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From the 19th C. to the 20th C.

Analysis
While great strides have been taken in the Analysis so far, modern stan-

dard of rigour had not yet been achieved. These emerged gradually during
the 19th C.

Bernhard Bolzano (1781-1848), theologian of Prague
Rein analytischer Beweis ... (1817) (Purely analytical proof).

This gave a proof of the Fundamental Theorem of Algebra, improving on
that of Gauss (recall that this result is one of Analysis!). It gave the modern
definition of continuity. It gave the ‘Cauchy condition’ for convergence of a
sequence of reals – before Cauchy (Week 8), It showed that a set of reals
bounded above has a supremum (least upper bound).
Bolzano’s Theorem: If f is continuous on [a, b] and f(a), f(b) have opposite-
signs, then f(c) = 0 for some c ∈ (a, b).
Paradoxien des Unendlichen (1851, posth.). Here Bolzano, in drawing atten-
tion to the need to compare infinite sets according to their ‘size’, helps to
prepare the ground for Cantor’s work (below).

We have already discussed the work of Dirichlet and Riemann (Week 8).

Karl Weierstrass (1815-1897), Professor of Mathematics at Berlin (1864).
Weierstrass, a pupil of Christof Gudermann (1798-1852), was a provincial

schoolmaster (in Braunsberg), and became famous overnight for an impor-
tant paper on Abelian functions published (in Crelle’s J., or J. reine ang.
Math.) in 1854. He became an Assistant Professor in Berlin, and taught
there for the rest of his career.

He was an inspired and influential teacher. The undergraduate curricu-
lum in Analysis has a more obvious debt to Weierstrass than to anyone else
– in particular, the introduction of the epsilon-delta technique, and modern
standards of rigour, is basically due to him. So too is the idea of uniformity
(uniform convergence, uniform continuity, etc.).

Much of Weierstrass’ work remained unpublished till his Collected Works
(Werke) apeared, and much was published under the names of his pupils.
Thus his work is difficult to date; his greatest impact lay through his lec-
tures, his teaching, and his influence on others.
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Real Analysis
Bolzano-Weierstrass Theorem: Weierstrass, in his 1860s lectures, completed
Bolzano’s work.
Functions continuous on closed intervals. Weierstrass’ lectures also proved
the first three of the four fundamental properties of functions f continuous
on closed intervals [a, b]:
1. f is bounded;
2. f attains its bounds;
3 (Intermediate Value Theorem). f attains every value between its bounds.
[Apply Bolzano’s Theorem to f − c, where inf f < c < sup f .]
Weierstrass Approximation Theorem (1885): If f is continuous on [a, b], f
may be approximated (arbitrarily closely) by polynomials, uniformly on [a, b].
Comparison Test, or Weierstrass M-Test, for convergence of series.
Continuous nowhere differentiable functions. Weierstrass (1860s) gave an
example of an everywhere continuous, nowhere differentiable function. Such
an example had been given earlier by Bolzano; for other examples, see e.g.
Kline, 955-6. These examples showed convincingly that continuity does not
imply differentiability, anywhere, and hence that arguing from graphs and
diagrams using naive geometric reasoning is quite unreliable in Analysis. It
is from this time on that rigorous analysis (‘university-style’, without dia-
grams, in contrast to ‘school-style’) really took off.
Complex Analysis

Weierstrass took as his motto ‘Everything is power series’. The Cauchy-
Taylor theorem of Complex Analysis tells us that analyticity (differentiability
in the sense of Complex Analysis) is the same as holomorphy (being express-
ible by a power-series expansion at every point) (so the two terms can be used
interchangeably). Weierstrass built on this, identifying an analytic function
f(z) with the totality of its power-series expansions

∑∞
0 an(z − z0)n repre-

senting f around each point z0 at which it is analytic. Hence the concept of
analytic continuation. This is emphasised in, e.g., NHB, M2P3 and M3P16.
Hardy (Divergent Series, Ch. I) points out that what Euler really lacked was
the concept of analytic continuation.

