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18th C.

Background.
The calculus of Newton and Leibniz, plus Newton’s Principia, triggered

the Scientific Revolution. This in turn triggered the Agricultural Revolu-
tion and the Industrial Revolution (which both started in Britain). This,
together with the growth of the British Empire (whose trade was protected
by the Royal Navy) led to the UK becoming a world power, for the first
time. In France, the Enlightenment (French: Siècle des Lumières; Ger-
man: Aufklärung)– a movement of philosophers (Voltaire, Diderot, Rousseau;
David Hume, Adam Smith; Immanuel Kant) – led to a new freedom of think-
ing. The French absolute monarchy could not cope with this, plus defeat at
sea by the UK in the 1750s, plus the financial crisis caused by French naval
expansion in the 1770s (though this did lead to American independence in
1783). The French Revolution followed in 1789, then the Napoleonic wars.
Germany continued a mass of small city states and principalities, under the
Holy Roman Empire (till this was abolished by Napoleon in 1804).
N. HAMPSON: The Enlightenment. Penguin [Pelican], 1968.
A. HERMAN: The Scottish Enlightenment: The Scots’ invention of the mod-
ern world. Fourth Estate, 2001.

The Bernoulli family
The Bernoullis produced more distinguished mathematicians than any

other family in history. Of Netherlands origin, tfe family fled to Basel in
Switzerland in 1583 to escape preligious persecution in the Spanish Nether-
lands. A family tree containing 13 Bernoullis over six generations is in B
20.1. We concentrate on the three most important Bernoullis. Jacques (Ja-
cob, Jacobus), Jean and Daniel (I, in each case).
Jacques Bernoulli (1654-1705), Professor of Mathematics at Basel.
Probability.

Bernoulli was the father of probability theory, with his posthumous book
Ars Conjectandi (AC) of 1713. Part I of AC reprints Huygens’ De ratiociniis
in ludo aleae of 1657, with commentary. Part II is on permutations and
combinations, the binomial theorem, and Bernoulli numbers: the coefficients
Bn in
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useful in many areas (e.g. Analytic Number Theory).
The most important single result in AC is Bernoulli’s theorem. If in n

independent tosses of a biased coin, which falls heads with probability p, tails
with prob. q := 1− p (‘Bernoulli trials with parameter p’, B(p)) we observe
Sn heads, the observed frequency Sn/n of heads converges as n → ∞ to the
expected frequency p in probability, meaning that

∀ε > 0 P (|Sn/n− p| > ε)→ 0 (n→∞).

This – the Weak Law of Large Numbers (WLLN) for Bernoulli trials – is the
first theorem giving a precise form to the folklore idea of the Law of Averages
(the general case, and the corresponding SLLN, are 20th C.).

For a full account of AC, see Ch. 15-16 in
Anders HALD, History of probability and statistics and their applications
before 1750, Wiley, 1990/2003.
Other contributions
Polar coordinates; lemniscate of Bernoulli, r2 = a cos 2θ; logarithmic spiral
r = aebθ. Suggested the term ‘integral’ to Leibniz. Considered continuous
compound interest: he knew (AC II)(

1 +
1

n

)n
↑ c < 3 (we know

(
1 +

x

n

)n
↑ ex).

Jean Bernoulli (1667-1748), Professor of Mathematics at Basel (1705-).
Curves: isochrone; tractix; caustics.
Championed Leibniz against Newton in the priority dispute over calculus.
Taught (M. le marquis) G. F. A. de L’Hospital (1661-1704); L’Hospital’s
book Analyse des infiniment petits (1696), the first textbook on differential
calculus, contains ‘L’Hospital’s rule’ (probably due to Bernoulli).
Daniel Bernoulli (1700-1782).

