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Lecture 12. 5.2.2010.

2. Complex Differentiation and the Cauchy-Riemann Equations

Defn. We say f : C→ C is differentiable at z0 with derivative w, and write
f

′
(z0) = w, if

f(z)− f(z0)

z − z0
→ w as z → z0 : f

′
(zo) = lim

z→z0

f(z)− f(z0)

z − z0
.

The point z0 is that z may tend to z0 in ANY way – i.e., from ANY
direction; the limit has to be the same for all ways of approach. So,

∀ε > 0,∃δ > 0 s.t. ∀z with |z − z0| < δ,

∣∣∣∣∣f(z)− f(z0)

z − z0
− f ′

(z0)

∣∣∣∣∣ < ε

(arg(z−z0) can be anything!). Write z−z0 = h = k+il (k, l real), f = u+iv
(u, v real): f(z) = u(x, y) + iv(x, y).
1. h real (l = 0).

u(x0 + k, y0)− u(x0, y0)

k
+ i

v(x0 + k, y0)− v(x0, y0)

k
→ f

′
(z0) (k → 0) :

ux(x0, y0) + ivx(x0, y0) = f
′
(z0), writing ux for ∂u/∂x.

2. h imaginary (k = 0).

u(x0, y0 + l)− u(x0, y0)

l
+ i

v(x0, y0 + l)− v(x0, y0)

il
→ f

′
(z0) (l→ 0) :

−iuy(x0, y0) + vy(x0, y0) = f
′
(z0), writing uy for ∂u/∂y.

Combining, at (x0, y0)
ux = vy, vx = −uy

These are called the Cauchy-Riemann Equations, C-R.
So differentiability at (x0, y0) ⇒ C-R at (x0, y0): C-R are necessary for dif-
ferentiability. They are not sufficient.
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Example. f(z) =
√
|xy| (z = x + iy = reiθ). So f, u, v ≡ 0 on both axes. So

ux, uy, vx, vy ≡ 0 on both axes and C-R holds at (0, 0). But:

f(z)− f(0)

z − 0
=

√
|r cos θ · r sin θ|

reiθ
= e−iθ

√
| cos θ sin θ|

RHS depends on θ, i.e. how z = reiθ → 0: f is not differentiable at 0.
But there is a partial converse:

Theorem. If f = u + iv and the partial derivatives ux, uy, vx, vy exist and
are continuous in a neighbourhood of z0, and satisfy the C-R equations at
z0, then f is dfferentiable at z0.

Proof. Take h = k + i` so small that z = z0 + k is in the neighbourhood
where partials are continuous; then

u(x0+k, y0+`)−u(x0, y0) = [u(x0+k, y0+`)−u(x0, y0+`)]+[u(x0, y0+`)−u(x0, y0)].

By the Mean Value Theorem (MVT):

[u(x0 + k, y0 + `)− u(x0, y0 + `)]/k = ux(x0 + θk, y0 + `)
= ux(x0, y0) + o(1) as h→ 0.

(here we use the o-notation for the error term:‘o(1) as h→ 0’ means ‘→ 0 as
h→ 0’), by continuity of the partial ux. Similarly,

[u(x0, y0 + `)− u(x0, y0)]/` = uy(x0, y0 + θ
′
`) for some θ

′ ∈ (0, 1)
= uy(x0, y0) + o(1) as h→ 0.

Combining:

u(x0 + k, y0 + `)− u(x0, y0) = kux(x0, y0) + `uy(x0, y0) + o(h),

where ‘o(h)’ means ‘smaller order of magnitude then h as h → 0.’ This
combines two error terms, o(k) and o(l), both o(h) as h2 = k2 + l2, |k| ≤ |h|,
|l| ≤ |h|. Similarly,

v(x0 + k, y0 + `)− v(x0, y0) = kvx(x0, y0) + `vy(x0, y0) + o(h)

. So

f(z0 + h)− f(z0) = [u(x0 + k, y0 + `)− u(x0, y0)] + i[v(x0 + k, y0 + `)− v(x0, y0)]
= kux + `uy + ikvx + i`vy + o(h).
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Replace uy, vy on RHS by −vx, ux, using the C-R equations. The RHS
becomes

(k + i`)ux + i(k + i`)vx + o(h) by C-R = h(ux + ivx) + o(h).

Divide by h:

f(z0 + h)− f(z0)/h = ux(x0, y0) + ivx(x0, y0) + o(1)
→ ux(x0, y0) + ivx(x0, y0) as h→ 0.

So f
′
(z0) exists and = ux(x0, y0) + ivx(x0, y0). //

Note. There are three other ways to write the RHS in the equation above.
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