Eduard Heine (1821-1881).
Heine’s Theorem (1871): If f is continuous on [a, b], f is uniformly continu-
ous on [a, b] (‘4’, completing 1-3 of Weierstrass).
Open coverings. Following work in 1895 by Emile Borel (1871-1956), Heine’s
theorem and its proof led to the modern
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Heine-Borel Theorem: Any (infinite) class of open sets covering (i.e., whose
union includes) [a, b] contains a finite class which covers [a, b] (a finite sub-
cover). This ‘Heine-Borel property’ is the germ of the concept of compactness,
one of the key concepts in topology (20th C.).

REAL NUMBERS
One of the surprising facts about the history of mathematics is that, al-

though mathematicians had been aware of the irrationals since the Greeks,
no satisfactory construction of the real number system – of the irrationals
from the rationals – had ever been given. The year 1872 saw two distinct
such constructions, due to Dedekind and Cantor. Dedekind’s is perhaps the
simpler, but it is specific to the real number system (real line) R, because
it involves the idea of order, technically the total ordering of the reals: if
a, b ∈ R, exactly one of a < b, a = b a > b holds. The other, due to Cantor,
is generally applicable, and its generalisation comes in the 20th C.

Richard Dedekind (1831-1916), Professor, Technische Hochschule, Braun-
schweig, 1862.
Stetigkeit und die Irrationalzahlen (1872) [Continuity and the irrational num-
bers]

Dedekind’s construction of R centres on the idea of a Dedekind cut or
section (Schnitt). The irrational

√
2 divides the rationals Q into two classes,

those <
√

2 and those >
√

2, either of which serves to identify
√

2. For a
brief treatment, see e.g.
G. H. HARDY, A course of pure mathematics, 10th ed., 1952, CUP, Sec. 17.
Infinite sets

We saw that Galileo observed that an infinite set can be put into one-one
correspondence with itself. Dedekind used this property to define an infinite
set. Thus a set is (Galileo-Dedekind) infinite iff it can be put into one-one
correspondence with a proper subset of itself.
Dirichlet’s Pigeonhole Principle (1837) states that, for A, B finite sets of the
same cardinality, f : A → B is injective iff it is surjective. That is, a set
is infinite iff it violates the Dirichlet Pigeonhole Principle. This Principle is
important in Combinatorics; see e.g.
P. J. CAMERON, Combinatorics: Topics, techniques, algorithms, CUP,
1994, Ch. 10, 19.
Was sind und was sollen die Zahlen (MS 1872-8; publ. 1888) [What numbers
are and what they should be.] A foundational study of Z.
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Georg Cantor (1845-1918)
Cantor’s construction of the reals (Math. Annalen 5 (1972), 123-132 and 21
(1883), 545-591).

Call a sequence a = (an) of rationals fundamental, or Cauchy, if
am+n − an → 0 (m,n→∞), i.e.

∀ε > 0 ∃N = N(ε) s.t. n > N, m ≥ 0 ⇒ |am+n − an| < ε.

Call a = (an), b = (bn) equivalent if a− b := (an − bn)→ 0 (this is an equiv-
alence relation – check). Cantor defines a real number to be an equivalence
class of Cauchy sequences of rationals. For details, see e.g. (for R)
B. L. van der WAERDEN, Modern Algebra, Vol. 1, Ch. 9,
and for the more general setting of a metric space (20th C., below),
J. C. & H. BURKILL, A second course in math. analysis, CUP, 1970, 3.5.
Completeness

We call a metric space (below) complete if every Cauchy sequence is con-
vergent. Thus Q is not complete (the decimal approximants to

√
2 do not

converge in Q), but by Cantor’s result R is complete, and so is C, etc. Not
only can Q be completed to obtain R, but every metric space can be so
completed. This generality of Cantor’s construction of R by completion and
Cauchy sequences makes it preferable to Dedekind’s via cuts.
Countable and uncountable sets

Cantor’s greatest achievement was the realisation that infinite sets can
be usefully classified according to their ‘size’. First, the simplest case.
Definition (Cantor). An infinite set S is countable (or denumerable) if it may
be put in one-one correspondence (bijection) with N, uncountable otherwise.