Under Peter the Great (1672-1725), the capital of Russia was moved from
Moscow to St. Petersburg, on the Baltic.1 The St. Petersburg Academy
was founded by Catherine I, Peter’s widow, in 1725.2 Daniel Bernoulli was
Professor of Mathematics, St. Petersburg, 1724-33; he then moved to Basel.
His main contributions were to Probability Theory:

1founded 1703; Petrograd 1914; Leningrad 1924; St. Petersburg 1991; capital of Russia
1713-28 and 1732-1918

2St. Petersburg Academy of Sciences 1725-1917; Russian Academy of Sciences 1917-25
and 1991 on; USSR Academy of Sciences 1925-91
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1. The normal law and the Central Limit Theorem (CLT); tables of the
normal law.
2. The maximum-likelihood principle (later attributed to Fisher, 20th C.).
3. The St. Petersburg problem. A single play of the ‘St. Petersburg game’ is
to toss a fair coin till it falls heads, receiving a gain of 2k (£, say) if this occurs
at trial k (which happens with probability 2−k). So the expected gain per
play is

∑∞
k=1 2k.2−k =

∑∞
1 1 = ∞. So LLN (Sn/n → E[X] in probability)

does not apply. It can be shown that

Sn/(n log n/ log 2)→ 1 (n→∞) in probability.

Moral expectation. What is the ‘fair price’ for a ticket for one play of the
St. Petersburg game? The result above shows that this price should vary
with n, even though the plays are probabilistically the same. Early workers
attempted to handle such problems using a concept of ‘moral expectation’.
Hardly surprisingly (as one needs 20th C. mathematics, and ‘moral expecta-
tions’ is the wrong approach) such attempts did not succeed.

Abraham de Moivre (1667-1754)
The Doctrine of Chances (DC; 1718; 2nd ed. 1738; 3rd ed. 1756, posth.)

De Moivre was born in France, a Huguenote (= Protestant). He fled to
England to escape religious persecution after the revocation of the Edict of
Nantes in 1685 by Louis XIV.3 He was elected FRS in 1697.

In 1733 de Moivre derived the normal curve (”error curve”: the term
”normal” came later)

φ(x) := e−
1
2
x2/
√

2π

in a 7-page note in Latin Approximatio ... (circulated, but not published).
An English translation of the Approximatio was incorporated in the 2nd
and 3rd editions of DC. De Moivre showed that in n Bernoulli trials with
parameter p

P (
√
n/pq(Sn/n− p) ∈ [a, b])→

∫ b

a

φ(x)dx (n→∞)

(recall that P (Sn = k) =
(
n
k

)
pkqn−k, so the LHS is this summed over k with

np+a
√
npq ≤ k ≤ np+b

√
npq). This is the special case for Bernoulli trials of

3The Edict of Nantes of 1598, under Henry IV, gave Huguenots religious freedom,
following the St. Bartholomew’s Day Massacre of Protestants in 1572.
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the ”Law of Errors”, or Central Limit Theorem (CLT). Note that this refines
Bernoulli’s theorem by telling us how fast Sn/n tends to p: at rate 1/

√
n,

with a normal limit: in modern terminology,

((Sn/n)− p)
√
n/
√
pq → Φ = N(0, 1).

One can see that this result will need an estimate for the large factorials
occurring in

(
n
k

)
= n!/(k!(n − k)!); see Stirling’s formula, below. For back-

ground and details, see Hald, Ch. 22 (DC), 24 (CLT).
De Moivre’s theorem: embryonic form of

(cos θ + i sin θ)n = cosnθ + i sinnθ

(see Euler, below); power series (Phil. Trans.).
James Stirling (1692-1770)
Methodus differentialis (1730): p.135:

log n! = (n+
1

2
) log n− n+ log

√
2π +

∞∑
1

B2k/((2k − 1)n2k−1),

in particular (discarding the series), Stirling’s formula,

n! ∼
√

2πe−nnn+
1
2 (n→∞).

Stirling numbers. These are important in combinatorial theory, and in the
Calculus of Finite Differences.
Conics: full treatment by modern coordinate methods.
Colin Maclaurin (1698-1746), Professor of Mathematics at Aberdeen and Ed-
inburgh.
Treatise on Fluxions, 1742: Maclaurin series (Taylor series about 0).
Euler-Maclaurin sum formula, connecting sums and integrals via series in
Bernoulli numbers. For details, see e.g.
[WW] E. T. WHITTAKER & G. N. WATSON, Modern analysis, 4th ed.,
CUP, 1927/46 [1st ed. 1902, 2nd 1915, 3rd 1920], 7.21,
G. H. HARDY, Divergent series, OUP, 1949, Ch. XIII.
Treatise on algebra (1748, posth.): ‘Cramer’s rule’ (below).
Brook Taylor (1685-1731), Secretary to the Royal Society
Methodus incrementorum directa et inversal, 1715: ‘Taylor’s theorem/series’.
Perspective (books of 1715 and 1719); vanishing points.

