m2pm3l15.tex Lecture 16. 15.2.2010.

Lemma (ML Inequality). If $|f| \leq M$ on γ , and γ has length L, then

$$\left|\int_{\gamma} f\right| \le ML.$$

Proof. As $|\int .| \leq \int |.|$,

$$\left|\int_{\gamma} f\right| = \left|\int_{a}^{b} f(\gamma(t))\dot{\gamma}(t) \, dt\right| \le \int_{a}^{b} |f(\gamma(t))| \cdot |\dot{\gamma}(t)| \, dt \le M \int_{a}^{b} |\dot{\gamma}(t)| \, dt = ML. \quad //$$

Example (Fundamental Integral). For C on the unit circle (centre O),

$$\int_C z^n \, dz = \begin{cases} 2\pi i & (n = -1), \\ 0 & (n \neq -1). \end{cases}$$

Proof. Parametrize C by $z = e^{i\theta}$ $(0 \le \theta \le 2\pi), dz = ie^{i\theta} d\theta$.

$$\int_C z^n \, dz = \int_0^{2\pi} e^{in\theta} \cdot ie^{i\theta} \, d\theta = i \int_0^{2\pi} e^{i(n+1)\theta} \, d\theta = i \int_0^{2\pi} d\theta = 2\pi i \text{ if } n = -1 \quad (n+1=0).$$

But if $n \neq -1$, $n+1 \neq 0$, RHS = $i \left[e^{i(n+1)\theta} / (i(n+1)) \right]_0^{2\pi} = 0$, by periodicity of $\cos \theta$, $\sin \theta$, $e^{i\theta}$.

5. Cauchy's Theorem.

Theorem (Cauchy's Theorem for Triangles). If f is holomorphic in a domain D containing a triangle γ and its interior $I(\gamma)$ – then

$$\int_{\gamma} f = 0.$$

Proof. Join the three midpoints of the sides of the triangle γ . This quadrisects γ into 4 similar triangles. Call these γ_1 to γ_4 : then

$$\int_{\gamma} f = \sum_{1}^{4} \int_{\gamma_i} f.$$

For, RHS contains 12 terms, 3 for each of the 4 triangles. The 'outer 6' add to $\int_{\gamma} f$; the 'inner 6' cancel in pairs. So, for at least one *i*,

$$\left| \int_{\gamma_i} f \right| \ge \frac{1}{4} |I|, \text{ where } I = \int_{\gamma} f.$$

For if not, each $\left|\int_{\gamma_i} f\right| < \frac{1}{4}|I|$, so

$$|I| = \left| \int_{\gamma} f \right| = \left| \sum_{1}^{4} \int_{\gamma_{i}} f \right| \le \sum_{1}^{4} |\int_{\gamma_{i}} f| < \sum_{1}^{4} \frac{1}{4} |I| = |I|,$$

a contradiction. W.l.o.g., take this *i* as 1. So: $\left|\int_{\gamma_1} f\right| \geq \frac{1}{4}|I|$. Now quadrisect γ_1 . Repeating the argument above, at least one of the 4 resulting triangles, γ_2 say, has

$$\left| \int_{\gamma_2} f \right| \ge \frac{1}{4} \left| \int_{\gamma_1} f \right| \ge \frac{1}{4^2} |I|.$$

Continue (or use induction): we obtain a sequence of triangles $\gamma_1, \gamma_2, ..., \gamma_n, ...$ s.t. if Δ denotes the union of γ and its interior $I(\gamma)$ and similarly for Δ_n, γ_n ,

$$\Delta_{n+1} \subset \Delta_n \subset \ldots \subset \Delta_2 \subset \Delta_1 \subset \Delta;$$

lengths: $L(\gamma_n) = 2^{-n}L$ $(L = L(\gamma)$, length of γ); and $4^{-n}|I| \leq \left| \int_{\gamma_n} f \right|$. The sets Δ_n are decreasing, closed and bounded (so *compact*), and nonempty. So by *Cantor's Theorem* (Handout, or I.2.6),

$$\bigcap_{n=1}^{\infty} \triangle_n \neq \emptyset$$

Take $z_0 \in \bigcap_{n=1}^{\infty} \Delta_n$. As Δ is compact, $z_0 \in \Delta$. Since by assumption f is holomorphic in D, f is holomorphic at z_0 . So

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ \forall z \ \text{with} \ 0 < |z - z_0| < \delta, \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \epsilon :$$
$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \epsilon |z - z_0|.$$

As $diam(\gamma_n) = 2^{-n} \downarrow 0$ as $n \to \infty$, Δ_n tends to $\{z_0\}$ as $n \to \infty$. So

$$\Delta_N \subset N(z_0,\delta)$$

for all large enough n. For this n, and all $z \in \Delta_n$, $|z - z_0| \leq L(\gamma_n) = 2^{-n}L$ (Triangle Lemma, Problems 4). Now

$$f(z_0) + f'(z_0)(z - z_0) = F'(z)$$
, with $F(z) = f(z_0)(z - z_0) + \frac{1}{2}f'(z_0)(z - z_0)^2$.