Thus the elements of a countable set S can be listed, {x1, x2, . . . , xn, . . .}
(‘listable’ would perhaps be preferable to ‘countable’). So Z = {0,+1,−1,+2,−2, . . .}
is countable. One can easily show (‘diagonal sweep’: Cantor, 1885) that the
union of countably many countable sets is countable (so Q is countable),
and hence (Cantor, 1895) that R is uncountable. As a corollary, irrational
numbers exist (or R would be countable). Furthermore, in a sense that these
results make precise, ‘most’ reals are irrational: rationals are flukes. But we
can see this from decimal expansions. A real is rational iff its decimal expan-
sion terminates or recurs. Why should it? This is exceptional behaviour.
[By contrast: for continued fraction expansions: finite iff rational, recurring
iff a quadratic irrational (Lagrange’s theorem: H&W 10.12).]

4



ALGEBRAIC AND TRANSCENDENTAL NUMBERS
The irrational

√
2 is a root of the polynomial x2 − 2, and similarly for

other ‘surd-like’ irrationals. Call a real number algebraic if it is a root of a
polynomial with integer coefficients, transcendental otherwise.
Theorem (Cantor, 1874). The algebraics are countable (and so the transcen-
dentals are uncountable).
Proof. The algebraics are ∪∞n=1An, where An is the set of roots of polyno-
mials of degree n with integer coefficients. There are only countably many
such polynomials p(x) = a0x

n + . . . + an; each has (at most) n real roots
(Fundamental Theorem of Algebra), so each An is countable, so their union
is countable.
Corollary. Transcendental numbers exist! [Most reals are transcendental.]
This is a very fine example of a non-constructive existence proof – valuable,
because it is easy.

The ‘obvious’ – or constructive – way to show that transcendentals exist
is to exhibit an example, but this is much harder. Joseph Liouville (1809-
1882) showed in 1844 that decimals of the form

∑
an/10n! are transcendental.

Charles Hermite (1822-1901) showed in 1873 that e is transcendental. Fer-
dinand Lindemann (1852-1939) showed in 1882 that π is transcendental. As
a corollary, it is impossible to square the circle (constructible numbers are
algebraic; if the circle could be squared,

√
π would be algebraic, so π would

be algebraic).
Note. 1. This finally settles the ancient Greek problem (Anaxagoras).
2. This convincingly shows the power of Cantor’s new set theory.
3. The same argument shows that the set of computable numbers is countable
– so, most numbers are non-computable. For (though this is a 20th C. con-
cept, due to Turing), a number is computable if it could in principle be the
print-out from running a programme. But a programme is a finite string of
symbols drawn from a finite alphabet; there can be at most countably many
such (not finitely many – no upper bound on programme length), so there
are only countably many computable numbers. Of course, π is computable
(from e.g. Brouncker’s continued fraction), even though transcendental.
SET THEORY, LOGIC and FOUNDATIONS
George Boole (1815-1864), Prof. Math., Queen’s College, Cork, 1849.
The mathematical analysis of logic (1847);
Investigation of the laws of thought (1854).

Boole’s work marks the beginning of mathematica logic proper. It has
led to the subject of Boolean algebra, in algebra and computer programming.
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Augustus De Morgan (1806-1871), first Professor of Mathematics, UCL, 1828;
first President LMS (1865-9).

De Morgan is remembered for De Morgan’s laws in Set Theory. The LMS
Headquarters in Russell Square is named De Morgan House.
John Venn (1834-1923)
The logic of chance (1866); Symbolic logic (1881).

Venn taught Moral Science at Cambridge from 1862. He is remembered
for Venn diagrams in Set Theory.