4



Christian Goldbach (1690-1764).
Goldbach was a founding member of the St. Petersburg Academy from

1725, and tutor to Peter II (Tsar from 1728). He is remembered for Gold-
bach’s conjecture (letter to Euler of 1742): every even number n ≥ 4 is a sum
of two primes. The weaker Goldbach ternary conjecture (every odd number
n > 5 is a sum of three primes) was solved in 2013 by Harald Helfgott.

Leonhard Euler (1707-1783)
Born in Basel, a pupil of Jean Bernoulli and colleague of Daniel Bernoulli,

Euler was the greatest of all Swiss mathematicians, one of the greatest mathe-
maticians of all time, and the most prolific mathematician ever (his Collected
Works fill 31

2
shelves in the Science Library at UCL). 4

Euler spent 1727-41 at the St. Petersburg Academy, where he succeeded
Daniel Bernoulli as Professor of Mathematics in 1733. He held an appoint-
ment at the Berlin Academy of Sciences under Frederick the Great, King
of Prussia, from 1741-66, returning to St. Petersburg under Catherine the
Great in 1766. Blind in one eye from 1735, Euler lost his sight in 1766, but
continued to publish prolifically.

Volume 5.3 (1983) of the journal Mathematical Intelligencer is dedicated
to Euler (on the bicentennial of his death); on p.6, J. Ewing write:

”Euler left us decisive notation that we still use: the symbol e (1727);
the use of f(x) for a function (1734); the use of sin, cos, tan for the trigono-
metric functions (1748); the notation ∆, ∆2 for finite differences (1755); the
use of

∑
for a sum (1755); and the letter i for

√
−1 (1777). He also left us

ideas – ideas that were developed extensively in the 19th C. (Example: in
1777 he proved the Cauchy-Riemann equations for the real and imaginary
parts of an analytic function, and then used line integrals to compute definite
integrals.) He profoundly influenced many areas of mathematics – number
theory, special functions, complex functions, finite differences, the calculus of
variations, differential equations, differential geometry, topology, mechanics,
and fluid dynamics. This is even more remarkable since less than half his
published work was in mathematics. ”
Mechanica (1736): Newtonian dynamics. The number e:

e :=
∞∑
n=0

1/n!; e = lim
(

1 +
1

n

)n
.

4To all maths students who ‘prefer calculating to proof’: Euler was your patron saint
– the calculator par excellence.

5



Introductio in analysin infinitorum (1748). Volume I: Infinite series; infinite
products; continued fractions.
Euler products. Euler linked the series

ζ(s) :=
∞∑
n=1

1/ns

(the ‘Riemann zeta function: Riemann, 19th C.) with the Euler product

ζ(s) =
∏
p

1/(1− p−s),

where the product extends over all primes p (NHB, M3P16, II.5). Hence:∑
1/n diverges implies Euclid’s theorem: there are infinitely many primes.

Euler showed (the Basel problem)

ζ(2) :=
∞∑
1

1/n2 = π2/6

(NHB, M2P3 L31; M3P16 Problems 4 Q3, Problems 6 Q2).
Euler-Maclaurin sum formula: see above, under Maclaurin.
Euler’s transformation. This is a technique for accelerating the convergence
of a slowly convergent series. It leads to the Euler summation method, which
may be used to sum divergent series. See e.g. Hardy, Divergent series, Ch.
VIII, IX.

Euler’s manipulations of infinite series were often non-rigorous. What he
really lacked was complex-analytic ideas such as analytic continuation (see
e.g. NHB, M2P3, II.8, Hardy, DS, Ch. I). But he was ahead of his time in
complex analysis (19th C.), proving the Cauchy-Riemann equations in 1777.
Euler’s totient function (or φ-function), φ(n), the number of integers k ≤ n
coprime to n, important in number Theory.
Euler’s theorem: if y is coprime to n, yφ(n) ≡ 1 (mod n).
As a corollary: if n is a prime p, φ(p) = p− 1.
Hence also Fermat’s theorem: if p does not divide y, yp−1 ≡ 1 (mod p).
Volume II: Coordinate geometry of three dimensions. Cylinders; cones; sur-
faces of revolution. General theory of curves and surfaces. Quadric sur-
faces: ellipsoids, hyperboloids of one and two sheets; elliptic and hyperbolic
paraboloids. For details, see e.g. Coolidge, Conics and quadrics.
Euler angles in spherical polar coordinates: (θ, φ) (longitude and colatitude).
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Euler line: for a triangle, the circumcentre, orthocentre (point of concurrence
of the three perpendiculars) and barycentre (= cetroid: point of concurrence
of the three medians) are colinear.
Euler identities: eiπ + 1 = 0;

eiθ = cos θ + i sin θ; cos θ =
1

2
(eiθ + e−iθ), sin θ =

1

2i
(eiθ − e−iθ);

