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17th C.: DESCARTES to NEWTON and LEIBNIZ

Background
We are now well into the 17th C., and what we take for granted – books,

universities, the scientific method etc. – is starting to emerge.
Christianity had split a century before, in the Reformation, into Catholi-

cism (centred on Rome, and dominant in S. Europe) and Protestantism (dom-
inant in N. Europe), following Martin Luther (1483-1546) and his Ninety-Five
Theses (1517)1. This led to the Counter-Reformation and the Inquisition,
of which Galileo fell foul. It also led (or contributed to) the horrors of the
Thirty Years’ War (1618-48) in Germany, which devastated Germany and
from which it took a long time to recover.2

We shall mainly deal with France, Britain and the Low Countries. France
had serious internal dissension (the Frondes), then absolute monarchy under
Louis XIV (1638-1715, reigned 1661-1715), leading to the French Revolution
of 1789. England had the Civil Wars (1642-46 and 1648-49; Interregnum
1649-1660; Restoration 1660). The Low Countries were subjected to the
Eighty Years’ War (Dutch War of Independence, 1568-1648).

We note that the religious tensions of the time can be seen today in
University titles. A University is headed by a Vice-Chancellor (VC); the
Chancellor is an honorific figure3. Many universities were founded by Papal
Bull (order of the Pope). Academics opposed to Catholicism noted that the
University Statutes typically did not specify the powers of the Chancellor –
who could then be ignored, hence the rise of the VC.

We note here also the translation of the Bible into German (Luther; NT
1522, OT 1534) and English (William Tyndale 1525; Authorised Version –
King James Bible – 1611). Latin was no longer used in Protestant services,
but survived in Catholic services till the Second Vatican Council of 1962-5.

The Bank of England was founded under William III in 1694, to finance
the expansion of the Royal Navy (to counter the French and the Dutch),

The Académie Francaise was founded in 1635 on an initiative of Cardinal
Richelieu. The Royal Society was founded in 1662 by King Charles II.

1nailed to the church door at Wittenberg
2It is quite arguable that Germany has never fully recovered from the Thirty Years’

War. Cf. ancient Greece and the Peloponnesian War.
3cf. the Colonel of a Regiment and its Colonel-in-Chief.
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Tycho Brahe (1546-1601), Danish astronomer; spent twenty years observing
planetary motion.
Johannes Kepler (1517-1630) became Brahe’s assistant at the Prague Obser-
vatory in 1600, and then spent twenty years analysing Brahe’s data.
Astronomia Nova (1609): contains Kepler’s Laws:
1. Planets move about the Sun in elliptical orbits with the Sun at one focus.
2. A radius vector from Sun to planet sweeps out equal areas in equal times.
Kepler’s third law (1619): P 2 ∝ a3 (P the orbit’s period, a its semi-axis).
Marin Mersenne (1588-1648).

Mersenne was educated by he Jesuits at La Flêche, where he met Descartes
(below), who encouraged him to study mathematics. From 1635 till his death
in 1648, he corresponded with the leading scientists and mathematicians of
his day, including Descartes and the Pascals (father and son), and organised
conferences at which they could meet and discuss.

Mersenne primes are those of the form Mp := 2p − 1 for p prime.
René Descartes (1596-1650) (B 17.2-10)
The Method (1637) (Discours de la méthode pour bien conduire sa raison en
chercher la vérité dans les sciences.

The Method marks a milestone in the history of philosophy and science.
The most important feature is its emphasis on ‘systematic doubt’ (B, 375).4

Descartes believed thought to be the foundation of all knowledge, hence
his famous dictum Cogito, ergo sum (I think, therefore I am). He had great
faith in his ‘Cartesian system’ of philosophy, which has led to him being
called the ‘father of modern philosophy’. Its impact helped the change from
a religious to a scientific view of the universe. ‘Descartes proclaimed explic-
itly that the essence of science was mathematics’ (Kline, 325).

Descartes’ views on science are discussed at length, and contrasted with
Galileo’s, in Kline Ch. 16. It was Galileo, rather than Descartes, who em-
phasised the importance of experiment and observation, the real essence of
the scientific method.
Le Géométrie (Appendix to La Méthode.

The only positive contribution of the thirty Years’ War to mathematics
was the opportunity that winter campaigning in 1619 (under Duke Maximil-
ian of Bavaria, on the Imperialist – ‘Catholic’ – side) gave Descartes to think
about mathematics.
Book I: Geometric solution of quadratics.