Cantor wrote Grundlagen einer allgemeine Mannigfältigkeitslehre (1883)
[Foundations of a general theory of manifolds]. Here, and in a series of papers
in Mathematische Annalen between 1879 and 1884, Cantor set up a general
theory of sets, and in particular of infinite (‘transfinite’) numbers, of two
kinds, cardinal, to do with size (one, two, ...) and ordinal, to do with order
(first, second, ...). We shall return to set theory in the 20th C. We note here
that Cantor’s theory was violently attacked by Leopold Kronecker (1823-91),
whose dictum was ‘God gave us the integers; all the rest is the work of man’.
But Cantor’s views eventually prevailed (rightly); in particular, he was mem-
orably defended by David Hilbert (1862-1943), who said ‘No one shall expel
us from the paradise that Cantor has created for us’.

Following Cantor’s set theory, and the construction of R, the question
arose of setting up the foundations of mathematics – in particular, Z – ‘from
scratch’, and by the new standards of rigour. Dedekind gave one approach
(above). Another, more usual nowadays, was given by Giuseppe Peano (1858-
1932) in 1889. Incidentally, Peano introduced the standard set-theoretic no-
tation we use today. An excellent treatment of ‘what the mathematician in
the street should know about set theory and foundations’ is in
P. R. HALMOS, Naive set theory, Van Nostrand, 1960.
ALGEBRA

We have seen determinants (Gauss), and the emergence of groups (Abel)
and fields (Galois). Rings and ideals grew out of Algebraic Number Theory
(E. E. Kummer (1810-1893), Dedekind and Kronecker). Linear Algebra (vec-
tor spaces, linear transformations, linear independence etc. ) grew out of
Geometry; an important step was by Hermann Grassmann (1809-77), Aus-
dehnungslehre (1844) [Theory of extensions].

Matrices logically precede determinants, but came much later, in the work
of Arthur Cayley (1821-95) and J. J. Sylvester (1814-97). The term matrix
was introduced by Sylvester in 1850, but a series of papers by Cayley in the
1850s, particularly in Phil. Trans. 1858, created the basis of the subject as
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we now know it.
Hamilton introduced quaternions in 1843 (a+ ib+jc+kd, i2 = j2 = k2 =

−1, ij = −ji = k, etc.) – a non-commutative division ring. The Cayley-
Hamilton theorem (a matrix satisfies its own characteristic equation) is from
Hamilton’s Lectures on quaternions (1853) and Cayley’s 1858 paper.

Gibbs pioneered the use of vectors. Though quaternions were used ‘for
everything’ by some, by the 20th C. they had been superceded by vectors.

Group representations enable groups to be studied as groups of matrices,
so enabling Linear Algebra to be brought to bear. The theory was developed
by F. Georg Roebenius (1849-1917) from 1897, William Burnside (1852-1927)
(Theory of groups of finite order, 1911).

APPLIED MATHEMATICS and PHYSICS
George Green (1793-1841)
An essay on the application of mathematical analysis to the theories of elec-
tricity and magnetism (1828; facsimile 1958).
Mathematical papers of George Green, Chelsea, 1871/1970.

Green was self-taught, and is one of the most remarkable self-taught
mathematical geniuses in history. His father owned a flour mill in Snein-
ton, Notingham. Green worked in the mill, and learned mathematics in a
public library in Nottingham. He achieved recognition after his Essay of
1828, and became a Fellow of Gonville and Caius College, Cambridge. His
health failed, 1 and he returned to Nottingham, where he died. Green’s Mill
is now a museum. Newton’s memorial stone in Westminster Abbey is now
flanked by five smaller ones (Green, Faraday, Maxwell, Kelvin, Dirac).

Green’s Essay introduced the term potential. He also proved Green’s
theorem, and the divergence theorem (‘Gauss’ theorem), in Vector Calcu-
lus (see e.g. NHB, MPC2, VII). Green functions are of great importance in
many areas (solving PDEs by integrals) and physics (classical and quantum).

Sir William Rowan Hamilton (1805-1865), Professor of Astronomy, Trinity
College Dublin, 1827-65.
J. L. SYNGE, Geometrical optics: An introduction to Hamilton’s method,
Cambridge Tracts 37, CUP, 1937.