Euler’s constant:

1 +
1

2
+

1

3
+ . . .+

1

n
− log n→ γ (n→∞)

(γ = 0.5772156649; it is still not known whether γ is irrational or not).
Institutiones calculi differentialis (1755); Institutiones calculi integralis (1768-
70, Vol I-III)
Ordinary differential equations (ODEs): Integrating factors; linear equations
with constant coefficients; homogeneous and non-homogeneous equations;
Euler method for numerical solution of DEs.
Partial differential equations (PDEs): Wave equation. See e.g. NHB, MPC2.
Euler’s integral for Beta and Gamma: for the Gamma and Beta functions

Γ(x) :=

∫ ∞
0

e−ttx−1dt (x > 0), B(p, q) :=

∫ 1

0

tp−1(1−t)q−1dt (p, q > 0),

Euler found (see e.g. NHB, PfS L5)

B(p, q) = Γ(p)Γ(q)/Γ(p+ q).

Aside on the Gamma function (NHB, M3P16, I.7): It gives a continuous
generalisation of the factorial, Γ(n + 1) = n!. Also Γ(1

2
) =
√

2π, explaining

the factor
√

2π in the normal density φ and Stirling’s formula.
Calculus of Variations (CoV). To maximise (or minimise) an integral

I :=

∫ b

a

F (x, y, y′)dx (y′ = dy/dx)

with respect to variation in the function y = y(x): Euler showed in 1744 that
the solution satisfies the ‘Euler-Lagrange equation’

∂F

∂y
− d

dx
(
∂F

∂y′
) = 0. (EL)
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Example: the Brachistrochrone. A particle slides under gravity along a
smooth curve from A to B. Find the curve for which the time taken is a
minimum (brachos = short, brachistos = shortest + chronos = time, Greek).
The problem was sholved by Bernoulli (Jean and/or Jacques: see B 467) in
1696: the solution is a cycloid. This problem led to the development of the
CoV. It may easily be solved by the Euler-Lagrange equations.

We recall the roots of CoV in the work of Huygens; we return to it later
(Hamiltonian mechanics, 19th C).
Fluid mechanics
Principes généraux du mouvement des fluides. Hist. Acad. Berlin, 1755.
De principiis motus fluidorum. Novi Comm. Acad. Petrop. xiv.1, 1759.
Euler introduced the velocity potential.
Elasticity

Critical loading of beams and struts. Applications: civil engineering; ar-
chitecture.
Euler’s formula for polyhedra: if the numbers of faces, vertices and edges are
F , V , E, then

F + V = E + 2.

This was proved in a letter to Goldbach in 1750 and published in 1752.
The Königsberg problem.

The city of Königsberg had an island below the confluence of two rivers,
and seven bridges. The inhabitants had sought in vain for a walk that went
over each bridge exactly once. Euler showed that there is no such walk. His
solution may be regarded as a first step in Graph Theory, or in Topology.
Fourier analysis. Early indications of what later became Fourier analysis are
to be found in the works of Euler, d’Alembert (below) and Clairaut.
Cauchy-Riemann equations. These were found by Euler (1797, posth.), but
named for Cauchy (1814) and Riemann (1851).

Jean d’Alembert (1717-1783)
Encyclopaedia: 28 volumes, in collaboration with Diderot (1713-1784, the
philosopher of the Enlightenment). In it, he realised the importance of the
limit concept in calculus (and analysis), but did not formulate it precisely.
Traité de dynamique (1743).
D’Alembert’s principle: internal actions and reactions of a system of rigid
bodies in motion are in equilibrium.
PDEs. D’Alembert also studied the wave equation.
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J. H. Lambert (1728-1777)
Theorie der Parallellinien (MS 1766, publ. 1786, posth.)

