. Perihelion of Mercury (perihelion: point of closest approach to the Sun).
This was known to advance by about 574 seconds of arc per century (‘relative
to the fixed stars’). There was a discrepancy of 45±5 seconds of arc between
classical (Newtonian) theory and observation. GTR successfully explained
43 seconds of arc (1915).
2. Bending of light by a gravitational field. GTR’s prediction was confirmed
experimentally by A. S. (Sir Arthur) Eddington (1882-1944) during an eclipse
of the Sun on 29 May 1919. This made Einstein world-famous overnight, and
helped restore scientific relations with Germany after WWI. 5

3. Gravitational shift of spectral lines. See Whittaker, EM II, 180-181.
Einstein was the greatest theoretical physicist since Newton, and was per-

haps the last mathematician (except Hawking, Week 11) to be famous – in
the ordinary sense, of being well known to the general public.
FLUID MECHANICS

The theory of hydrodynamics goes back to Daniel Bernoulli and Euler;
the Navier-Stokes equations of viscous flow were known by 1850. The advent
of the steam engine gave a new impetus, to naval architecture, and to the
flow of pumped water in pipes. The 20th C. has been much concerned with
aeronautics. We return to this in Week 11.
STATISTICAL MECHANICS

From Clausius, entropy increases; from Kelvin, equilibrium minimises en-
ergy. These tendencies are often in conflict with one another; hence phase
transitions – freezing and boiling, ferro-magnetism, etc., and interface phe-
nomena such as surface tension. Following the Ising model (Ernst Ising
(1900-98) in 1925) for ferromagnetism, Lars Onsager (1903-76) solved the
2-dimensional Ising model with no magnetic field in 1944. An important
tool here is the Legendre transform (see Week 9: Georgii and Ellis).

Quantum theory raised new problems. Particles may be bosons (Bose-
Einstein statistics: symmetric wave-function, integer spin; do not satisfy
Pauli exclusion; prototype: photon) or fermions (Fermi-Dirac statistics: anti-
symmetric wave-function, half-integer spin; satisfying Pauli exclusion; proto-
type: electron). For background, see e.g.
B. SIMON, The statistical mechanics of lattice gases, Vol. I, PUP, 1993.

5Hardy was British, Marcel Riesz Hungarian. Their 1915 book on Dirichlet series bears
the lovely inscription ‘Auctores hostes idemque amici’ – Authors, enemies and yet friends.
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STATISTICS
After the discovery of the method of least squares, and the Gauss-Laplace

synthesis (the First Heroic Period of 19th C. Statistics), there was a Long
Pause, in which much else was done in mathematics but little in statistics.
The Second Heroic Period was inaugurated by Sir Francis Galton (1822-
1911), with his study of Hereditary genius (1869). This led to the concepts
of regression and correlation. See e.g. NHB, Heroic Periods (Papers), NHB
and J. M. Fry, Regression, Springer, 2010.

The relevant mathematics was developed by Karl Pearson (1857-1936),
who inaugurated the modern era in Statistics with his Chi-square (χ2) test
of goodness of fit in 1900, and F. Y. Edgeworth (1845-1926), who gave the
multivariate normal density in 1893. This paved the way for the career of R.
A. (Sir Ronald) Fisher (1890-1962), the greatest statistician ever, and one
of the greatest geneticists. Fisher did his greatest work at the Rothamsted
Experimental Station in Harpenden, Herts in the 1920s. From the Dramatis
Personae in Bingham & Fry:
R. A. (Sir Ronald) Fisher (1890-1962), likelihood, 1912 [1.6], density of r2,
1915 [7.3], F -distribution, 1918 [2.6], ANOVA, 1918 [Ch. 2], sufficiency, 1920
[4.4.1], z-transformation, 1921 [7.3], maximum likelihood, 1922 [1.6], Fisher’s
Lemma, 1925 [2.5], ANCOVA, 1932 [5.2], ancillarity, 1934 [5.2], information
matrix, 1934 [3.3], design of experiments, 1935 [9.3], scoring, 1946 [8.1]
GENETICS
Mathematics and Biology.

The two foundations of modern biology are the Darwinian theory of nat-
ural selection (Charles DARWIN (1809-1882): On the Origin of Species by
means of Natural Selection, 1859 – The Origin of Species), and Mendelian
genetics (Gregor MENDEL (1822-1884): Experiments on plant hybridiza-
tion, 1866). Mendel’s work was largely forgotten, but rediscovered in 1900.
It was thought at first that Mendelian genetics and Darwinian natural selec-
tion were incompatible, but this is not so; the two were synthesized by three
people: the American Sewall Wright (1889-1988) and the Englishmen Fisher
(above) and J. B. S. Haldane (1892-1964). The resulting Darwin-Mendel
synthesis is the basis of modern biology.

The relevant mathematics used Markov chains (A. A. Markov (1856-1922)
in 1907). These give models for stochastic processes (random phenomena un-
folding with time) in which there is no memory. The Fisher-Wright model of
mathematical genetics is one of the most important classical Markov chains.

12