Hamilton’s early work is on geometrical optics. This concerns light rays

1probably a combination of taking in too much flour dust in the mill and too much
wine in College
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(paths followed by particles or thin beams of light). These are everywhere
orthogonal to the wavefronts of Huygens’ theory. Hamilton’s optical theory
was presented to the Royal Irish Academy in 1827, and resulted in his elec-
tion to the TCD Chair of Astronomy as an undergraduate of 22. This carried
with it the title of Astronomer Royal of Ireland and the directorship of the
Dunsink Observatory near Dublin, where Hamilton spent his working life.

Hamilton later worked on dynamics, discovering in particular a close anal-
ogy between mechanics and optics.
Hamilton’s Principle (1834): With L the Lagrangian,

∫
Ldt is an extremum.

This includes the Principle of Least Action, which can be traced back to
Maupertuis (1744) (Whittaker, AD, Ch. IX, Sec. 99).
Hamilton’s Equations (1834). With L = L(qr; q̇r; dt), pr := ∂L/∂q̇r (so
ṗr = ∂L/∂qr by Lagrange’s equations. The Hamiltonian

H(pr; qr; t) :=
∑

q̇rpr − L

satisfies Hamilton’s equations

q̇r =
∂H

∂pr
, ṗr = −∂H

∂qr
.

One passes from Lagrangian to Hamiltonian mechanics by the Legendre
transform (Goldstein, 7.1). Hamilton’s work was continued by Jacobi in
1836, resulting in the Hamilton-Jacobi theory:
Jacobi, Vorlesungen über Dynamik, 1866.

Hamilton’s optical-mechanical analogy prefigures the wave-particle dual-
ity of Quantum Mechanics. See Goldstein, 9.8, especially p.312-4. What was
needed was the realisation that ‘Planck’s constant is positive’ (below).
René DUGAS, A history of mechanics, Dover, 1988, 662p;
D. D. HOLM, Geometric mechanics, I, II, Imperial C. Press, 2008.

Rudolf Clausius (1822-1888) and Thermodynamics
Über die bewegende Kraft der Wärme (1850) [On the moving force of heat]

Clausius closes with the most famous two-sentence passage in the history
of science:

Die Energie der Welt ist konstant.
Die Entropie der Welt strebt einem Maximum zu.

[The energy of the world is constant. The entropy of the world strives to-
wards a maximum. (Read ‘universe’ for ‘world’ in each here.]
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These are the First and Second Laws of Thermodynamics. The first is
the Law of Conservation of Energy. The second is that entropy increases.
Entropy is a measure of disorder: nature moves towards disorder.2

Sir George Stokes (1819-1903)
Stokes’ theorem in Vector Calculus, 1854 (‘theorems of Stokes, Gauss and
Green: NHB, MPC2, VII).
Michael Faraday (1791-1867) [Whittaker, Ch. VI, Faraday].
James HAMILTON, Faraday: The life, HarperCollins, 2002.

Faraday’s great discovery (following earlier work by Sir Humphrey Davy)
was electromagnetic induction: movement of a magnet near a conductor in-
duces an electric current in the conductor. Hence the electric motor (turning
electrical energy into mechanical energy) and the dynamo (doing the reverse).

Faraday lectured at the Royal Institution (founded 1799), where he was
Professor of Chemistry. The old £20 note shows Faraday giving the Christ-
mas lectures there, initiated 1826.
James Clerk Maxwell (1831-1879) [Whittaker, Ch. VIII: Maxwell].
A treatise on electricity and magnetism, Vol. 1, 2, OUP, 1891/1998.
C. W. F. EVERITT, James Clerk Maxwell: Physicist and natural philoso-
pher, Charles Scribner, 1975.
Maxwell’s Equations. If E, H are the electric intensity and the magnetic
field in ES (electrostatic) units, cE in EM (electromagnetic) units, Maxwell’s
equations (in a vacuum) are

div E = 0, curl E = −c−1∂H/∂t; div H = 0, curl H = c−1∂E/∂t.