4Otherwise put: the essence of a scientific attitude is constructive scepticism.
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Book II. Conics: conics as curves having equations of the second degree.
Book III: Solution of equations. Descartes’ Rule of Signs.

Modern analytical geometry, or ‘Cartesian geometry’, is only loosely de-
rived from Descartes’ La Géométrie. The strengths of his book lie in its
demonstration of the power of algebraic methods in geometry. Its weaknesses
include failure to exploit graphical methods (curve-tracing, etc.), reluctance
to use negative coordinates, and absence of standard rectangular (‘Carte-
sian’) axes (Descartes used oblique axes, to be found in Apollonius).
La Dioptrique (Appendix to La Méthode. Treatment of the rainbow; refrac-
tion. See e.g.
C. B. BOYER, The rainbow: From myth to mathematics, Princeton UP,
1987 (1st ed. 1959), Ch. VIII.
Girard Desargues (1591-1661) and Projective Geometry (B 17.21, 22)

Desargues’ first important book was La Perspective (1636). This led him
on to his introduction of projective geometry in his Brouillon projet (d’une
atteinte aux evenements des rencontres d’une cone avec un plan) (1639)
Rough draft (of an attempt to deal with the outcome of a meeting of a cone
with a plane). As background, recall:
(i) Many results in geometry concern only incidence properties (whether lines
meet, point lie on a line, etc.); these are preserved under projection.
(ii) Often one has to qualify statements because of exceptional cases involv-
ing ‘infinity’ – e.g., two lines in a plane meet in a point (unless parallel).
Also relevant was the growing awareness of perspective (vanishing point =
‘point at infinity’).

All this led to Projective Geometry, in which it is incidence properties
rather than metrical ones that count. Here one works projectively, using
homogeneous coordinates (in which point in a plane has three coordinates
rather than two, determined up to a constant multiple). Use of projective
methods is a powerful tool which allows much simplification, but involves a
thorough-going change of viewpoint.

Desargues introduced projective geometry in his pioneering book of 1639,
the Brouillon Projet. But it had little impact at the time: it was too far
ahead of its time, too badly written, and too few copies were distributed.

Projective methods in geometry, together with analytic (= coordinate)
and synthetic (= classical) methods, complete the main tools needed to treat
the geometric problems studied up to that time.
Conics. Projective methods allow a simple interpretation of conics as sec-
tions of circular cones by planes: every conic is a projection of a circle, and
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every projection of a circle is a conic.
Projective geometry is of great practical importance: it is the basis of

computer graphics, hence of virtual reality etc.
Blaise Pascal (1623-1662) (B 17.23-25)
Essay pour les coniques (1640) (one page!) Pascal’s theorem (on hexagons
inscribed in a conic), inspired by Desargues’ work.
La logique, ou l’art de penser (1662). This book, written by Pascal (and/or
his associates) at Port Royal, was the most successful logic book of its time,
and was still in use in the 19th C. in Oxford and Edinburgh. The concluding
pages of the Port Royal Logic contain what is apparently the first mention
of ‘probability’ as something measurable.
Traité du triangle arithmétique (1665, posth.). As we have seen, ‘Pascal’s
triangle’ was known long before Pascal to the Chinese and the Arabs; Stifel
introduced the term ‘binomial coefficient’ around 1544. However, Pascal’s
book of 1665 developed the theory of the arithmetic triangle, and had such
an impact that it has been known as ‘Pascal’s triangle’ ever since. See e.g.
A. W. F. Edwards, Pascal’s arithmetic triangle, Griffin/OUP, 1987.
Probability. The date for the beginning of probability as a subject is taken
as 1654, when Pascal wrote a letter to Fermat on de Méré’s problem.
Pierre de Fermat (1601-1665), lawyer and amateur mathematician.
Ad locos planos et solidos isagoge (Introduction to plane and solid loci), writ-
ten by 1636; published 1679, posth. Fermat recognised that an (algebraic)
equation linking x and y represents a curve or locus in the (x, y)-plane. Writ-
ten a year before Descartes Geometry, this insight went beyond Descartes.
Fermat also found the canonical forms of the equations of the conics.
Number theory. Fermat was the founder of modern Number Theory, influ-
enced by Diophantus’ Arithmetica (translated 1621).
Fermat’s little theorem: if p is prime, ap ≡ a (mod p). See e.g.
G. H. HARDY & E. M. WRIGHT, An introduction to the theory of num-
bers, 6th ed., OUP, Ch. VI.
Fermat’s last theorem: if n > 2, xn + yn = zn has no solution x, y, z in non-
zero integers (n = 2: Pythagorean triples!). Proved in 1995 by Wiles.
Fermat’s Principle: light travels along pasths of shortest time. In a homoge-
neous medium, this reduces to Heron’s Principle : light travels along paths
of shortest distance. By the 17th C., light was believed to have finite speed.
The speed of light was first measured by the Danish astronomer Römer in
1676, after Fermat’s death. Fermat’s Principle is a precursor of the Calculus
of Variations (below).