Recall that for a triangle with angles A, B, C, A+ B + C − π is zero in
the plane (Euclidean geometry), and positive on the sphere (by Girard’s for-
mula of spherical excess). He realised the possibility of a geometry in which
A+B + C − π is negative (constructed in the 19th C. by Beltrami).

Lambert understood clearly the close link between A + B + C − π and
Euclid’s Parallel Postulate. Here he came closer than anyone else to discov-
ering non-Euclidean geometry (19th C.; Bolyai and Lobachevski).

Adrien-Marie Legendre (1752-1833), Professor at the Ecole Militaire
Mémoires par divers savants, x (1785): Legendre polynomials, Pn(x). These
are the orthogonal polynomials (OPs) on [−1, 1] w.r.t. dx; see e.g. Whittaker
& Watson XV. These arise in the solution of Laplace’s equation (19th C.,
below) by separation of variables in spherical polar coordinates. See e.g.
G. SZEGÖ, Orthogonal polynomials, AMS Colloq. Publ. XXIII, 1939/1959.
Eléments de géométrie (1794): an influential textbook (e.g. in 19th C. USA
in translation).
Essai sur la théorie des nombres (1797-8), Vols I, II: the first book(s) devoted
entirely to number theory. For background, see e.g.
André WEIL, Number theory: An approach through history from Hammu-
rapi to Legendre, Birkhäuser, 1984.5

Vol. II contains the Legendre symbol, and states (as Euler also did) the Law
of Quadratic Reciprocity (first proved by Gauss: see e.g. Hardy & Wright,
Theory of Numbers, 6.12, 13): if(p

q

)
:= +1 if the congruence x2 = p mod q is soluble, −1 if not,

then (p
q

)(q
p

)
= (−)

1
4
(p−1)(q−1).

That is, the simultaneous congruences

x2 ≡ q mod p, x2 ≡ p mod q

5Hammurapi (Hammurabi), d.c. 1,750 BC, was the sixth king of Babylon, known for
Hammurabi’s Code, the first written code of law in recorded history.
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are both soluble or both insoluble, unless p, q are both congruent to 3 mod
4, when exactly one is soluble.
Prime Number Theorem (PNT): if π(x) is the number of primes p ≤ x, then

π(x) ∼ x/ log x (x→∞).

PNT was conjectured by Legendre (and Gauss), but not proved till 1896.
Least squares
Nouvelles méthodes pour la détermination des orbites des comètes (1805)
(supplement 1806, 2nd suppl. 1820).

The orbits of planets and comets, being ellipses and so conics, are deter-
mined by two parameters. For flexibility in choice of frame of reference, it
may be useful to use p parameters, θ1, . . . , θp, where p is small. With exact
measurements, these could be determined by p observations, y1, . . . , yp say,
but in practice the yi are polluted by measurement error. However, we may
take n readings where n is large (the larger the better – much larger than p).
The usual set-up is

yi =

p∑
j=i

xijθj + εi (i = 1, . . . , n),

where the xij are known, the εi are independent errors of measurement, and
the θj are to be estimated. How should one estimate the θj? Legendre
suggested the method of least squares: minimise the sum of squares

SS :=
∑
i

(yi −
∑
j

xijεj)
2 =

∑
(observed - expected)2.

The p conditions ∂SS/∂θj = 0 give p simultaneous linear equations in p

unknowns, the normal equations NE; the solutions θ̂j give the least-squares
estimators for the parameters. The method of least squares, in Statistics, is
of great practical importance; we return to it in connection with Gauss.
Traité des fonctions elliptiques et des intégrales eulériennes (1825-32), I-III.
Eulerian integrals: Gamma and Beta functions, etc. Elliptic integrals (first
kind, F (K,φ): DE for a pendulum; second kind, E(K,φ): arc-length for an
ellipse): for K2 < 1,

F (K,φ) :=

∫ φ

0

dθ/
√

1−K2sin2θ, E(K,φ) :=

∫ φ

0

√
1−K2sin2θdθ.
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He is known for the Legendre transformation, which is used to go from
the Lagrangian to the Hamiltonian formulation of classical mechanics. See
Lagrange (below), Hamilton and Gibbs (19th C.).