Whitaker (p. 245) writes: ‘In this memoir (of 1865) the physical importance
of the operators curl and div first became evident. These operators had,
however, occurred frequently in the writings of Stokes ...’. Applying curl
(recall curl curl = grad div - ∇2, = −∇2 here):

−∇2E = curl curlE = −1

c

∂

∂t
(curlH) = − 1

c2

∂2E

∂t2
: ∇2E = c−2∂2E/∂t2,

and similarly
∇2E = c−2∂2E/∂t2.

This is the wave equation, for propagation of E, H with velocity c, the ratio
of EM to ES units. This was known experimentally (c. 3 × 1010 cm/sec.,

2Thermodynamics is at the heart of heat transfer, which is a large part of Chemical
Engineering.
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c. 186,000 miles/sec.) to be (approx.) the speed of light. Thus, electromag-
netic forces are propagated with the speed of light. This suggested to Maxwell
his great discovery: that light waves are electromagnetic. Recall the mod-
ern electromagnetic spectrum: in increasing order of wavelength, ..., x-rays,
ultra-violet, visible spectrum, infra-red, radio waves, ....
Note. Faraday’s discovery of electromagnetic induction and Maxwell’s elec-
tromagnetic theory of light are regarded as the two greatest advances of 19th
C. Physics.

Maxwell is one of the three founding fathers of Statistical Mechanics
(or Statistical Physics) (with Boltzmann and Gibbs, below), obtaining the
Maxwell-Boltzmann law (Maxwell 1859, Boltzmann 1877) for the velocities
of particles in a gas.
Lord Kelvin (Sir William Thomson) (1824-1907; K 1866; Baron Kelvin 1892);
PRS 1890; 18th President LMS (1898-1900)
W. Thomson & P. G. Tait, A Treatise on Natural Philosophy, 1867 (“T and
T”; cf. the Principia).

Thomson’s best-known achievement (1866), for which he was knighted,
was the laying of the first successful Atlantic cable; the relevant mathematics
is the equation of telegraphy, a PDE containing both the heat equation and
Laplace’s equation. He also introduced the method of images in EM theory
(based on projective geometry). He also showed that the equilibrium distri-
bution in electrostatics is that which minimises the energy (cf. CoV).

Kelvin in his later years was a conservative figure; in particular, he op-
posed Maxwell’s electromagnetic theory of light (Whittaker, EM, 266-7).
Lord Rayleigh (J. W. Strutt) (1842-1919), 7th President LMS (1876-8), PRS
(1905-8), Nobel Prize 1904.
The theory of sound, vol. I, II, 1877 (Dover, 1945)

Rayleigh’s work on scattering explained why the sky is blue (the earth’s
atmosphere scatters sunlight – the sky is black in space). His Nobel Prize
was for the discovery of the inert gas argon. He also worked on tides (which
show periodicities, for which Fourier methods are well suited).

Kelvin and Rayleigh also worked on hydrodynamics. For details and ref-
erences, see e.g.
H. LAMB, Hydrodynamics, CUP, 1924.
Josiah Willard Gibbs (1839-1903)

Gibbs was one of the pioneers of American science. In Hamiltonian me-
chanics, with n particles (H = H(p1, . . . , pn; q1, . . . , qn; t)), new methods are
needed to extract useful information from Hamilton’s equations as n → ∞.
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Gibbs introduced the limiting density for such a system, the Gibbs distri-
bution: density f(p, q) = c exp{−βH}, where c is the constant such that f
integrates to 1, H is the Hamiltonian, and β = 1/(kT ) with T the tempera-
ture (absolute – in degrees Kelvin) and k is Boltzmann’s constant (below).

The underlying principle here is the Gibbs Variational Principle. This
has profound implications for modern physics and Probability Theory (large
deviations); for details, see e.g.
Hans-Otto GEORGII, Gibbs measures and phase transitions, W. de Gruyter,
1988;
Richard S. ELLIS, Entropy, large deviations, and statistical mechanics. Grundl
271, Springer, 1985.
Ludwig Boltzmann (1844-1906)
D. LINDLEY, Boltzmann’s atom: The great debate that launched a revolu-
tion in physics. Free Press, 2001.