4



Christiaan Huygens (1629-1695).
Huygens was Dutch, a pupil of Frans van Schooten (1615-1660), Professor

of Mathematics at Leiden. Huygens moved from the Netherlands to Paris in
1668, when the Académie des Sciences was founded.
Traité de la lumière (publ. 1690; read to the French Academy, 1678).

Huygens advocated the wave theory of light; the work also covers reflec-
tion and refraction, and polarisation. 5

Pendulum clock, 1656 (Galileo is said to have proposed this in 1641).
Horologium oscillatorium (1673): centripetal force for circular motion. Prin-
ciple of Conservation of Energy. This book was an important precursor of
Newton’s Principia.
Telescopes: Observation of the rings of Saturn.
Thermometers: suggested 0 and 100 for freezing and boiling points – the
Centigrade scale 6.
Huygens’ Principle: Light travels along paths of shortest time. Kline (579-
582) discusses the history of this idea, from the Greeks (Heron) through
Fermat and Huygens to Euler.
The cycloid. Huygens knew from his work on the pendulum clock that the
period of a pendulum is only approximately constant, but depends on the
displacement. He sought a curve such that a particle sliding on it has exactly
the same period regardless of displacement, and showed that this was a cy-
cloid.7

Envelopes and wavefronts. His work on the wave theory of light led Huygens
to regard propagation of light as a continuous process of ‘ripple formation’:
subsidiary wavelets released at time t from, through their envelope, the wave-
front at time t+ dt. For background, see e.g.
J. L. SYNGE, Geometrical optics: An introduction to Hamilton’s method.
Cambridge Tracts in Math. 37, CUP, 1937.
De ratiociniis in ludo aleae (1657) (On reasoning in dice games). This was
the first important book on Probability Theory (recall Cardano’s De ludo

5Huygens’ wave theory of light was opposed by Newton’s corpuscular theory of light.
The wave theory was later revived by Thomas Young in 1801, and by Fresnel. It was not
until Einstein’s work of 1905 on the photon, and later Quantum Mechanics, that it was
realised (wave-particle duality) that both theories are correct, indeed complementary.

6long before Anders Celsius (1707-1744) in 1742
7The locus of a point on a circle rolling without slipping on a plane. The cycloid is also

often used for the arches of bridges.
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aleae was written c. 1526 but only published in 1663).
Gravitation. Huygens opposed Newton’s Law of Gravity, which he regarded
as unphysical (‘action at a distance’) and a mathematical artefact.8 For his-
torical background, see e.g.
Sir Edmund WHITTAKER, A history of the theories of the aether and elec-
tricity. Dover, 1989 (Nelson, 1910/1951), Volume I, Ch. 1: The theory of
the aether to the death of Newton.

John Wallis (1616-1703), Savilian Professor of Geometry at Oxford (1649).
A pupil of Oughtred, Wallis was the greatest British mathematician be-

fore Newton.
Tractatus de sectionibus conicis (1665). This book popularised Cartesian
methods in England, as Schooten’s (written before 1655, publ. 1659) has on
the Continent. Wallis advocated use of coordinate (analytic) and algebraic
methods in geometry – the reverse of the Greek approach, using geometric
methods in algebra. He used the canonical forms for the conics.
Arithmetica infinitorum (1655). This was a (rather non-rigorous) work on
calculus – or rather, the ‘pre-calculus’ of the time. It contains (in effect)∫
xndx = xn+1/(n+ 1) n 6= −1), use of the symbol ∞ for infinity, and Wal-

lis’ product for π (for details, see e.g. my webpage, M2P3, Handout, ‘Infinite
products for sin, cos and tan; Wallis’ product).
Treatise on algebra, both historical and practical (MS 1676; publ. 1685). If
m/n is a fraction in its lowest terms, the decimal expansion of m/n termi-
nates or recurs after at most n − 1 places. ‘Newton-Raphson method’ for
iterative solution of equations (Newton, De analysi, below; Joseph Raphson,
Analysis aequationum universalis, 1690).

