m2pm3l12.tex

Lecture 12. 5.2.2010.

2. Complex Differentiation and the Cauchy-Riemann Equations

Defn. We say $f : \mathbf{C} \to \mathbf{C}$ is differentiable at z_0 with derivative w, and write $f'(z_0) = w$, if

$$\frac{f(z) - f(z_0)}{z - z_0} \to w \text{ as } z \to z_0: \qquad f'(z_o) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

The point z_0 is that z may tend to z_0 in ANY way – i.e., from ANY direction; the limit has to be the same for all ways of approach. So,

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall z \text{ with } |z - z_0| < \delta, \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \epsilon$$

 $(arg(z-z_0) \text{ can be anything!})$. Write $z-z_0 = h = k+il$ (k, l real), f = u+iv (u, v real): f(z) = u(x, y) + iv(x, y). 1. h real (l = 0).

$$\frac{u(x_0+k,y_0)-u(x_0,y_0)}{k} + i\frac{v(x_0+k,y_0)-v(x_0,y_0)}{k} \to f'(z_0) \quad (k \to 0):$$
$$u_x(x_0,y_0) + iv_x(x_0,y_0) = f'(z_0), \quad \text{writing } u_x \text{ for } \partial u/\partial x.$$

2. h imaginary (k = 0).

$$\frac{u(x_0, y_0 + l) - u(x_0, y_0)}{l} + i \frac{v(x_0, y_0 + l) - v(x_0, y_0)}{il} \to f'(z_0) \quad (l \to 0) :$$
$$-iu_y(x_0, y_0) + v_y(x_0, y_0) = f'(z_0), \quad \text{writing } u_y \text{ for } \partial u/\partial y.$$

Combining, at (x_0, y_0)

$$u_x = v_y, \quad v_x = -u_y$$

These are called the Cauchy-Riemann Equations, C-R. So differentiability at $(x_0, y_0) \Rightarrow$ C-R at (x_0, y_0) : C-R are *necessary* for differentiability. They are *not sufficient*. *Example.* $f(z) = \sqrt{|xy|} (z = x + iy = re^{i\theta})$. So $f, u, v \equiv 0$ on both axes. So $u_x, u_y, v_x, v_y \equiv 0$ on both axes and C-R holds at (0, 0). But:

$$\frac{f(z) - f(0)}{z - 0} = \frac{\sqrt{|r\cos\theta \cdot r\sin\theta|}}{re^{i\theta}} = e^{-i\theta}\sqrt{|\cos\theta\sin\theta|}$$

RHS depends on θ , i.e. how $z = re^{i\theta} \to 0$: f is not differentiable at 0. But there is a *partial* converse:

Theorem. If f = u + iv and the partial derivatives u_x, u_y, v_x, v_y exist and are continuous in a neighbourhood of z_0 , and satisfy the C-R equations at z_0 , then f is differentiable at z_0 .

Proof. Take $h = k + i\ell$ so small that $z = z_0 + k$ is in the neighbourhood where partials are continuous; then

$$u(x_0+k, y_0+\ell) - u(x_0, y_0) = [u(x_0+k, y_0+\ell) - u(x_0, y_0+\ell)] + [u(x_0, y_0+\ell) - u(x_0, y_0)].$$

By the Mean Value Theorem (MVT):

$$[u(x_0 + k, y_0 + \ell) - u(x_0, y_0 + \ell)]/k = u_x(x_0 + \theta k, y_0 + \ell)$$

= $u_x(x_0, y_0) + o(1)$ as $h \to 0$.

(here we use the *o*-notation for the error term: o(1) as $h \to 0$ ' means $\to 0$ as $h \to 0$ '), by continuity of the partial u_x . Similarly,

$$[u(x_0, y_0 + \ell) - u(x_0, y_0)]/\ell = u_y(x_0, y_0 + \theta'\ell) \quad \text{for some } \theta' \in (0, 1) = u_y(x_0, y_0) + o(1) \quad \text{as } h \to 0.$$

Combining:

$$u(x_0 + k, y_0 + \ell) - u(x_0, y_0) = ku_x(x_0, y_0) + \ell u_y(x_0, y_0) + o(h),$$

where 'o(h)' means 'smaller order of magnitude then h as $h \to 0$.' This combines two error terms, o(k) and o(l), both o(h) as $h^2 = k^2 + l^2$, $|k| \le |h|$, $|l| \le |h|$. Similarly,

$$v(x_0 + k, y_0 + \ell) - v(x_0, y_0) = kv_x(x_0, y_0) + \ell v_y(x_0, y_0) + o(h)$$

. So

$$f(z_0 + h) - f(z_0) = [u(x_0 + k, y_0 + \ell) - u(x_0, y_0)] + i[v(x_0 + k, y_0 + \ell) - v(x_0, y_0)]$$

= $ku_x + \ell u_y + ikv_x + i\ell v_y + o(h).$

Replace u_y , v_y on RHS by $-v_x$, u_x , using the C-R equations. The RHS becomes

$$(k+i\ell)u_x + i(k+i\ell)v_x + o(h)$$
 by C-R = $h(u_x + iv_x) + o(h)$.

Divide by h:

$$f(z_0 + h) - f(z_0)/h = u_x(x_0, y_0) + iv_x(x_0, y_0) + o(1)$$

$$\to u_x(x_0, y_0) + iv_x(x_0, y_0) \quad \text{as } h \to 0.$$

So $f'(z_0)$ exists and $= u_x(x_0, y_0) + iv_x(x_0, y_0)$. //

Note. There are *three* other ways to write the RHS in the equation above.