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Lecture 10. 1.2.2010.

10. Termwise differentiation and integration.
If

∑
un(x) is a convergent series of functions and

∫ {∑ un(x) dx} =
∑

[
∫

un(x) dx],

we say
∑

un(x) can be integrated term-by-term, or termwise. If {∑ un(x)}′ =∑
u
′
n(x), we say

∑
an(x) can be differentiated termwise. We quote:

(I) If
∑

un(x) converges uniformly, it can be integrated termwise.
(D) If

∑
u
′
n(x) converges uniformly, then

∑
un(x) can be differentiated termwise.

For a power series
∑

anzn, we get
∑

nanz
n−1 by differentiating termwise;

similarly we get
∑

anzn+1/(n + 1) by integrating termwise. All three power
series have the same R of C (the shift of suffix from n to n± 1 makes no dif-
ference, and neither do the factors of n or n+1, as n1/n = e(log n)/n → e0 = 1).
Combining:

Theorem. A power series can be differentiated (or integrated) termwise in-
side its circle of convergence.

We can do this arbitrarily often (‘infinitely often’):

Theorem. A power series can be differentiated (termwise) infinitely often
inside its circle of convergence.

We shall see later (Cauchy-Taylor Theorem, II.7) that the functions we
study in Chapter II - holomorphic functions, ‘differentiable once’, are exactly
those representable by power series. So:

f differentiable once ⇔ f differentiable infinitely often.

This is a total contrast to Real Analysis.

Chapter II. Holomorphic (Analytic) Functions: Theory

1. Special Complex Functions.
1. Polynomials. f(z) = a0 + a1z + ... + anz

n (ai ∈ C, an 6= 0). This
is a (complex) polynomial of degree n. We shall prove (II.6, Fundamental
Theorem of Algebra) that f has n roots.
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2. Exponentials
exp(z) =

∑∞
n=0 zn/n!. This function is absolutely and uniformly convergent

on all closed discs in C.

exp(z1 + z2) =
∞∑

n=0

(z1 + z2)
n

n!
=

∞∑

n=0

1

n!

n∑

k=0

zk
1z

n−k
2

(
n

k

)
.

Here 0 ≤ k < ∞. Putting l := n− k: 0 ≤ k, l < ∞, giving

exp(z1 + z2) =
∞∑

k=0

∞∑

l=0

zk
1

k!
× zl

2

l!
=

( ∞∑

k=0

zk
1

k!

) ( ∞∑

l=0

zl
2

l!

)
= exp(z1)× exp(z2)

(the rearrangement is justified by absolute convergence). That is,

exp(z1 + z2) = exp(z1)× exp(z2).

Recall e = exp(1) =
∑∞

n=0 1/n!. Now:

exp(nz) = [exp(z)]n (n ∈ N); exp(z/m) = exp(z)1/m (n ∈ N).

Combining:

exp(
m

n
z) = [exp(z)]m/n (m,n ∈ N); exp(qz) = [exp(z)]q (q ∈ Q).

Taking z = 1 gives exp(q) = [exp(1)]q = eq for q ∈ Q. So exp(q) = eq for
q ∈ Q. Hence

exp(x) = ex (x ∈ R)

(both sides are continuous: take qn rational, qn → x.

3. Trigonometric functions. Recall from Chapter I:

cos z = 1− z2

2!
+

z4

4!
− ...,

sin z = z − z3

3!
+

z5

5!
− ...,

exp(iz) = cos(z) + i sin(z).

For z = θ real, exp(iθ) = cos θ + i sin θ (Euler’s formula, Chapter I).
We define eiθ by eiθ = exp(iθ) = cos θ + i sin θ. Then for z = x + iy,

exp(z) = exp(x + iy) = exp(x). exp(iy) = ex.eiy,

by above. We define ex+iy, or ez, as the RHS (“rule of indices”, complex
case). Then

exp(z) = ez (z ∈ C).

Henceforth, we use ez for exp(z).
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