Isaac Barrow (1630-1667); Professor of Geometry, Gresham College, London,
1662; Lucasian Professor of Geometry, Cambridge, 1664.

Barrow is chiefly remembered for his influence on Newton, in whose favour
he magnanimously resigned his Cambridge chair. He was a political conser-
vative, disapproving of the Royal Society for ‘infringing on the universities’
prerogatives’, and a mathematical conservative, disliking algebra.
Lectiones geometricae (1670). This work all but anticipates the differential
calculus of Newton and Leibniz.

8This was prescient, as such things are still topical in Physics, e.g. quantum entangle-
ment (cf. the lack of fit between General Relativity and Quantum Mechanics).
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(Lord) William Brouncker (1620-1684), first President of the Royal Society.
Continued fraction for π (related to Wallis’ product):

π/4 =
1

1 + 12

2+ 32

2+ 52

...

Other notable founding Fellows of the Royal Society included:
Robert Boyle (1627-91). Boyle’s Law PV = kT ); mercury thermometer; tem-
perature of blood. The Sceptical Chemist, 1661.
Sir Christopher Wren (1632-1723), Professor of Astronomy at Gresham Col-
lege and architect of St. Paul’s Cathedral.

Sir Isaac Newton (1642-1727).
Newton was born on Christmas Day 1642, in Woolsthorpe, Lincs. He ma-

triculated at Trinity College, Cambridge in 1661, was elected to a scholarship
there in 1664 and a fellowship in 1667. He succeeded Barrow as Lucasian
Professor of Mathematics at Cambridge in 1669, and was elected FRS in
1672.

The value of the books cited earlier may be judged from their impact on
Newton as a student. He read Oughtred’s Clavis, van Schooten’s Geometria
a Renato Des Cartes, Kepler’s Optics and Wallis’ Arithmetica infinitorum.
He attended lectures by Barrow, and knew the work of Viète, Galileo, Fermat
and Huygens.

Following an outbreak of plague, Trinity was closed during 1665-6, and
Newton went home. The foundations of his best work were done during this
period: the binomial theorem; the calculus; the Law of Gravity; decomposi-
tion of white light into colours.

After his unhappy first experiences of publication (below), Newton with-
drew as much as possible from mathematical and scientific life. He continued
to lecture on mathematics at Cambridge (though even this lapsed later – as
was not uncommon in those days). His main interests during the 1670s and
early 1680s were alchemy (= chemistry) and theology.

Newton became Member of Parliament for Cambridge University in 1689
(following the attempts under James II (reigned 1685-8) to re-catholicise
England)9, Warden of the Mint in 1696 and Master of the Mint in 1699. He

9The Universities of Oxford and Cambridge had MPs till 1950.
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was President of the Royal Society from 1703 till his death. He was knighted
by Queen Anne in 1705, and is buried in Westminster Abbey; see his statue
and memorial stone there, and his statue in the square at Grantham, near
his birthplace.
Optics

Newton constructed a reflecting telescope with his own hands (unaware
that he had been anticipated in this by James Gregory (1638-75), Optica
promota, 1663), and presented it to the Royal Society in 1671.

Newton showed, in his Experimentum crucis of 1666, how white light can
be split by prisms into the colours of the rainbow. His work on this was
published in No. 80 of the Philosophical Transactions of the Royal Society
(‘Phil. Trans.’) in 1672.

Newton advocated the corpuscular theory of light. His work was attacked
by Huygens, who favoured the wave theory of light, and by Robert Hooke
(1635-1703, Curator of the RS from 1665), in his Micrographia of 1665.
Newton’s paper on light was refereed and criticised by Hooke. Newton was
hypersensitive to criticism, and reacted to this by refusing to publish sub-
sequently. As a result, his best work was published long after it was done.
Predictably, this led to priority disputes (most notably with Leibniz over the
calculus, below).
Opticks, 1704. Newton’s work on optics was eventually published in book
form (note the archaic spelling).

Newton gave a full treatment of the theory of the rainbow using differen-
tial calculus, following less complete treatments by Descartes and Huygens.
Analysis
Series. Although Newton found the Binomial Theorem

(1 + x)a =
∞∑
n=0

(
a

n

)
xn, |x| < 1,

(
a

n

)
:= a(a− 1). . . . (a− n+ 1)/n!

in his ‘plague years’, 1665-6, he never published it. The result was published
by David Gregory (1627-1720), elder brother of James and Savilian Profes-
sor of Astronomy at Oxford (1691), in 1688. Again, Newton found ‘Taylor’s
Theorem’, eventually published by Brook Taylor (1685-1731) in Methodus
incrementorum directa et inversa in 1715.

