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Lecture 14. 11.2.2010.

3. Connectedness.
Connectedness is a topological property, not specific to C. We meet it

now in Chapter II, rather than in I.2, as we did not need it there – here it is
essential.

Defn. In a topological space (in particular a metric space, in particular Rd

or C) an open set S is disconnected ⇔ it can be expressed as the union of
two disjoint non-empty open sets. Otherwise S is connected.

Two examples:
1. In R, (−1, 0) ∪ (0, 1) is disconnected, but (−1, 1) = (−1, 0) ∪ {0} ∪ (0, 1)
is connected.

This is the key illustrative example. The left and right open intervals
here have a common end-point, but as this is missing and not in the set its
absence serves to disconnect their union. The next example is the analogue
of this in the complex plane.
2. In C, N(−1/2, 1/2) ∪ N(1/2, 1/2) is disconnected, but N(−1/2, 1/2) ∪
{0}∪N(1/2, 1/2) is connected (see Lecture 15 for why – this set is not open,
so this does not follow from the above).

Defn. 1. An arbitrary set S is connected if and only if it cannot be covered
by two open sets whose intersection with S are disjoint and non-empty.
2. A connected set S is simply connected iff its complement (in C) Sc is
connected; otherwise S is multiply connected.

Three examples:
1. Annulus: {z : 1 < |z| < 2} is multiply connected.
2. Disc: {z : |z| < 1} is simply connected.
3. Punctured disc: {z : 0 < |z| < 1} is multiply connected.

Connected Sets in R.
We quote: the connected sets on R are the intervals.

This shows that ‘connected’ as a technical term defined above is being
used in a sense consistent with its use in ordinary language.
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Open Sets in R. We quote: S open in R ⇔ S is a finite union or countably
union of open intervals.

Continuity and Connectedness.

Example. In R: f : R → R, f(x) =

{
0 (x < 0)
1 (x ≥ 0)

(unit jump function, Heaviside function). f is continuous except at 0, where
it has a jump discontinuity. Now modify this example by deleting the origin
from the domain of definition:

f : (−∞, 0) ∪ (0,∞) → R, f(x) =

{
0 (x < 0)
1 (x > 0)

.

f is now continuous. Its only possible point of discontinuity is no longer
there.
In C:

f : N (−1/2, 1/2)∪{0}∪N (1/2, 1/2) → R, f(z) =

{
0 (|z + 1

2
| < 1/2)

1 (z = 0 or |z − 1
2
| < 1/2)

.

f is discontinuous at 0.
But if f : N (−1/2, 1/2) ∪N (1/2, 1/2) → R, f ≡ 0 on N(−1/2, 1/2), f ≡ 1
on N(1/2, 1/2). f is now continuous (indeed, infinitely differentiable). From
the point of view of later results, this function has very bad behaviour. We
will build a theory where, knowing the function values in any disc (however
small) determines the function values anywhere. Such a theory must exclude
examples such as the above. We do this by restricting the domain of the
definition of a function to be connected. The above example then becomes
not one function but two – one ≡ 0 on the left-hand disc, the other ≡ 1 on
the other disc.

Defn. 1. A domain D is a non-empty, open, connected subset of C (domains
are sometimes called regions.
These are the sets suitable as domains of definition for functions f differen-
tiable in the sense of II.2.
2. A function f is holomorphic if it is differentiable (in the sense of II.2) in
some domain D: f : D −→ C. We then say f is holomorphic in D.
Note. D is non-empty (so a function can be defined on on it), open (dif-
ferentiable ↔ open domain: differentiability at a point requires us to form
diference quotients at all nearby points; all must be in the domain of defini-
tion, which must thus be open) and connected (to exclude examples such as
the above).
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