Boyle’s Law for a gas is PV = constant. For an ideal gas with n parti-
cles, PV = nkT , where P is pressure, V is volume, T is temperature and k
is Boltzmann’s constant. Boltzmann also refined Maxwell’s work on velocity
distribution in gases (Maxwell-Boltzmann law), and Clausius’ Second Law
of Thermodynamics (Boltzmann’s H-theorem – H for entropy).

Boltzmann’s work was on gases, and he clearly understood that gases
are composed of atoms and molecules. But these could not then be di-
rectly observed experimentally, and the atomic theory was opposed by some
conservative scientists. Boltzmann became embroiled in controversy; this
undermined his mental health, and eventually drove him to suicide.
Henri Poincaré (1854-1912), Professor of Mathematics, Sorbonne, Paris
Nouvelles Méthodes de las Mécanique Céleste, Vols. I-III (1892/93/99);
Lecons de Mécanique Céleste, I-III (1905-10).
Poincaré contributed extensively to the three-body problem in the theory of
orbits. He had a life-long interest in the stability of the solar system. This
led him into the qualitative theory of ODEs (Poincaré-Bendixson Theorem).
Poincaré’s Recurrence Theorem of 1899 concerns ergodic theory (originally,
the long-term behaviour of dynamical systems).
Analysis Situs (1895)

This was an early book on the subject we now call topology. Here Poincaré
introduced homology, homotopy and the fundamental group. See e.g. NHB,
M2P3, Handout, Variants on Cauchy’s theorem.
Hyperbolic geometry. Poincaré gave his model for non-Euclidean geometry
on the disc. For a visual interpretation, see Circle Limit IV by the Dutch
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artist Maurits Cornelis Escher (1898-1972) [W].
David Hilbert (1862-1943), Professor of Mathematics at Göttingen, 1895.

Hilbert came from Königsberg, where he was a pupil of Heinrich Weber
(1842-1913); he succeeded Weber in Göttingen. His doctoral thesis of 1885 is
on invariants. He proved the Hilbert Basis Theorem in 1888, and the Hilbert
Nullstellensatz.
Zahlbericht (1897) [Report on Numbers]. This book may be taken as the
starting-point for the modern subject of Algebraic Number Theory; a key
contributors to this was Hilbert’s pupil E. Hecke (1887-1947).
Grundlagen der Geometrie (1899) [foundations of Geometry]. Hilbert’s book
was an attempt to begin geometry axiomatically from scratch, by modern
standards of rigour and with modern knowledge (such as non-Euclidean ge-
ometry) – ”to bring Euclid’s Elements up to date”. Hilbert took the modern
view of mathematics as deductive reasoning from axioms, and emphasised
the importance of the axiomatic method, which we take for granted today.
However, Hilbert’s views on the foundations of mathematics were later shown
to be too naive (see Week 10).
The Hilbert Problems.

Hilbert proposed a famous list of (23) problems to the International
Congress of Mathematicians in Paris in 1900. These have been extremely
influential. The solution of a Hilbert problem is a major achievement in
mathematics; for details of progress, see e.g. Math. developments arising
from Hilbert problems, Proc. Symp. Pure Math. XXVIII, AMS, 1976.
The beginnings of functional analysis

Hilbert’s pupil Erhard Schmidt (1876-1959) took his PhD in 1905. He
worked on integral equations in Hilbert space, which he named – basically, the
extension of Euclidean space to infinitely many dimensions. Gram-Schmidt
orthogonalisation followed in 1907 and Hilbert-Schmidt operators in 1908.

Hilbert’s pupil Richard Courant (1888-1972) took his PhD in 1910 (Dirich-
let’s principle and conformal mapping). From Hilbert’s lecture notes, Courant
wrote ‘Courant and Hilbert’:
R. COURANT & D. HILBERT, Methoden der mathematischen Physik, I
(1st ed. 1924, 2nd ed. 1931), II (1937).
This classic book arrived just in time to serve the needs of the new subject
of Quantum Mechanics.
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