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Lemma (ML Inequality). If |f | ≤ M on γ, and γ has length L, then

∣∣∣∣
∫

γ
f

∣∣∣∣ ≤ ML.

Proof. As | ∫ .| ≤ ∫ |.|,
∣∣∣∣
∫

γ
f

∣∣∣∣ =

∣∣∣∣∣
∫ b

a
f(γ(t))γ̇(t) dt

∣∣∣∣∣ ≤
∫ b

a
|f(γ(t))|.|γ̇(t)| dt ≤ M

∫ b

a
|γ̇(t)| dt = ML. //

Example (Fundamental Integral). For C on the unit circle (centre O),

∫

C
zn dz =

{
2πi (n = −1),
0 (n 6= −1).

Proof. Parametrize C by z = eiθ (0 ≤ θ ≤ 2π), dz = ieiθ dθ.

∫

C
zn dz =

∫ 2π

0
einθ.ieiθ dθ = i

∫ 2π

0
ei(n+1)θ dθ = i

∫ 2π

0
dθ = 2πi if n = −1 (n+1 = 0).

But if n 6= −1, n + 1 6= 0, RHS = i
[
ei(n+1)θ/(i(n + 1))

]2π

0
= 0, by periodicity

of cos θ, sin θ, eiθ.

5. Cauchy’s Theorem.

Theorem (Cauchy’s Theorem for Triangles). If f is holomorphic in a
domain D containing a triangle γ and its interior I(γ) – then

∫

γ
f = 0.

Proof. Join the three midpoints of the sides of the triangle γ. This quadrisects
γ into 4 similar triangles. Call these γ1 to γ4: then

∫

γ
f =

4∑

1

∫

γi

f.

1



For, RHS contains 12 terms, 3 for each of the 4 triangles. The ‘outer 6’ add
to

∫
γ f ; the ‘inner 6’ cancel in pairs. So, for at least one i,

∣∣∣∣
∫

γi

f

∣∣∣∣ ≥
1

4
|I|, where I =

∫

γ
f.

For if not, each
∣∣∣
∫
γi

f
∣∣∣ < 1

4
|I|, so

|I| =
∣∣∣∣
∫

γ
f

∣∣∣∣ =

∣∣∣∣∣
4∑

1

∫

γi

f

∣∣∣∣∣ ≤
4∑

1

|
∫

γi

f | <
4∑

1

1

4
|I| = |I|,

a contradiction. W.l.o.g., take this i as 1. So:
∣∣∣
∫
γ1

f
∣∣∣ ≥ 1

4
|I|.

Now quadrisect γ1. Repeating the argument above, at least one of the 4
resulting triangles, γ2 say, has

∣∣∣∣
∫

γ2

f

∣∣∣∣ ≥
1

4

∣∣∣∣
∫

γ1

f

∣∣∣∣ ≥
1

42
|I|.

Continue (or use induction): we obtain a sequence of triangles γ1, γ2, ..., γn, ...
s.t. if ∆ denotes the union of γ and its interior I(γ) and similarly for ∆n, γn,

∆n+1 ⊂ ∆n ⊂ ... ⊂ ∆2 ⊂ ∆1 ⊂ ∆;

lengths: L(γn) = 2−nL (L = L(γ), length of γ); and 4−n|I| ≤
∣∣∣
∫
γn

f
∣∣∣.

The sets ∆n are decreasing, closed and bounded (so compact), and non-
empty. So by Cantor’s Theorem (Handout, or I.2.6),

∞⋂

n=1

4n 6= ∅.

Take z0 ∈ ∩∞n=14n. As ∆ is compact, z0 ∈ ∆. Since by assumption f is
holomorphic in D, f is holomorphic at z0. So

∀ε > 0, ∃δ > 0 s.t. ∀z with 0 < |z − z0| < δ,

∣∣∣∣∣
f(z)− f(z0)

z − z0

− f
′
(z0)

∣∣∣∣∣ < ε :

|f(z)− f(z0)− f
′
(z0)(z − z0)| < ε|z − z0|.

As diam(γn) = 2−n ↓ 0 as n →∞, ∆n tends to {z0} as n →∞. So

∆N ⊂ N(z0, δ)

for all large enough n. For this n, and all z ∈ ∆n, |z − z0| ≤ L(γn) = 2−nL
(Triangle Lemma, Problems 4). Now

f(z0) + f
′
(z0)(z− z0) = F

′
(z), with F (z) = f(z0)(z− z0) +

1

2
f
′
(z0)(z− z0)

2.

2