Joseph-Louis Lagrange (1736-1813)
Born in Turin, he became Professor of Mathematics at the Royal Artillery

School there at 16, going to the Berlin Academy (with Euler and d’Alembert)
under Frederick the Great in 1766, and the French Academy in 1787.
Calculus of Variations (CoV). This was Lagrange’s earliest (and possibly
best) work. In 1755 he wrote to Euler about his work on CoV. Euler gener-
ously held up publication of his own work, so that Lagrange’s work – which
Euler thought superior – should get full credit, and advised Frederick to bring
Lagrange to Berlin. The ‘Euler-Lagrange equations’ date from this time.
Minimal surfaces

A surface which passes through two given (closed, non-intersecting) curves
and whose surface area is a minimum is called a minimal surface (example:
soap bubble held between two rings). Lagrange obtained the DE for minimal
surfaces in 1760.
Isoperimetry

The curve enclosing maximal area for a given length is a circle; the sur-
face enclosing maximal volume for given surface area is a sphere, etc.
Libration of the Moon (1764)

Why does the Moon always present the same face to the Earth? La-
grange’s solution – an early success in the (unsolved) three-body problem
(Sun, Earth, Moon) – won him the Grand Prize of the French Academy.
Satellites of Jupiter (1766): Sun, Jupiter + 4 moons: 6-body problem.
Lagrange’s theorem for groups: The order of s subgroup of a finite group
divides the order of the group. The group concept came later, with Galois
and Abel; Lagrange’s work of 1770, in which he conjectured the insolubility
of the quintic, was a precursor.
Mécanique Analytique (1788) (MA). If T is the kinetic energy (KE), V is the
potential function, the Lagrangian L is

L := T − V = L(q1, . . . , n; q̇1, . . . , q̇n; t)

(Lagrange introduced this concept in 1773; Oeuvres VI, 335). This leads to
Lagrange’s equations:

d

dt

( ∂L
∂q̇r

)
− ∂L

∂qr
= 0 (r = 1, . . . , n).
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For a detailed account of Lagrangian mechanics, see e.g.
H. GOLDSTEIN, Classical mechanics, Addison-Wesley, 1959, 1.4 and 7.1.
Lagrange multipliers

These concern extrema under constraints. To maximise f under the con-
straint g = 0, introduce a Lagrange multiplier λ; maximise f − λg (with no
constraint); then find λ from the constraint equation and the unconstrained
maxima equation f ′ − λg′ = 0.
Principle of Conservation of Energy

From Lagrange’s equations, one can obtain

d

dt
(L−

∑
q̇r
∂L

∂q̇r
) = 0 :

∑
q̇r
∂L

∂q̇r
− L = h,

where h is a constant of the motion. This is the energy, and one has the
Principle of Conservation of Energy. A special case was known to Galileo.
”From this elementary particular case the principle was gradually evolved by
Huygens, Newton, John and Daniel Bernoulli and Lagrange.” See footnote,
p.62, of Whittaker’s Analytical Dynamics (AD):
E. T. WHITTAKER, A treatise on the analytical dynamics of particles and
rigid bodies, 3rd ed., CUP, 1927 (1st ed. 1904, 2nd ed. 1917).
Lagrangian interpolation

Lagrange’s interpolation formula (1795) is equivalent to but numerically
different from Newton’s divided-difference interpolation formula.
Napoleon Bonaparte (1769-1821). 6

6Born in Corsica, Bonaparte entered the Military Academy at Vienne at 10 and was
commissioned into the artillery at 15. His teachers were struck by his intelligence (and
phenomenal memory), and his aptitude for mathematics in general and for geometry in
particular. This led him into the artillery. It was his handling of the French artillery
against the British at the Battle of Toulon (Dec 1793) that began one of the two most
brilliant military careers of all time (with Alexander the Great – also a student of geome-
try!)

Napoleon’s main contribution to science was that his conquests spread the new metric
system, in universal use today. He also influenced the careers of most of the mathemati-
cians of his day, including Laplace and Fourier. Fourier became one of Napoleon’s Prefects,
Laplace became Minister of the Interior, prompting Napoleon to comment that ‘he carried
the spirit of the infinitely small into the management of affairs.’

Napoleon also founded the Grandes Ecoles in France (Ecole Normale, Ecole
Polytéchnique, etc.), which educate a large proportion of the French elite.
Napoleon proved a non-trivial theorem in geometry. See e.g.
J. E. Wetzel, Converses of Napoleon’s theorem. Amer. Math. Monthly 99, (1992), 339-51.
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