Newton did pioneering work on the use of infinite series in analysis, doing
much to make their use regarded as legitimate (recall that the ancient Greeks
had avoided the use of infinite processes where possible).
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Calculus. Newton found the cornerstones of calculus – differentiation, in-
tegration and the ‘Fundamental Theorem of Calculus’ linking the two – in
1665-6 also. His first published account is in the Principia (1687, below).
But he wrote three earlier accounts:
De analysi (per aequationes numero terminorum infinitas (MS 1669, publ.
1711).
De methodis fluxionum (MS 1671, publ. 1736, posth., Method of Fluxions);
Tractatus de quadratura curvarum (MS 1676, publ. 1704, as an appendix to
the Opticks).
Newton’s notation and terminology have not stood the test of time. It sur-
vives only in the dot notation in Mechanics for a time derivative, ẋ(t) :=
dx(t)/dt, but the standard calculus notation and terminology is that of Leib-
niz.
Dynamics; Celestial Mechanics

The great challenge of the new astronomy was to explain Kepler’s Laws,
which had been arrived at empirically. It was suspected that an inverse square
law of attraction was the key by several people, including Hooke and Hal-
ley (Edmond Halley (1656-1742); 2nd Astronomer Royal (after Flamsteed),
1720-42). In 1679 Newton and Hooke corresponded on this. In 1684, Halley
went to Cambridge (where Newton lived as a recluse, having nothing to do
with the Royal Society because of his antipathy to Hooke). Halley asked
Newton what the orbit of a body was under the inverse square law, and
Newton replied that it was an ellipse. On being pressed as to how he knew,
he replied that he had calculated it (long before), but could not find the
proof among his papers. In November 1684 Newton wrote an unpublished
manuscript De motu (corporum in gyrum), on the link between Kepler’s laws
and the inverse square law. Halley put the fear of being beaten by others
(perhaps Hooke) into Newton’s mind, hoping that this would provoke New-
ton into writing his results up into book form. In this Halley was successful.
Newton’s great work, his Principia, was published in 1687, at Halley’s ex-
pense.

Newton was reluctant to publish his work on dynamics, partly because of
his morbid fear of controversy (above), partly because he needed to develop
his ideas on force (culminating in his Laws of Motion), partly because of the
mathematical difficulties, which were severe with the tools then available.
For example, we know that a rigid body in motion behaves like a point mass
at its centre of gravity (centre of mass, centroid). But this needs Integral
Calculus, on which Newton was still working.
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Principia, 1687
Philosophiae naturalis principia mathematica, 1st ed. 1687, 2nd ed. 1713,
3rd ed. 1726.

Newton’s Principia is the most famous mathematical book ever published,
and rightly so. It triggered the Scientific Revolution, and so helped to usher
in the modern world.

In the Preface, one find:
Newton’s Laws of Motion
Law I (inertia): A body continues in its state of rest or uniform motion in a
straight line unless force is applied to change it.
Law II: Force = Mass × acceleration; F = ma.
Law III: To every action there is an equal and opposite reaction.10

Book I. Calculus (which Newton called the Method of Fluxions).
Inverse Square Law of Gravity: every particle of mass in the Universe at-
tracts every other, with a force F = cm1m2/r

2, where mi are the masses and
r is their distance apart; c is a universal constant, the gravitational constant.
Deduction of Kepler’s Laws from the Inverse Square Law.
Deduction of the Inverse Square Law from motion along a conic (so from
Kepler’s First Law).
Centripetal force.
Motion of bodies along surfaces; pendula (following Huygens).
Effective concentration of the mass of a spherical body at the centre.
Three-body problem (motion of three bodies, each attracting the other two);
approximate results. This is motivated by the Sun-Earth-Moon dynamical
system. The problem is still open (and no doubt insoluble).
Book II.
Motion of bodies in resisting media; hydrodynamics. Wave motion; sound
waves; velocity of sound in air. Planetary motion in a vacuum.
Book III (On the System of the World).
Calculation of the Sun’s and planets’ masses from the Earth’s mass.
Average density of the Earth shown to be between 5 and 6 times that of
water (the modern figure is c. 5.5; recall that we know know the Earth’s core
to be molten iron).
Earth not a sphere but an oblate spheroid. Precession of the equinoxes.
Tides (primary cause: the Moon; secondary cause: the Sun (spring and neap

