
M2PM3 HANDOUT: THEOREMS OF BOLZANO &
WEIERSTRASS, CANTOR AND HEINE

The contents of this handout are not examinable. The first two results are
included (they are closely related) as either can be used as the main step in
the proof of the main result of this course, Cauchy’s Theorem (II.5). The third
(whose corollary we quoted in lectures) is included as a simple illustration of
the power of compactness. Recall that by the Heine-Borel Theorem which we
quoted, ‘compact’ is the same as ‘closed and bounded’ in this course. So we can
(and often do) say ‘closed and bounded’ when what really matters is ‘compact’;
here we spell out one compactness argument, to illustrate the definition in ac-
tion.

Theorem (BOLZANO-WEIERSTRASS). If S is a bounded infinite set in
the complex plane or Euclidean space, S has a limit point.

Proof. We set out the proof in the plane, and use repeated bisection. As S is
bounded, we can enclose it in a large square, T say, of side L, with sides par-
allel to the coordinate axes. Divide T into four equal subsquares by bisecting
each side. As S is infinite and S ⊂ T , T contains infinitely many points of
S. So at least one of the four subsquares also contains infinitely many points
of S; call this T1. Bisect again and divide T1 into four equal subsquares. As
above, at least one of these contains infinitely many points of S; call this T2.
Continuing in this way, we obtain an infinite sequence {Tn} of squares, with
T ⊃ T1 ⊃ . . . ⊃ Tn . . . and each Tn of side L/2n and containing infinitely many
points of S.

Let [an, bn] be the projection of Tn on the x-axis. The an are non-decreasing,
and bounded above (by b1), so increase to a limit, a say. Similarly the bn de-
crease to a limit, which is a as bn − an = L/2n ↓ 0. Similarly, if [cn, dn] is the
projection of Tn on the y-axis, cn increases to a limit c, and dn decreases to c.
Write P for the point (a, c) and choose ε > 0. For all n large enough (so that
L/(2n

√
2) < ε), Tn is contained in the disc N(P, ε) centre P radius ε. As Tn,

and so the disc, contains infinitely many points of S, P is a limit point of S. //

We call a sequence of sets Sn decreasing if S1 ⊃ S2 . . . ⊃ Sn ⊃ Sn . . ..

Theorem (CANTOR: Nested Sets Theorem). If Kn is a decreasing se-
quence of non-empty closed and bounded (compact) sets in the plane (or Eu-
clidean space), their intersection ∩nKn is non-empty. If the diameters diam(Kn) ↓
0, the intersection is a single point.

Proof. As above, let Kn have projections [an, bn], [cn, dn] on the coordinate axes
(closed and bounded, and also decreasing, as Kn are). Then again as above,
an ↑ a, bn ↓ b, cn ↑ c, dn ↓ d for some a, b, c, d. Then (e.g.) the point (a, c) is
in ∩nKn. If the diameters decrease to 0, a = b, c = d and this is the only point
in the intersection. //
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Note. 1. Cantor’s Theorem is the heart of the proof of the main theorem of the
course, Cauchy’s Theorem (II.5).
2. Recall that in a metric space compact implies closed and bounded, and by
the Heine-Borel Theorem, in Euclidean space the converse holds: ‘closed and
bounded implies compact’.
3. The proof we have given uses ‘closed and bounded’ rather than ‘compact’.
But actually the Euclidean or Heine-Borel aspect is not crucial here: Cantor’s
Theorem is really about compactness. We have defined compactness in terms
of every open covering having a finite subcovering. One can define compactness
equivalently in terms of the finite intersection property: every finite subfamily
having a non-empty intersection. We quote: compactness is equivalent to every
family of closed sets with the finite intersection property having a non-empty
intersection. See e.g. Th. 1 of
J. L. KELLEY, General Topology, Van Nostrand, 1955; Ch. 5, Compact spaces.
The finite intersection property is automatically satisfied for decreasing se-
quences of non-empty sets, as here.

Theorem (HEINE). If f is a continuous function on a compact set K, f is
uniformly continuous on K.

Proof. Choose ε > 0. As f is continuous on K, for each x ∈ K there exists
δ(x) > 0 such that for all y ∈ K with |y − x| < δ(x), |f(y)− f(x)| < ε/2.

Let J(x) = N(x, δ(x)/2) be the open disc with centre x and radius δ(x)/2.
Then {J(x) : x ∈ K} is an open covering of K. By compactness, there is a
finite subcovering, {J(x1), . . . , J(xn)} say. Write δ := 1

2 min{δ(x1), . . . , δ(xn)}.
Then δ > 0 (minimum of a finite family of positive numbers is positive).

If x, y ∈ K with |x − y| < δ, then x ∈ J(xi) for some i (as the J(xi) cover
K). So |x− xi| < 1

2δ(xi) < δ(xi). So

|f(x)− f(xi)| < ε/2. (i)

Also |y − xi| ≤ |y − x|+ |x− xi| < δ + 1
2δ(xi) ≤ δ(xi). So

|f(y)− f(xi)| < ε/2. (ii)

By (i) and (ii),

|f(y)− f(x)| ≤ |f(y)− f(xi)|+ |f(xi)− f(x)| < ε/2 + ε/2 = ε.

So f is uniformly continuous on K. //

Corollary. If f : [a, b] → R is continuous, f is uniformly continuous on [a, b].

Proof. [a, b] is closed and bounded, so compact by the Heine-Borel Theorem.
The result follows by Heine’s Theorem above. //
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