10Note the analogy with double-entry book-keeping: every transaction has a debit effect
one way and a credit effect the other.
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tides)). Why there are two tides a day.
Orbits of comets. Motion of the moon; determination of longitude.
Numerical Analysis: Newton’s divided-difference interpolation formula (Lemma
v, case (ii)).
Later years

In his work at the Mint, and as PRS, Newton was an efficient and careful
administrator. He did much to restore both the coinage and the scientific
standing of the Royal Society.
Overall assessment

Newton was (with Archimedes and Gauss) one of the three greatest math-
ematicians of all time. He was (with Einstein) one of the two greatest physi-
cists of all time. Combining these two, there is a strong case for regarding
Newton as the greatest scientist of all time. He was undoubtedly the greatest
British scientist of all time. His fame – particularly in Britain – needs no
emphasising; we merely note e.g. the well-known story of the apple; his face
on the old £1 note; Alexander Pope’s epitaph:

Nature, and Nature’s Laws, lay hid in Night.
God said, Let Newton be! and All was Light.11

Newton’s name is commemorated in, e.g., the Isaac Newton Institute for the
Mathematical Sciences (INIMS) in Cambridge (next to the Centre for Math-
ematical Sciences).

Newton called himself a philosopher (seeker after the truth), rather than
a scientist or a mathematician. His fascination with theology may seem odd
today, but religion played a much more dominant role in life in those days
than now. He is known to have been a unitarian (one who believed in one
God rather than the Trinity), which would have been perceived as heresy in
his day. This would have been incompatible with his Fellowship of Trinity
and Cambridge chair, so he had to conceal it, at the cost of living a lie. This
partly explains his difficult personality.

Gottfried Wilhelm Leibniz (1646-1716)
Nova methodus pro maximus et minimis, idemque tangentibus, qua nec irra-
tionales quantitates moratur (1684) (A new method for maxima and minima,
and for tangents, not obstructed by irrational quantities).

Leibniz was a polymath, who studied mathematics with Huygens. His

11 It could not last. The devil, shouting ‘Ho,
Let Einstein be!’ restored the status quo.
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Nova methodus was his account of the differential calculus, using the modern
notation dy/dx, etc. His account of the integral calculus, and the Fundamen-
tal Theorem of Calculus linking the two, appeared in Acta Eruditorum in
1686. The notation

∫
f(x)dx is due to him (the integral sign is an elongated

S, for Summe = sum, German).
Leibniz’ Theorem: writing D for d/dx, Dn(fg) =

∑n
r=0

(
n
r

)
DrfDn−rg.

The priority dispute
Leibniz visited London in 1673, was elected a Fellow of the Royal Society,

and knew its Secretary, Oldenburg, and Librarian, Collins. It was because
he could have seen De analysi in MS, at the Royal Society or in one of the
copies circulating on the Continent, that Newton accused Leibniz of plagia-
rism, a charge Leibniz indignantly denied. The quarrel between Newton and
Leibniz broadened to a quarrel between their followers in England and on
the Continent. This was doubly unfortunate, because not only was Leibniz
almost certainly blameless (unlike Newton, who wilfully delayed publication
of his work), but Leibniz’ notation was much superior. It blighted British
mathematics for much of the 1700s, cutting it off from Continental progress.

It is also fair to point out that Newton engaged in acrimonious quarrels
with (in addition to Leibniz) Hooke and Flamsteed, the first Astronomer
Royal. He was not above abusing his position in pursuing such quarrels.
For instance, although we have many fine portraits of Newton (who enjoyed
sitting for artists), we do not know what Hooke looked like: Newton, as
President of the Royal Society, had all portraits of Hooke destroyed. Again,
Newton had anonymous articles supporting him against Leibniz published in
Phil. Trans. Roy. Soc., again an abuse of his power as President.

One moral of this unfortunate quarrel – recognised today – is promptness
in publication. A modern scientist recognises that prompt writing up and
submission of his work is part of his professional duty.
Other work

Leibniz was a lawyer, diplomat and courtier as well as a mathematician.
He wrote Theodicy in 1710, an attempt to reconcile a benevolent, omnipo-
tent God with the existence of evil in the world. Such Leibnizian optimism
was satirised by Voltaire (1694-1778) in his Candide of 1759. The ridiculous
Dr Pangloss, whose slogan is ‘All is for the best in this best of all possible
worlds’, is based on Leibniz. Candide was influential in the Enlightenment.
J. E. HOFMANN, Leibniz in Paris 1672-1676: His growth to mathematical
maturity, CUP, 1974.
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